1. Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach
- Author
-
Alfredo Santovito, Mattia Lambertini, Dáša Schleicherová, Enrico Mirone, and Alessandro Nota
- Subjects
micronuclei ,nuclear buds ,genotoxicology ,organophosphate ,ecotoxicology ,Cytology ,QH573-671 - Abstract
Glufosinate-ammonium (GLA), an organophosphate herbicide, is released at high concentrations in the environment, leading to concerns over its potential genotoxic effects. However, few articles are available in the literature reporting the possible cellular and nuclear effects of this compound. We assessed, by in vitro and in vivo micronucleus assays, the genotoxicity of GLA on cultured human lymphocytes and Lymnaea stagnalis hemocytes at six concentrations: 0.010 (the established acceptable daily intake value), 0.020, 0.050, 0.100, 0.200, and 0.500 µg/mL. In human lymphocytes, our results reveal a significant and concentration-dependent increase in micronuclei frequency at concentrations from 0.100 to 0.500 μg/mL, while in L. stagnalis hemocytes, significant differences were found at 0.200 and 0.500 μg/mL. A significant reduction in the proliferation index was observed at all tested concentrations, with the only exception of 0.010 μg/mL, indicating that the exposure to GLA could lead to increased cytotoxic effects. In L. stagnalis, a significant reduction in laid eggs and body growth was also observed at all concentrations. In conclusion, we provided evidence of the genomic and cellular damage induced by GLA on both cultured human lymphocytes and a model organism’s hemocytes; in addition, we also demonstrated its effects on cell proliferation and reproductive health in L. stagnalis.
- Published
- 2024
- Full Text
- View/download PDF