1. Changes in floral biology and inbreeding depression in native and invaded regions of Datura stramonium.
- Author
-
Jiménez-Lobato V, Martínez-Borda E, Núñez-Farfán J, Valverde PL, Cruz LL, López-Velázquez A, Santos-Gally R, and Arroyo J
- Subjects
- Datura stramonium physiology, Flowers physiology, Inbreeding Depression physiology, Phenotype, Pollination, Seeds, Spain, Datura stramonium genetics, Flowers genetics, Inbreeding Depression genetics, Introduced Species
- Abstract
Plant populations invading new environments might compromise their fitness contribution to the next generation, because of the lack of native specialist pollinators and/or potential mates. Thus, changes in plant mating system and traits linked to it are expected in populations colonising new environments where selection would favour selfing and floral traits that maximise reproductive output. To test this, we studied native (Mexico) and non-native (Spain) populations of the obligate sexual reproducing annual weed Datura stramonium. Flower size, herkogamy, total number of seeds per plant, number of visits by and type of pollinators, and inbreeding depression were assessed in native and non-native populations. Finally, we measured phenotypic selection on corolla size and herkogamy in each population. Flower size and herkogamy showed wide and similar variation in both ranges. However, the largest average flower size was found in one non-native population whereas the highest average positive herkogamy was detected in one native population. On average, flowers in the native range received more visits by pollinators. Hawkmoths were the main visitors in the native populations while only bees were observed visiting flowers in Spain's populations. Only in the native range was inbreeding depression detected. Selection to reduce herkogamy was found only in one native population. Absence of both inbreeding depression and selection on floral traits suggest a change in mating system of D. stramonium in a new range where generalist pollinators may be promoting high reproductive success. Selection against deleterious alleles might explain the reduction of inbreeding depression, promoting the evolution of selfing., (© 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.)
- Published
- 2018
- Full Text
- View/download PDF