1. A novel heuristic of rigid docking scores positively correlates with full-length nuclear receptor LRH-1 regulation
- Author
-
Zeinab Haratipour, David Foutch, and Raymond D. Blind
- Subjects
Prioritize hit compounds ,Nuclear receptor compound docking ,Biotechnology ,TP248.13-248.65 - Abstract
The nuclear receptor Liver Receptor Homolog-1 (LRH-1, NR5A2) is a ligand-regulated transcription factor and validated drug target for several human diseases. LRH-1 activation is regulated by small molecule ligands, which bind to the ligand binding domain (LBD) within the full-length LRH-1. We recently identified 57 compounds that bind LRH-1, and unexpectedly found these compounds regulated either the isolated LBD, or the full-length LRH-1 in cells, with little overlap. Here, we correlated compound binding energy from a single rigid-body scoring function with full-length LRH-1 activity in cells. Although docking scores of the 57 hit compounds did not correlate with LRH-1 regulation in wet lab assays, a subset of the compounds had large differences in binding energy docked to the isolated LBD vs. full-length LRH-1, which we used to empirically derive a new metric of the docking scores we call ''ΔΔG''. Initial regressions, correlations and contingency analyses all suggest compounds with high ΔΔG values more frequently regulated LRH-1 in wet lab assays. We then docked all 57 compounds to 18 separate crystal structures of LRH-1 to obtain averaged ΔΔG values for each compound, which robustly and reproducibly associated with full-length LRH-1 activity in cells. Network analyses on the 18 crystal structures of LRH-1 suggest unique communication paths exist between the subsets of LRH-1 crystal structures that produced high vs. low ΔΔG values, identifying a structural relationship between ΔΔG and the position of Helix 6, a previously established regulatory helix important for LRH-1 regulation. Together, these data suggest rigid-body computational docking can be used to quickly calculate ΔΔG, which positively correlated with the ability of these 57 hit compounds to regulate full-length LRH-1 in cell-based assays. We propose ΔΔG as a novel computational tool that can be applied to LRH-1 drug screens to prioritize compounds for resource-intense secondary screening.
- Published
- 2024
- Full Text
- View/download PDF