1. Effect of Shading on Physiological Attributes and Proteomic Analysis of Tea during Low Temperatures
- Author
-
Shah Zaman, Jiazhi Shen, Shuangshuang Wang, Dapeng Song, Hui Wang, Shibo Ding, Xu Pang, Mengqi Wang, Yu Wang, and Zhaotang Ding
- Subjects
shade ,tea ,physiological attributes ,proteomics ,low temperature ,Botany ,QK1-989 - Abstract
Shading is an important technique to protect tea plantations under abiotic stresses. In this study, we analyzed the effect of shading (SD60% shade vs. SD0% no-shade) on the physiological attributes and proteomic analysis of tea leaves in November and December during low temperatures. The results revealed that shading protected the tea plants, including their soil plant analysis development (SPAD), photochemical efficiency (Fv/Fm), and nitrogen content (N), in November and December. The proteomics analysis of tea leaves was determined using tandem mass tags (TMT) technology and a total of 7263 proteins were accumulated. Further, statistical analysis and the fold change of significant proteins (FC < 0.67 and FC > 1.5 p < 0.05) revealed 14 DAPs, 11 increased and 3 decreased, in November (nCK_vs_nSD60), 20 DAPs, 7 increased and 13 decreased, in December (dCK_vs_dSD60), and 12 DAPs, 3 increased and 9 decreased, in both November and December (nCK_vs_nSD60). These differentially accumulated proteins (DAPs) were dehydrins (DHNs), late-embryogenesis abundant (LEA), thaumatin-like proteins (TLPs), glutathione S-transferase (GSTs), gibberellin-regulated proteins (GAs), proline-rich proteins (PRPs), cold and drought proteins (CORA-like), and early light-induced protein 1, which were found in the cytoplasm, nucleus, chloroplast, extra cell, and plasma membrane, and functioned in catalytic, cellular, stimulus-response, and metabolic pathways. In conclusion, the proliferation of key proteins was triggered by translation and posttranslational modifications, which might sustain membrane permeability in tea cellular compartments and could be responsible for tea protection under shading during low temperatures. This study aimed to investigate the impact of the conventional breeding technique (shading) and modern molecular technologies (proteomics) on tea plants, for the development and protection of new tea cultivars.
- Published
- 2023
- Full Text
- View/download PDF