897 results on '"Dannlowski, U"'
Search Results
2. Comorbid anxiety – A challenge to the disconnection syndrome hypothesis of major depressive disorder?
- Author
-
Gruber, M., primary, Schulte, J., additional, Leehr, E.J., additional, Meinert, S., additional, Grotegerd, D., additional, Nenadić, I., additional, Kircher, T., additional, Dannlowski, U., additional, and Repple, J., additional
- Published
- 2024
- Full Text
- View/download PDF
3. Centromedial amygdala is more relevant for phobic confrontation relative to the bed nucleus of stria terminalis in patients with spider phobia
- Author
-
Siminski, N., Borgmann, L., Becker, M.P.I., Hofmann, D., Gathmann, B., Leehr, E.J., Böhnlein, J., Seeger, F.R., Schwarzmeier, H., Roesmann, K., Junghöfer, M., Dannlowski, U., Lueken, U., Straube, T., and Herrmann, M.J.
- Published
- 2021
- Full Text
- View/download PDF
4. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia.
- Author
-
Witt, SH, Streit, F, Jungkunz, M, Frank, J, Awasthi, S, Reinbold, CS, Treutlein, J, Degenhardt, F, Forstner, AJ, Heilmann-Heimbach, S, Dietl, L, Schwarze, CE, Schendel, D, Strohmaier, J, Abdellaoui, A, Adolfsson, R, Air, TM, Akil, H, Alda, M, Alliey-Rodriguez, N, Andreassen, OA, Babadjanova, G, Bass, NJ, Bauer, M, Baune, BT, Bellivier, F, Bergen, S, Bethell, A, Biernacka, JM, Blackwood, DHR, Boks, MP, Boomsma, DI, Børglum, AD, Borrmann-Hassenbach, M, Brennan, P, Budde, M, Buttenschøn, HN, Byrne, EM, Cervantes, P, Clarke, T-K, Craddock, N, Cruceanu, C, Curtis, D, Czerski, PM, Dannlowski, U, Davis, T, de Geus, EJC, Di Florio, A, Djurovic, S, Domenici, E, Edenberg, HJ, Etain, B, Fischer, SB, Forty, L, Fraser, C, Frye, MA, Fullerton, JM, Gade, K, Gershon, ES, Giegling, I, Gordon, SD, Gordon-Smith, K, Grabe, HJ, Green, EK, Greenwood, TA, Grigoroiu-Serbanescu, M, Guzman-Parra, J, Hall, LS, Hamshere, M, Hauser, J, Hautzinger, M, Heilbronner, U, Herms, S, Hitturlingappa, S, Hoffmann, P, Holmans, P, Hottenga, J-J, Jamain, S, Jones, I, Jones, LA, Juréus, A, Kahn, RS, Kammerer-Ciernioch, J, Kirov, G, Kittel-Schneider, S, Kloiber, S, Knott, SV, Kogevinas, M, Landén, M, Leber, M, Leboyer, M, Li, QS, Lissowska, J, Lucae, S, Martin, NG, Mayoral-Cleries, F, McElroy, SL, McIntosh, AM, McKay, JD, and McQuillin, A
- Subjects
Bipolar Disorders Working Group of the Psychiatric Genomics Consortium ,Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium ,Schizophrenia Working Group of the Psychiatric Genomics Consortium ,Humans ,Genetic Predisposition to Disease ,Case-Control Studies ,Bipolar Disorder ,Depressive Disorder ,Major ,Borderline Personality Disorder ,Schizophrenia ,Genotype ,Multifactorial Inheritance ,Adolescent ,Adult ,Aged ,Middle Aged ,Female ,Male ,Genome-Wide Association Study ,Young Adult ,Depressive Disorder ,Major ,Clinical Sciences ,Public Health and Health Services ,Psychology - Abstract
Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case-control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10-7) and PKP4 (P=8.67 × 10-7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 [P=2.99 × 10-3]), SCZ (rg=0.34 [P=4.37 × 10-5]) and MDD (rg=0.57 [P=1.04 × 10-3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies.
- Published
- 2017
5. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group
- Author
-
Schmaal, L, Hibar, DP, Sämann, PG, Hall, GB, Baune, BT, Jahanshad, N, Cheung, JW, van Erp, TGM, Bos, D, Ikram, MA, Vernooij, MW, Niessen, WJ, Tiemeier, H, Hofman, A, Wittfeld, K, Grabe, HJ, Janowitz, D, Bülow, R, Selonke, M, Völzke, H, Grotegerd, D, Dannlowski, U, Arolt, V, Opel, N, Heindel, W, Kugel, H, Hoehn, D, Czisch, M, Couvy-Duchesne, B, Rentería, ME, Strike, LT, Wright, MJ, Mills, NT, de Zubicaray, GI, McMahon, KL, Medland, SE, Martin, NG, Gillespie, NA, Goya-Maldonado, R, Gruber, O, Krämer, B, Hatton, SN, Lagopoulos, J, Hickie, IB, Frodl, T, Carballedo, A, Frey, EM, van Velzen, LS, Penninx, BWJH, van Tol, M-J, van der Wee, NJ, Davey, CG, Harrison, BJ, Mwangi, B, Cao, B, Soares, JC, Veer, IM, Walter, H, Schoepf, D, Zurowski, B, Konrad, C, Schramm, E, Normann, C, Schnell, K, Sacchet, MD, Gotlib, IH, MacQueen, GM, Godlewska, BR, Nickson, T, McIntosh, AM, Papmeyer, M, Whalley, HC, Hall, J, Sussmann, JE, Li, M, Walter, M, Aftanas, L, Brack, I, Bokhan, NA, Thompson, PM, and Veltman, DJ
- Subjects
Biological Psychology ,Biomedical and Clinical Sciences ,Clinical Sciences ,Psychology ,Major Depressive Disorder ,Serious Mental Illness ,Neurosciences ,Biomedical Imaging ,Depression ,Basic Behavioral and Social Science ,Mental Health ,Brain Disorders ,Clinical Research ,Pediatric ,Behavioral and Social Science ,2.3 Psychological ,social and economic factors ,Aetiology ,2.1 Biological and endogenous factors ,Neurological ,Mental health ,Adolescent ,Adult ,Brain ,Cerebral Cortex ,Depressive Disorder ,Major ,Female ,Frontal Lobe ,Gray Matter ,Gyrus Cinguli ,Humans ,Magnetic Resonance Imaging ,Male ,Neuroimaging ,Prefrontal Cortex ,Temporal Lobe ,Biological Sciences ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Psychiatry ,Clinical sciences ,Biological psychology ,Clinical and health psychology - Abstract
The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: -0.10 to -0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: -0.26 to -0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.
- Published
- 2017
6. Beyond the Global Brain Differences: Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers
- Author
-
Boen, R, Kaufmann, T, van der Meer, D, Frei, O, Agartz, I, Ames, D, Andersson, M, Armstrong, NJ, Artiges, E, Atkins, JR, Bauer, J, Benedetti, F, Boomsma, DI, Brodaty, H, Brosch, K, Buckner, RL, Cairns, MJ, Calhoun, V, Caspers, S, Cichon, S, Corvin, AP, Crespo-Facorro, B, Dannlowski, U, David, FS, de Geus, EJC, de Zubicaray, GI, Desrivieres, S, Doherty, JL, Donohoe, G, Ehrlich, S, Eising, E, Espeseth, T, Fisher, SE, Forstner, AJ, Fortaner-Uya, L, Frouin, V, Fukunaga, M, Ge, T, Glahn, DC, Goltermann, J, Grabe, HJ, Green, MJ, Groenewold, NA, Grotegerd, D, Grontvedt, GR, Hahn, T, Hashimoto, R, Hehir-Kwa, JY, Henskens, FA, Holmes, AJ, Haberg, AK, Haavik, J, Jacquemont, S, Jansen, A, Jockwitz, C, Joensson, EG, Kikuchi, M, Kircher, T, Kumar, K, Le Hellard, S, Leu, C, Linden, DE, Liu, J, Loughnan, R, Mather, KA, Mcmahon, KL, Mcrae, AF, Medland, SE, Meinert, S, Moreau, CA, Morris, DW, Mowry, BJ, Muehleisen, TW, Nenadic, I, Noethen, MM, Nyberg, L, Ophoff, RA, Owen, MJ, Pantelis, C, Paolini, M, Paus, T, Pausova, Z, Persson, K, Quide, Y, Marques, TR, Sachdev, PS, Sando, SB, Schall, U, Scott, RJ, Selbaek, G, Shumskaya, E, Silva, AI, Sisodiya, SM, Stein, F, Stein, DJ, Straube, B, Streit, F, Strike, LT, Teumer, A, Teutenberg, L, Thalamuthu, A, Tooney, PA, Tordesillas-Gutierrez, D, Trollor, JN, Van't Ent, D, van den Bree, MBM, van Haren, NEM, Vazquez-Bourgon, J, Voelzke, H, Wen, W, Wittfeld, K, Ching, CRK, Westlye, LT, Thompson, PM, Bearden, CE, Selmer, KK, Alnaes, D, Andreassen, OA, Sonderby, IE, Boen, R, Kaufmann, T, van der Meer, D, Frei, O, Agartz, I, Ames, D, Andersson, M, Armstrong, NJ, Artiges, E, Atkins, JR, Bauer, J, Benedetti, F, Boomsma, DI, Brodaty, H, Brosch, K, Buckner, RL, Cairns, MJ, Calhoun, V, Caspers, S, Cichon, S, Corvin, AP, Crespo-Facorro, B, Dannlowski, U, David, FS, de Geus, EJC, de Zubicaray, GI, Desrivieres, S, Doherty, JL, Donohoe, G, Ehrlich, S, Eising, E, Espeseth, T, Fisher, SE, Forstner, AJ, Fortaner-Uya, L, Frouin, V, Fukunaga, M, Ge, T, Glahn, DC, Goltermann, J, Grabe, HJ, Green, MJ, Groenewold, NA, Grotegerd, D, Grontvedt, GR, Hahn, T, Hashimoto, R, Hehir-Kwa, JY, Henskens, FA, Holmes, AJ, Haberg, AK, Haavik, J, Jacquemont, S, Jansen, A, Jockwitz, C, Joensson, EG, Kikuchi, M, Kircher, T, Kumar, K, Le Hellard, S, Leu, C, Linden, DE, Liu, J, Loughnan, R, Mather, KA, Mcmahon, KL, Mcrae, AF, Medland, SE, Meinert, S, Moreau, CA, Morris, DW, Mowry, BJ, Muehleisen, TW, Nenadic, I, Noethen, MM, Nyberg, L, Ophoff, RA, Owen, MJ, Pantelis, C, Paolini, M, Paus, T, Pausova, Z, Persson, K, Quide, Y, Marques, TR, Sachdev, PS, Sando, SB, Schall, U, Scott, RJ, Selbaek, G, Shumskaya, E, Silva, AI, Sisodiya, SM, Stein, F, Stein, DJ, Straube, B, Streit, F, Strike, LT, Teumer, A, Teutenberg, L, Thalamuthu, A, Tooney, PA, Tordesillas-Gutierrez, D, Trollor, JN, Van't Ent, D, van den Bree, MBM, van Haren, NEM, Vazquez-Bourgon, J, Voelzke, H, Wen, W, Wittfeld, K, Ching, CRK, Westlye, LT, Thompson, PM, Bearden, CE, Selmer, KK, Alnaes, D, Andreassen, OA, and Sonderby, IE
- Abstract
BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure. METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference. RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness. CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.
- Published
- 2024
7. Transdiagnostic subgroups of cognitive impairment in early affective and psychotic illness
- Author
-
Wenzel, J, Badde, L, Haas, SS, Bonivento, C, van Rheenen, TE, Antonucci, LA, Ruef, A, Penzel, N, Rosen, M, Lichtenstein, T, Lalousis, PA, Paolini, M, Stainton, A, Dannlowski, U, Romer, G, Brambilla, P, Wood, SJ, Upthegrove, R, Borgwardt, S, Meisenzahl, E, Salokangas, RKR, Pantelis, C, Lencer, R, Bertolino, A, Kambeitz, J, Koutsouleris, N, Dwyer, DB, Kambeitz-Ilankovic, L, Wenzel, J, Badde, L, Haas, SS, Bonivento, C, van Rheenen, TE, Antonucci, LA, Ruef, A, Penzel, N, Rosen, M, Lichtenstein, T, Lalousis, PA, Paolini, M, Stainton, A, Dannlowski, U, Romer, G, Brambilla, P, Wood, SJ, Upthegrove, R, Borgwardt, S, Meisenzahl, E, Salokangas, RKR, Pantelis, C, Lencer, R, Bertolino, A, Kambeitz, J, Koutsouleris, N, Dwyer, DB, and Kambeitz-Ilankovic, L
- Abstract
Cognitively impaired and spared patient subgroups were identified in psychosis and depression, and in clinical high-risk for psychosis (CHR). Studies suggest differences in underlying brain structural and functional characteristics. It is unclear whether cognitive subgroups are transdiagnostic phenomena in early stages of psychotic and affective disorder which can be validated on the neural level. Patients with recent-onset psychosis (ROP; N = 140; female = 54), recent-onset depression (ROD; N = 130; female = 73), CHR (N = 128; female = 61) and healthy controls (HC; N = 270; female = 165) were recruited through the multi-site study PRONIA. The transdiagnostic sample and individual study groups were clustered into subgroups based on their performance in eight cognitive domains and characterized by gray matter volume (sMRI) and resting-state functional connectivity (rsFC) using support vector machine (SVM) classification. We identified an impaired subgroup (NROP = 79, NROD = 30, NCHR = 37) showing cognitive impairment in executive functioning, working memory, processing speed and verbal learning (all p < 0.001). A spared subgroup (NROP = 61, NROD = 100, NCHR = 91) performed comparable to HC. Single-disease subgroups indicated that cognitive impairment is stronger pronounced in impaired ROP compared to impaired ROD and CHR. Subgroups in ROP and ROD showed specific symptom- and functioning-patterns. rsFC showed superior accuracy compared to sMRI in differentiating transdiagnostic subgroups from HC (BACimpaired = 58.5%; BACspared = 61.7%, both: p < 0.01). Cognitive findings were validated in the PRONIA replication sample (N = 409). Individual cognitive subgroups in ROP, ROD and CHR are more informative than transdiagnostic subgroups as they map onto individual cognitive impairment and specific functioning- and symptom-patterns which show limited overlap in sMRI and rsFC.
- Published
- 2024
8. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm.
- Author
-
Jiang, Y, Luo, C, Wang, J, Palaniyappan, L, Chang, X, Xiang, S, Zhang, J, Duan, M, Huang, H, Gaser, C, Nemoto, K, Miura, K, Hashimoto, R, Westlye, LT, Richard, G, Fernandez-Cabello, S, Parker, N, Andreassen, OA, Kircher, T, Nenadić, I, Stein, F, Thomas-Odenthal, F, Teutenberg, L, Usemann, P, Dannlowski, U, Hahn, T, Grotegerd, D, Meinert, S, Lencer, R, Tang, Y, Zhang, T, Li, C, Yue, W, Zhang, Y, Yu, X, Zhou, E, Lin, C-P, Tsai, S-J, Rodrigue, AL, Glahn, D, Pearlson, G, Blangero, J, Karuk, A, Pomarol-Clotet, E, Salvador, R, Fuentes-Claramonte, P, Garcia-León, MÁ, Spalletta, G, Piras, F, Vecchio, D, Banaj, N, Cheng, J, Liu, Z, Yang, J, Gonul, AS, Uslu, O, Burhanoglu, BB, Uyar Demir, A, Rootes-Murdy, K, Calhoun, VD, Sim, K, Green, M, Quidé, Y, Chung, YC, Kim, W-S, Sponheim, SR, Demro, C, Ramsay, IS, Iasevoli, F, de Bartolomeis, A, Barone, A, Ciccarelli, M, Brunetti, A, Cocozza, S, Pontillo, G, Tranfa, M, Park, MTM, Kirschner, M, Georgiadis, F, Kaiser, S, Van Rheenen, TE, Rossell, SL, Hughes, M, Woods, W, Carruthers, SP, Sumner, P, Ringin, E, Spaniel, F, Skoch, A, Tomecek, D, Homan, P, Homan, S, Omlor, W, Cecere, G, Nguyen, DD, Preda, A, Thomopoulos, SI, Jahanshad, N, Cui, L-B, Yao, D, Thompson, PM, Turner, JA, van Erp, TGM, Cheng, W, ENIGMA Schizophrenia Consortium, Feng, J, ZIB Consortium, Jiang, Y, Luo, C, Wang, J, Palaniyappan, L, Chang, X, Xiang, S, Zhang, J, Duan, M, Huang, H, Gaser, C, Nemoto, K, Miura, K, Hashimoto, R, Westlye, LT, Richard, G, Fernandez-Cabello, S, Parker, N, Andreassen, OA, Kircher, T, Nenadić, I, Stein, F, Thomas-Odenthal, F, Teutenberg, L, Usemann, P, Dannlowski, U, Hahn, T, Grotegerd, D, Meinert, S, Lencer, R, Tang, Y, Zhang, T, Li, C, Yue, W, Zhang, Y, Yu, X, Zhou, E, Lin, C-P, Tsai, S-J, Rodrigue, AL, Glahn, D, Pearlson, G, Blangero, J, Karuk, A, Pomarol-Clotet, E, Salvador, R, Fuentes-Claramonte, P, Garcia-León, MÁ, Spalletta, G, Piras, F, Vecchio, D, Banaj, N, Cheng, J, Liu, Z, Yang, J, Gonul, AS, Uslu, O, Burhanoglu, BB, Uyar Demir, A, Rootes-Murdy, K, Calhoun, VD, Sim, K, Green, M, Quidé, Y, Chung, YC, Kim, W-S, Sponheim, SR, Demro, C, Ramsay, IS, Iasevoli, F, de Bartolomeis, A, Barone, A, Ciccarelli, M, Brunetti, A, Cocozza, S, Pontillo, G, Tranfa, M, Park, MTM, Kirschner, M, Georgiadis, F, Kaiser, S, Van Rheenen, TE, Rossell, SL, Hughes, M, Woods, W, Carruthers, SP, Sumner, P, Ringin, E, Spaniel, F, Skoch, A, Tomecek, D, Homan, P, Homan, S, Omlor, W, Cecere, G, Nguyen, DD, Preda, A, Thomopoulos, SI, Jahanshad, N, Cui, L-B, Yao, D, Thompson, PM, Turner, JA, van Erp, TGM, Cheng, W, ENIGMA Schizophrenia Consortium, Feng, J, and ZIB Consortium
- Abstract
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
- Published
- 2024
9. Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity.
- Author
-
McWhinney, SR, Hlinka, J, Bakstein, E, Dietze, LMF, Corkum, ELV, Abé, C, Alda, M, Alexander, N, Benedetti, F, Berk, M, Bøen, E, Bonnekoh, LM, Boye, B, Brosch, K, Canales-Rodríguez, EJ, Cannon, DM, Dannlowski, U, Demro, C, Diaz-Zuluaga, A, Elvsåshagen, T, Eyler, LT, Fortea, L, Fullerton, JM, Goltermann, J, Gotlib, IH, Grotegerd, D, Haarman, B, Hahn, T, Howells, FM, Jamalabadi, H, Jansen, A, Kircher, T, Klahn, AL, Kuplicki, R, Lahud, E, Landén, M, Leehr, EJ, Lopez-Jaramillo, C, Mackey, S, Malt, U, Martyn, F, Mazza, E, McDonald, C, McPhilemy, G, Meier, S, Meinert, S, Melloni, E, Mitchell, PB, Nabulsi, L, Nenadić, I, Nitsch, R, Opel, N, Ophoff, RA, Ortuño, M, Overs, BJ, Pineda-Zapata, J, Pomarol-Clotet, E, Radua, J, Repple, J, Roberts, G, Rodriguez-Cano, E, Sacchet, MD, Salvador, R, Savitz, J, Scheffler, F, Schofield, PR, Schürmeyer, N, Shen, C, Sim, K, Sponheim, SR, Stein, DJ, Stein, F, Straube, B, Suo, C, Temmingh, H, Teutenberg, L, Thomas-Odenthal, F, Thomopoulos, SI, Urosevic, S, Usemann, P, van Haren, NEM, Vargas, C, Vieta, E, Vilajosana, E, Vreeker, A, Winter, NR, Yatham, LN, Thompson, PM, Andreassen, OA, Ching, CRK, Hajek, T, McWhinney, SR, Hlinka, J, Bakstein, E, Dietze, LMF, Corkum, ELV, Abé, C, Alda, M, Alexander, N, Benedetti, F, Berk, M, Bøen, E, Bonnekoh, LM, Boye, B, Brosch, K, Canales-Rodríguez, EJ, Cannon, DM, Dannlowski, U, Demro, C, Diaz-Zuluaga, A, Elvsåshagen, T, Eyler, LT, Fortea, L, Fullerton, JM, Goltermann, J, Gotlib, IH, Grotegerd, D, Haarman, B, Hahn, T, Howells, FM, Jamalabadi, H, Jansen, A, Kircher, T, Klahn, AL, Kuplicki, R, Lahud, E, Landén, M, Leehr, EJ, Lopez-Jaramillo, C, Mackey, S, Malt, U, Martyn, F, Mazza, E, McDonald, C, McPhilemy, G, Meier, S, Meinert, S, Melloni, E, Mitchell, PB, Nabulsi, L, Nenadić, I, Nitsch, R, Opel, N, Ophoff, RA, Ortuño, M, Overs, BJ, Pineda-Zapata, J, Pomarol-Clotet, E, Radua, J, Repple, J, Roberts, G, Rodriguez-Cano, E, Sacchet, MD, Salvador, R, Savitz, J, Scheffler, F, Schofield, PR, Schürmeyer, N, Shen, C, Sim, K, Sponheim, SR, Stein, DJ, Stein, F, Straube, B, Suo, C, Temmingh, H, Teutenberg, L, Thomas-Odenthal, F, Thomopoulos, SI, Urosevic, S, Usemann, P, van Haren, NEM, Vargas, C, Vieta, E, Vilajosana, E, Vreeker, A, Winter, NR, Yatham, LN, Thompson, PM, Andreassen, OA, Ching, CRK, and Hajek, T
- Abstract
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associati
- Published
- 2024
10. Normative modelling of brain morphometry across the lifespan with CentileBrain: algorithm benchmarking and model optimisation
- Author
-
Ge, R., Yu, Y, Qi, Y.X., Fan, Y.N., Chen, S., Gao, Chuntong, Haas, S.S., New, F., Boomsma, D.I., Brodaty, H., Brouwer, R.M., Buckner, R., Caseras, X., Crivello, F., Crone, E.A.M., Erk, S., Fisher, S.E., Franke, B., Glahn, D.C., Dannlowski, U., Grotegerd, D., Gruber, O., Pol, H.E. Hulshoff, Schumann, G., Tamnes, C.K., Walter, H., Wierenga, L.M., Jahanshad, N., Thompson, P.M., Frangou, S., Ge, R., Yu, Y, Qi, Y.X., Fan, Y.N., Chen, S., Gao, Chuntong, Haas, S.S., New, F., Boomsma, D.I., Brodaty, H., Brouwer, R.M., Buckner, R., Caseras, X., Crivello, F., Crone, E.A.M., Erk, S., Fisher, S.E., Franke, B., Glahn, D.C., Dannlowski, U., Grotegerd, D., Gruber, O., Pol, H.E. Hulshoff, Schumann, G., Tamnes, C.K., Walter, H., Wierenga, L.M., Jahanshad, N., Thompson, P.M., and Frangou, S.
- Abstract
Contains fulltext : 305173.pdf (Publisher’s version ) (Open Access), The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.
- Published
- 2024
11. Disease course and white matter microstructure both individually influence cognitive performance in depressed patients
- Author
-
Meinert, S., primary, Flinkenflügel, K., additional, Kircher, T., additional, and Dannlowski, U., additional
- Published
- 2024
- Full Text
- View/download PDF
12. Changes in brain structure in the course of depression: A longitudinal imaging study across multiple follow-ups
- Author
-
Kraus, A., primary, Dohm, K., additional, Grotegerd, D., additional, Schrammen, E., additional, Goltermann, J., additional, Enneking, V., additional, Leehr, E.J., additional, Böhnlein, J., additional, Bauer, J., additional, Hahn, T., additional, Dannlowski, U., additional, and Meinert, S., additional
- Published
- 2024
- Full Text
- View/download PDF
13. Sex-specifics of ECT outcome
- Author
-
Blanken, M. A. J. T., Oudega, M. L., Hoogendoorn, A. W., Sonnenberg, C. S., Rhebergen, D., Klumpers, U. M. H., van Diermen, L., Birkenhager, T., Schrijvers, D., Redlich, R., Dannlowski, U., Heindel, W., Coenjaerts, M., Nordanskog, P., Oltedal, L., Kessler, U., Frid, L. M., Takamiya, A., Kishimoto, T., Jorgensen, M. B., Jorgensen, A., Bolwig, T., Emsell, L., Sienaert, P., Bouckaert, F., Abbott, C. C., Péran, P., Arbus, C., Yrondi, A., Kiebs, M., Philipsen, A., van Waarde, J. A., Prinsen, E., van Verseveld, M., van Wingen, G., ten Doesschate, F., Camprodon, J. A., Kritzer, M., Barbour, T., Argyelan, M., Cardoner, N., Urretavizcaya, M., Soriano-Mas, C., Narr, K. L., Espinoza, R. T., Prudic, J., Rowny, S., van Eijndhoven, Ph., Tendolkar, I., Dols, A., Psychiatry, APH - Aging & Later Life, Amsterdam Neuroscience - Mood, Anxiety, Psychosis, Stress & Sleep, APH - Mental Health, APH - Methodology, IOO, Neurology, Amsterdam Neuroscience - Neurodegeneration, Adult Psychiatry, ANS - Brain Imaging, and ANS - Compulsivity, Impulsivity & Attention
- Subjects
Psychiatry and Mental health ,Clinical Psychology ,All institutes and research themes of the Radboud University Medical Center ,Phenotype ,SDG 3 - Good Health and Well-being ,Electroconvulsive therapy ,Stress-related disorders Donders Center for Medical Neuroscience [Radboudumc 13] ,ECT ,Sex ,Human medicine ,Major depressive disorder ,Sex-specific ,Predictor - Abstract
Objective: Electroconvulsive therapy (ECT) is the most effective treatment for patients with severe major depressive disorder (MDD). Given the known sex differences in MDD, improved knowledge may provide more sex-specific recommendations in clinical guidelines and improve outcome. In the present study we examine sex differences in ECT outcome and its predictors. Methods: Clinical data from 20 independent sites participating in the Global ECT-MRI Research Collaboration (GEMRIC) were obtained for analysis, totaling 500 patients with MDD (58.6 % women) with a mean age of 54.8 years. Severity of depression before and after ECT was assessed with validated depression scales. Remission was defined as a HAM-D score of 7 points or below after ECT. Variables associated with remission were selected based on literature (i.e. depression severity at baseline, age, duration of index episode, and presence of psychotic symptoms). Results: Remission rates of ECT were independent of sex, 48.0 % in women and 45.7 % in men (X2(1) = 0.2, p = 0.70). In the logistic regression analyses, a shorter index duration was identified as a sex-specific predictor for ECT outcome in women (X2(1) = 7.05, p = 0.01). The corresponding predictive margins did show overlapping confidence intervals for men and women. Conclusion: The evidence provided by our study suggests that ECT as a biological treatment for MDD is equally effective in women and men. A shorter duration of index episode was an additional sex- specific predictor for remission in women. Future research should establish whether the confidence intervals for the corresponding predictive margins are overlapping, as we find, or not.
- Published
- 2023
14. Interaction between childhood maltreatment on immunogenetic risk in depression: Discovery and replication in clinical case-control samples
- Author
-
Cohen-Woods, S., Fisher, H.L., Ahmetspahic, D., Douroudis, K., Stacey, D., Hosang, G.M., Korszun, A., Owen, M., Craddock, N., Arolt, V., Dannlowski, U., Breen, G., Craig, I.W., Farmer, A., Baune, B.T., Lewis, C.M., Uher, R., and McGuffin, P.
- Published
- 2018
- Full Text
- View/download PDF
15. Reduced discrimination between signals of danger and safety but not overgeneralization is linked to exposure to childhood adversity
- Author
-
Klingelhöfer-Jens, M., primary, Hutterer, K., additional, Schiele, M., additional, Leehr, E.J., additional, Schümann, D., additional, Rosenkrantz, K., additional, Böhnlein, J., additional, Repple, J., additional, Deckert, J., additional, Domschke, K., additional, Dannlowski, U., additional, Lueken, U., additional, Reif, A., additional, Romanos, M., additional, Zwanzger, P., additional, Pauli, P., additional, Gamer, M., additional, and Lonsdorf, T.B., additional
- Published
- 2023
- Full Text
- View/download PDF
16. Volume of subcortical brain regions in social anxiety disorder: mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group.
- Author
-
Groenewold, NA, Bas-Hoogendam, JM, Amod, AR, Laansma, MA, Van Velzen, LS, Aghajani, M, Hilbert, K, Oh, H, Salas, R, Jackowski, AP, Pan, PM, Salum, GA, Blair, JR, Blair, KS, Hirsch, J, Pantazatos, SP, Schneier, FR, Talati, A, Roelofs, K, Volman, I, Blanco-Hinojo, L, Cardoner, N, Pujol, J, Beesdo-Baum, K, Ching, CRK, Thomopoulos, SI, Jansen, A, Kircher, T, Krug, A, Nenadić, I, Stein, F, Dannlowski, U, Grotegerd, D, Lemke, H, Meinert, S, Winter, A, Erb, M, Kreifelts, B, Gong, Q, Lui, S, Zhu, F, Mwangi, B, Soares, JC, Wu, M-J, Bayram, A, Canli, M, Tükel, R, Westenberg, PM, Heeren, A, Cremers, HR, Hofmann, D, Straube, T, Doruyter, AGG, Lochner, C, Peterburs, J, Van Tol, M-J, Gur, RE, Kaczkurkin, AN, Larsen, B, Satterthwaite, TD, Filippi, CA, Gold, AL, Harrewijn, A, Zugman, A, Bülow, R, Grabe, HJ, Völzke, H, Wittfeld, K, Böhnlein, J, Dohm, K, Kugel, H, Schrammen, E, Zwanzger, P, Leehr, EJ, Sindermann, L, Ball, TM, Fonzo, GA, Paulus, MP, Simmons, A, Stein, MB, Klumpp, H, Phan, KL, Furmark, T, Månsson, KNT, Manzouri, A, Avery, SN, Blackford, JU, Clauss, JA, Feola, B, Harper, JC, Sylvester, CM, Lueken, U, Veltman, DJ, Winkler, AM, Jahanshad, N, Pine, DS, Thompson, PM, Stein, DJ, Van der Wee, NJA, Groenewold, NA, Bas-Hoogendam, JM, Amod, AR, Laansma, MA, Van Velzen, LS, Aghajani, M, Hilbert, K, Oh, H, Salas, R, Jackowski, AP, Pan, PM, Salum, GA, Blair, JR, Blair, KS, Hirsch, J, Pantazatos, SP, Schneier, FR, Talati, A, Roelofs, K, Volman, I, Blanco-Hinojo, L, Cardoner, N, Pujol, J, Beesdo-Baum, K, Ching, CRK, Thomopoulos, SI, Jansen, A, Kircher, T, Krug, A, Nenadić, I, Stein, F, Dannlowski, U, Grotegerd, D, Lemke, H, Meinert, S, Winter, A, Erb, M, Kreifelts, B, Gong, Q, Lui, S, Zhu, F, Mwangi, B, Soares, JC, Wu, M-J, Bayram, A, Canli, M, Tükel, R, Westenberg, PM, Heeren, A, Cremers, HR, Hofmann, D, Straube, T, Doruyter, AGG, Lochner, C, Peterburs, J, Van Tol, M-J, Gur, RE, Kaczkurkin, AN, Larsen, B, Satterthwaite, TD, Filippi, CA, Gold, AL, Harrewijn, A, Zugman, A, Bülow, R, Grabe, HJ, Völzke, H, Wittfeld, K, Böhnlein, J, Dohm, K, Kugel, H, Schrammen, E, Zwanzger, P, Leehr, EJ, Sindermann, L, Ball, TM, Fonzo, GA, Paulus, MP, Simmons, A, Stein, MB, Klumpp, H, Phan, KL, Furmark, T, Månsson, KNT, Manzouri, A, Avery, SN, Blackford, JU, Clauss, JA, Feola, B, Harper, JC, Sylvester, CM, Lueken, U, Veltman, DJ, Winkler, AM, Jahanshad, N, Pine, DS, Thompson, PM, Stein, DJ, and Van der Wee, NJA
- Abstract
There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = -0.077, pFWE = 0.037; right: d = -0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = -0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = -0.141, pFWE < 0.001; right: d = -0.158, pFWE < 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.
- Published
- 2023
17. Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies
- Author
-
Gallo, S, El-Gazzar, A, Zhutovsky, P, Thomas, RM, Javaheripour, N, Li, M, Bartova, L, Bathula, D, Dannlowski, U, Davey, C, Frodl, T, Gotlib, I, Grimm, S, Grotegerd, D, Hahn, T, Hamilton, PJ, Harrison, BJ, Jansen, A, Kircher, T, Meyer, B, Nenadic, I, Olbrich, S, Paul, E, Pezawas, L, Sacchet, MD, Saemann, P, Wagner, G, Walter, H, Walter, M, van Wingen, G, Gallo, S, El-Gazzar, A, Zhutovsky, P, Thomas, RM, Javaheripour, N, Li, M, Bartova, L, Bathula, D, Dannlowski, U, Davey, C, Frodl, T, Gotlib, I, Grimm, S, Grotegerd, D, Hahn, T, Hamilton, PJ, Harrison, BJ, Jansen, A, Kircher, T, Meyer, B, Nenadic, I, Olbrich, S, Paul, E, Pezawas, L, Sacchet, MD, Saemann, P, Wagner, G, Walter, H, Walter, M, and van Wingen, G
- Abstract
The promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD. We obtained resting-state functional magnetic resonance imaging data from the REST-meta-MDD (N = 2338) and PsyMRI (N = 1039) consortia. Classification of functional connectivity matrices was done using support vector machines (SVM) and graph convolutional neural networks (GCN), and performance was evaluated using 5-fold cross-validation. Features were visualized using GCN-Explainer, an ablation study and univariate t-testing. The results showed a mean classification accuracy of 61% for MDD versus controls. Mean accuracy for classifying (non-)medicated subgroups was 62%. Sex classification accuracy was substantially better across datasets (73-81%). Visualization of the results showed that classifications were driven by stronger thalamic connections in both datasets, while nearly all other connections were weaker with small univariate effect sizes. These results suggest that whole brain resting-state connectivity is a reliable though poor biomarker for MDD, presumably due to disease heterogeneity as further supported by the higher accuracy for sex classification using the same methods. Deep learning revealed thalamic hyperconnectivity as a prominent neurophysiological signature of depression in both multicenter studies, which may guide the development of biomarkers in future studies.
- Published
- 2023
18. Sex-specifics of ECT outcome
- Author
-
Blanken, M. A.J.T., Oudega, M. L., Hoogendoorn, A. W., Sonnenberg, C. S., Rhebergen, D., Klumpers, U. M.H., Van Diermen, L., Birkenhager, T., Schrijvers, D., Redlich, R., Dannlowski, U., Heindel, W., Coenjaerts, M., Nordanskog, P., Oltedal, L., Kessler, U., Frid, L. M., Takamiya, A., Kishimoto, T., Jorgensen, M. B., Jorgensen, A., Bolwig, T., Emsell, L., Sienaert, P., Bouckaert, F., Abbott, C. C., Péran, P., Arbus, C., Yrondi, A., Kiebs, M., Philipsen, A., van Waarde, J. A., Prinsen, E., van Verseveld, M., Van Wingen, G., ten Doesschate, F., Camprodon, J. A., Kritzer, M., Barbour, T., Argyelan, M., Cardoner, N., Urretavizcaya, M., Soriano-Mas, C., Narr, K. L., Espinoza, R. T., Prudic, J., Rowny, S., van Eijndhoven, Ph, Tendolkar, I., Dols, A., Blanken, M. A.J.T., Oudega, M. L., Hoogendoorn, A. W., Sonnenberg, C. S., Rhebergen, D., Klumpers, U. M.H., Van Diermen, L., Birkenhager, T., Schrijvers, D., Redlich, R., Dannlowski, U., Heindel, W., Coenjaerts, M., Nordanskog, P., Oltedal, L., Kessler, U., Frid, L. M., Takamiya, A., Kishimoto, T., Jorgensen, M. B., Jorgensen, A., Bolwig, T., Emsell, L., Sienaert, P., Bouckaert, F., Abbott, C. C., Péran, P., Arbus, C., Yrondi, A., Kiebs, M., Philipsen, A., van Waarde, J. A., Prinsen, E., van Verseveld, M., Van Wingen, G., ten Doesschate, F., Camprodon, J. A., Kritzer, M., Barbour, T., Argyelan, M., Cardoner, N., Urretavizcaya, M., Soriano-Mas, C., Narr, K. L., Espinoza, R. T., Prudic, J., Rowny, S., van Eijndhoven, Ph, Tendolkar, I., and Dols, A.
- Abstract
Objective: Electroconvulsive therapy (ECT) is the most effective treatment for patients with severe major depressive disorder (MDD). Given the known sex differences in MDD, improved knowledge may provide more sex-specific recommendations in clinical guidelines and improve outcome. In the present study we examine sex differences in ECT outcome and its predictors. Methods: Clinical data from 20 independent sites participating in the Global ECT-MRI Research Collaboration (GEMRIC) were obtained for analysis, totaling 500 patients with MDD (58.6 % women) with a mean age of 54.8 years. Severity of depression before and after ECT was assessed with validated depression scales. Remission was defined as a HAM-D score of 7 points or below after ECT. Variables associated with remission were selected based on literature (i.e. depression severity at baseline, age, duration of index episode, and presence of psychotic symptoms). Results: Remission rates of ECT were independent of sex, 48.0 % in women and 45.7 % in men (X2(1) = 0.2, p = 0.70). In the logistic regression analyses, a shorter index duration was identified as a sex-specific predictor for ECT outcome in women (X2(1) = 7.05, p = 0.01). The corresponding predictive margins did show overlapping confidence intervals for men and women. Conclusion: The evidence provided by our study suggests that ECT as a biological treatment for MDD is equally effective in women and men. A shorter duration of index episode was an additional sex- specific predictor for remission in women. Future research should establish whether the confidence intervals for the corresponding predictive margins are overlapping, as we find, or not.
- Published
- 2023
19. Functional connectivity signatures of major depressive disorder: Machine learning analysis of two multicenter neuroimaging studies
- Author
-
Gallo, S., Elgazzar, A.G.M.A., Zhutovsky, P., Thomas, R.M., Javaheripour, N., Li, M., Bartova, L., Bathula, D., Dannlowski, U., Davey, C., Frodl, T., Gotlib, I.H., Grimm, S., Grotegerd, D., Hahn, T., Hamilton, P.J., Harrison, B.J., Jansen, A., Kircher, T.T.J., Meyer, B., Nenadic, I., Olbrich, S., Paul, E., Pezawas, L., Sacchet, M.D., Sämann, P.G., Wagner, G., Walter, H., Walter, M., Wingen, G.A. van, Gallo, S., Elgazzar, A.G.M.A., Zhutovsky, P., Thomas, R.M., Javaheripour, N., Li, M., Bartova, L., Bathula, D., Dannlowski, U., Davey, C., Frodl, T., Gotlib, I.H., Grimm, S., Grotegerd, D., Hahn, T., Hamilton, P.J., Harrison, B.J., Jansen, A., Kircher, T.T.J., Meyer, B., Nenadic, I., Olbrich, S., Paul, E., Pezawas, L., Sacchet, M.D., Sämann, P.G., Wagner, G., Walter, H., Walter, M., and Wingen, G.A. van
- Abstract
15 februari 2023, Item does not contain fulltext, The promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD. We obtained resting-state functional magnetic resonance imaging data from the REST-meta-MDD (N = 2338) and PsyMRI (N = 1039) consortia. Classification of functional connectivity matrices was done using support vector machines (SVM) and graph convolutional neural networks (GCN), and performance was evaluated using 5-fold cross-validation. Features were visualized using GCN-Explainer, an ablation study and univariate t-testing. The results showed a mean classification accuracy of 61% for MDD versus controls. Mean accuracy for classifying (non-)medicated subgroups was 62%. Sex classification accuracy was substantially better across datasets (73-81%). Visualization of the results showed that classifications were driven by stronger thalamic connections in both datasets, while nearly all other connections were weaker with small univariate effect sizes. These results suggest that whole brain resting-state connectivity is a reliable though poor biomarker for MDD, presumably due to disease heterogeneity as further supported by the higher accuracy for sex classification using the same methods. Deep learning revealed thalamic hyperconnectivity as a prominent neurophysiological signature of depression in both multicenter studies, which may guide the development of biomarkers in future studies.
- Published
- 2023
20. Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium.
- Author
-
Schijven, Dick, Postema, M.C., Fukunaga, M., Matsumoto, J., Miura, K., Zwarte, S.M.C. de, Haren, N.E.M. van, Cahn, W., Hulshoff Pol, H.E., Kahn, R.S., Ayesa-Arriola, R., Ortoz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L.T., Agartz, I., Andreassen, O.A., Jönsson, E.G., Kochunov, P., Bruggemann, J.M., Catts, S.V., Michie, P.T., Mowry, B.J., Quidé, Y., Rasser, P.E., Schall, U., Scott, R.J., Carr, V.J., Green, M.J., Henskens, F.A., Loughland, C.M., Pantelis, C., Weickert, C.S., Weickert, T.W., Haan, L. de, Brosch, K., Pfarr, J.K., Ringwald, K.G., Stein, F., Jansen, Andreas, Kircher, T.T.J., Nenadić, I., Krämer, Bernd, Gruber, O., Satterthwaite, T.D., Bustillo, J., Mathalon, D.H., Preda, A., Calhoun, V.D., Ford, J.M., Potkin, S.G., Chen, Jingxu, Tan, Yunlong, Wang, Zhiren, Xiang, Hong, Fan, Fengmei, Bernardoni, F., Ehrlich, S., Fuentes-Claramonte, P., Garcia-Leon, M.A., Guerrero-Pedraza, A., Salvador, R., Sarró, S., Pomarol-Clotet, E., Ciullo, V., Piras, F., Vecchio, D., Banaj, N., Spalletta, G., Michielse, S., Amelsvoort, T. van, Dickie, E.W., Voineskos, A.N., Sim, K., Ciufolini, S., Dazzan, P., Murray, R.M., Kim, W.S., Chung, Y.C., Andreou, C., Schmidt, A, Borgwardt, S., McIntosh, A.M., Whalley, H.C., Lawrie, S.M., Plessis, S. du, Luckhoff, H.K., Scheffler, F., Emsley, R., Grotegerd, D., Lencer, R., Dannlowski, U., Edmond, J.T., Rootes-Murdy, K., Stephen, J.M., Mayer, A.R., Antonucci, L.A., Fazio, L., Pergola, G., Bertolino, A., Díaz-Caneja, C.M., Janssen, J, Lois, N.G., Arango, C., Tomyshev, A.S., Lebedeva, I., Cervenka, S., Sellgren, C.M., Georgiadis, F., Kirschner, M., Kaiser, S., Hajek, T., Skoch, A., Spaniel, F., Kim, M., Kwak, Y.B., Oh, S., Kwon, J.S., James, A., Bakker, G., Knöchel, C., Stäblein, M., Oertel, V., Uhlmann, A., Howells, F.M., Stein, D.J., Temmingh, H.S., Diaz-Zuluaga, A.M., Pineda-Zapata, J.A., López-Jaramillo, C., Homan, S., Ji, E., Surbeck, W., Homan, P., Fisher, S.E., Franke, B., Glahn, D.C., Gur, R.C., Hashimoto, R., Jahanshad, N., Luders, E., Medland, S.E., Thompson, P.M., Turner, J.A., Erp, T.G. van, Francks, C., Schijven, Dick, Postema, M.C., Fukunaga, M., Matsumoto, J., Miura, K., Zwarte, S.M.C. de, Haren, N.E.M. van, Cahn, W., Hulshoff Pol, H.E., Kahn, R.S., Ayesa-Arriola, R., Ortoz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L.T., Agartz, I., Andreassen, O.A., Jönsson, E.G., Kochunov, P., Bruggemann, J.M., Catts, S.V., Michie, P.T., Mowry, B.J., Quidé, Y., Rasser, P.E., Schall, U., Scott, R.J., Carr, V.J., Green, M.J., Henskens, F.A., Loughland, C.M., Pantelis, C., Weickert, C.S., Weickert, T.W., Haan, L. de, Brosch, K., Pfarr, J.K., Ringwald, K.G., Stein, F., Jansen, Andreas, Kircher, T.T.J., Nenadić, I., Krämer, Bernd, Gruber, O., Satterthwaite, T.D., Bustillo, J., Mathalon, D.H., Preda, A., Calhoun, V.D., Ford, J.M., Potkin, S.G., Chen, Jingxu, Tan, Yunlong, Wang, Zhiren, Xiang, Hong, Fan, Fengmei, Bernardoni, F., Ehrlich, S., Fuentes-Claramonte, P., Garcia-Leon, M.A., Guerrero-Pedraza, A., Salvador, R., Sarró, S., Pomarol-Clotet, E., Ciullo, V., Piras, F., Vecchio, D., Banaj, N., Spalletta, G., Michielse, S., Amelsvoort, T. van, Dickie, E.W., Voineskos, A.N., Sim, K., Ciufolini, S., Dazzan, P., Murray, R.M., Kim, W.S., Chung, Y.C., Andreou, C., Schmidt, A, Borgwardt, S., McIntosh, A.M., Whalley, H.C., Lawrie, S.M., Plessis, S. du, Luckhoff, H.K., Scheffler, F., Emsley, R., Grotegerd, D., Lencer, R., Dannlowski, U., Edmond, J.T., Rootes-Murdy, K., Stephen, J.M., Mayer, A.R., Antonucci, L.A., Fazio, L., Pergola, G., Bertolino, A., Díaz-Caneja, C.M., Janssen, J, Lois, N.G., Arango, C., Tomyshev, A.S., Lebedeva, I., Cervenka, S., Sellgren, C.M., Georgiadis, F., Kirschner, M., Kaiser, S., Hajek, T., Skoch, A., Spaniel, F., Kim, M., Kwak, Y.B., Oh, S., Kwon, J.S., James, A., Bakker, G., Knöchel, C., Stäblein, M., Oertel, V., Uhlmann, A., Howells, F.M., Stein, D.J., Temmingh, H.S., Diaz-Zuluaga, A.M., Pineda-Zapata, J.A., López-Jaramillo, C., Homan, S., Ji, E., Surbeck, W., Homan, P., Fisher, S.E., Franke, B., Glahn, D.C., Gur, R.C., Hashimoto, R., Jahanshad, N., Luders, E., Medland, S.E., Thompson, P.M., Turner, J.A., Erp, T.G. van, and Francks, C.
- Abstract
Item does not contain fulltext, Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
- Published
- 2023
21. Large- scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium
- Author
-
Schijven, D, Postema, MC, Fukunaga, M, Matsumoto, J, Miura, K, de Zwarte, SMC, van Haren, NEM, Cahn, W, Pol, HEH, Kahn, RS, Ayesa-Arriola, R, de la Foz, VO-G, Tordesillas-Gutierrez, D, Vazquez-Bourgon, J, Crespo-Facorro, B, Alnaes, D, Dahl, A, Westlye, LT, Agartz, I, Andreassen, OA, Jonsson, EG, Kochunov, P, Bruggemann, JM, Catts, SV, Michie, PT, Mowry, BJ, Quide, Y, Rasser, PE, Schall, U, Scott, RJ, Carr, VJ, Green, MJ, Henskens, FA, Loughland, CM, Pantelis, C, Weickert, CS, Weickert, TW, De Haan, L, Brosch, K, Pfarr, J-K, Ringwald, KG, Stein, F, Jansen, A, Kircher, TTJ, Nenadic, I, Kramer, B, Gruber, O, Satterthwaite, TD, Bustillo, J, Mathalon, DH, Preda, A, Calhoun, VD, Ford, JM, Potkin, SG, Chen, J, Tan, Y, Wang, Z, Xiang, H, Fan, F, Bernardoni, F, Ehrlich, S, Fuentes-Claramonte, P, Garcia-Leon, MA, Guerrero-Pedraza, A, Salvador, R, Sarro, S, Pomarol-Clotet, E, Ciullo, V, Piras, F, Vecchio, D, Banaj, N, Spalletta, G, Michielse, S, van Amelsvoort, T, Dickie, EW, Voineskos, AN, Sim, K, Ciufolini, S, Dazzan, P, Murray, RM, Kim, W-S, Chung, Y-C, Andreou, C, Schmidt, A, Borgwardt, S, McIntosh, AM, Whalley, HC, Lawrie, SM, Du Plessis, S, Luckhoff, HK, Scheffler, F, Emsley, R, Grotegerd, D, Lencer, R, Dannlowski, U, Edmond, JT, Rootes-Murdy, K, Stephen, JM, Mayer, AR, Antonucci, LA, Fazio, L, Pergola, G, Bertolino, A, Diaz-Caneja, CM, Janssen, J, Lois, NG, Arango, C, Tomyshev, AS, Lebedeva, I, Cervenkav, S, Sellgrenv, CM, Georgiadis, F, Kirschner, M, Kaiser, S, Hajek, T, Skoch, A, Spaniel, F, Kim, M, Bin Kwak, Y, Oh, S, Kwon, JS, James, A, Bakker, G, Knochel, C, Stablein, M, Oertel, V, Uhlmann, A, Howells, FM, Stein, DJ, Temmingh, HS, Diaz-Zuluaga, AM, Pineda-Zapata, JA, Lopez-Jaramillo, C, Homan, S, Ji, E, Surbeck, W, Homan, P, Fishera, SE, Franke, B, Glahn, DC, Gur, RC, Hashimoto, R, Jahanshad, N, Luders, E, Medland, SE, Thompson, PM, Turner, JA, van Erp, TGM, Francks, C, Schijven, D, Postema, MC, Fukunaga, M, Matsumoto, J, Miura, K, de Zwarte, SMC, van Haren, NEM, Cahn, W, Pol, HEH, Kahn, RS, Ayesa-Arriola, R, de la Foz, VO-G, Tordesillas-Gutierrez, D, Vazquez-Bourgon, J, Crespo-Facorro, B, Alnaes, D, Dahl, A, Westlye, LT, Agartz, I, Andreassen, OA, Jonsson, EG, Kochunov, P, Bruggemann, JM, Catts, SV, Michie, PT, Mowry, BJ, Quide, Y, Rasser, PE, Schall, U, Scott, RJ, Carr, VJ, Green, MJ, Henskens, FA, Loughland, CM, Pantelis, C, Weickert, CS, Weickert, TW, De Haan, L, Brosch, K, Pfarr, J-K, Ringwald, KG, Stein, F, Jansen, A, Kircher, TTJ, Nenadic, I, Kramer, B, Gruber, O, Satterthwaite, TD, Bustillo, J, Mathalon, DH, Preda, A, Calhoun, VD, Ford, JM, Potkin, SG, Chen, J, Tan, Y, Wang, Z, Xiang, H, Fan, F, Bernardoni, F, Ehrlich, S, Fuentes-Claramonte, P, Garcia-Leon, MA, Guerrero-Pedraza, A, Salvador, R, Sarro, S, Pomarol-Clotet, E, Ciullo, V, Piras, F, Vecchio, D, Banaj, N, Spalletta, G, Michielse, S, van Amelsvoort, T, Dickie, EW, Voineskos, AN, Sim, K, Ciufolini, S, Dazzan, P, Murray, RM, Kim, W-S, Chung, Y-C, Andreou, C, Schmidt, A, Borgwardt, S, McIntosh, AM, Whalley, HC, Lawrie, SM, Du Plessis, S, Luckhoff, HK, Scheffler, F, Emsley, R, Grotegerd, D, Lencer, R, Dannlowski, U, Edmond, JT, Rootes-Murdy, K, Stephen, JM, Mayer, AR, Antonucci, LA, Fazio, L, Pergola, G, Bertolino, A, Diaz-Caneja, CM, Janssen, J, Lois, NG, Arango, C, Tomyshev, AS, Lebedeva, I, Cervenkav, S, Sellgrenv, CM, Georgiadis, F, Kirschner, M, Kaiser, S, Hajek, T, Skoch, A, Spaniel, F, Kim, M, Bin Kwak, Y, Oh, S, Kwon, JS, James, A, Bakker, G, Knochel, C, Stablein, M, Oertel, V, Uhlmann, A, Howells, FM, Stein, DJ, Temmingh, HS, Diaz-Zuluaga, AM, Pineda-Zapata, JA, Lopez-Jaramillo, C, Homan, S, Ji, E, Surbeck, W, Homan, P, Fishera, SE, Franke, B, Glahn, DC, Gur, RC, Hashimoto, R, Jahanshad, N, Luders, E, Medland, SE, Thompson, PM, Turner, JA, van Erp, TGM, and Francks, C
- Abstract
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
- Published
- 2023
22. Investigating the effect of social support on the association between child maltreatment and white matter microstructure
- Author
-
Winter, A., primary, Meinert, S., additional, Thiel, K., additional, Flinkenflügel, K., additional, Brosch, K., additional, Krug, A., additional, Jansen, A., additional, Nenadić, I., additional, Kircher, T., additional, and Dannlowski, U., additional
- Published
- 2023
- Full Text
- View/download PDF
23. Childhood maltreatment and suicidality in major depressive disorder – a machine learning approach
- Author
-
Winter, A., primary, Leenings, R., additional, Winter, N.R., additional, Meinert, S., additional, Flinkenflügel, K., additional, Thiel, K., additional, Goltermann, J., additional, Hahn, T., additional, Stein, F., additional, Brosch, K., additional, Usemann, P., additional, Teutenberg, L., additional, Thomas-Odenthal, F., additional, Pfarr, J.K., additional, Jansen, A., additional, Alexander, N., additional, Straube, B., additional, Jamalabadi, H., additional, Nenadic, I., additional, Kircher, T., additional, and Dannlowski, U., additional
- Published
- 2023
- Full Text
- View/download PDF
24. Impact of NPSR1 gene variation on the neural correlates of sustained and phasic fear in spider phobia
- Author
-
Leehr, E.J., primary, Brede, L.S., additional, Böhnlein, J., additional, Roesmann, K., additional, Gathmann, B., additional, Herrmann, M.J., additional, Junghöfer, M., additional, Schwarzmeier, H., additional, Seger, F., additional, Siminski, N., additional, Straube, T., additional, Klahn, A.L., additional, Weber, H., additional, Schiele, M.A., additional, Domschke, K., additional, Lueken, U., additional, and Dannlowski, U., additional
- Published
- 2023
- Full Text
- View/download PDF
25. Social support in major depression: association with cognitive performance, whiter matter integrity, and disease course
- Author
-
Flinkenflügel, K., primary, Meinert, S., additional, Thiel, K., additional, Winter, A., additional, Goltermann, J., additional, Brosch, K., additional, Stein, F., additional, Thomas-Odenthal, F., additional, Evermann, U., additional, Wroblewski, A., additional, Usemann, P., additional, Grotegerd, D., additional, Hahn, T., additional, Leehr, E.J., additional, Dohm, K., additional, Bauer, J., additional, Jamalabadi, H., additional, Straube, B., additional, Alexander, N., additional, Jansen, A., additional, Nenadić, I., additional, Kircher, T., additional, and Dannlowski, U., additional
- Published
- 2023
- Full Text
- View/download PDF
26. Structural brain network connectivity mediates the association between polygenic score for tumor necrosis factor-α and processing speed in acute depression
- Author
-
Repple, J., primary, Flinkenflügel, K., additional, Gruber, M., additional, and Dannlowski, U., additional
- Published
- 2023
- Full Text
- View/download PDF
27. The impact of cognitive reserve on cognition, connectome pathology, and disease course in depression
- Author
-
Gruber, M., primary, Klein, H., additional, Mauritz, M., additional, De Lange, S.C., additional, Grumbach, P., additional, Goltermann, J., additional, Winter, N.R., additional, Thiel, K., additional, Winter, A., additional, Flinkenflügel, K., additional, Borgers, T., additional, Enneking, V., additional, Klug, M., additional, Stein, F., additional, Brosch, K., additional, Usemann, P., additional, Thomas-Odenthal, F., additional, Wroblewski, A., additional, Steinsträter, O., additional, Pfarr, J.K., additional, Evermann, U., additional, Meinert, S., additional, Grotegerd, D., additional, Opel, N., additional, Hahn, T., additional, Leehr, E.J., additional, Bauer, J., additional, Reif, A., additional, Jansen, A., additional, Krug, A., additional, Nenadić, I., additional, Kircher, T., additional, Van den Heuvel, M.P., additional, Dannlowski, U., additional, and Repple, J., additional
- Published
- 2023
- Full Text
- View/download PDF
28. White matter microstructure in major depressive disorder is associated with lymphocyte count: differential effects of childhood maltreatment
- Author
-
Meinert, S., primary, Boller, A.L., additional, Kircher, T., additional, Dannlowski, U., additional, and Alferink, J., additional
- Published
- 2023
- Full Text
- View/download PDF
29. Trait, state or scar: brain structural differences in major depressive disorder using a converter sample
- Author
-
Kraus, A., primary, Meinert, S., additional, Winter, A., additional, Thiel, K., additional, Flinkenflügel, K., additional, Grotegerd, D., additional, Goltermann, J., additional, Leehr, E.J., additional, Hahn, T., additional, Alexander, N., additional, Stein, F., additional, Brosch, K., additional, Usemann, P., additional, Teutenberg, L., additional, Thomas-Odenthal, F., additional, Jansen, A., additional, Nenadić, I., additional, Kircher, T., additional, Dohm, K., additional, and Dannlowski, U., additional
- Published
- 2023
- Full Text
- View/download PDF
30. Fiber microstructural differences in bipolar disorder types I and II: association with disease course and polygenic risk
- Author
-
Thiel, K., primary, Lemke, H., additional, Winter, A., additional, Flinkenflügel, K., additional, Meinert, S., additional, Grotegerd, D., additional, Goltermann, J., additional, Leehr, E.J., additional, Dohm, K., additional, Kraus, A., additional, Hahn, T., additional, Brosch, K., additional, Evermann, U., additional, Pfarr, J.K., additional, Ringwald, K.G., additional, Stein, F., additional, Straube, B., additional, Teutenberg, L., additional, Thomas-Odenthal, F., additional, Usemann, P., additional, Wroblewski, A., additional, Alexander, N., additional, Jansen, A., additional, David, F., additional, Forstner, A., additional, Nenadić, I., additional, Kircher, T., additional, and Dannlowski, U., additional
- Published
- 2023
- Full Text
- View/download PDF
31. Low left amygdala volume is associated with a longer duration of unipolar depression
- Author
-
Zavorotnyy, Maxim, Zöllner, Rebecca, Schulte-Güstenberg, L. R., Wulff, L., Schöning, S., Dannlowski, U., Kugel, H., Arolt, V., and Konrad, C.
- Published
- 2017
- Full Text
- View/download PDF
32. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment
- Author
-
Jukić, M M, Opel, N, Ström, J, Carrillo-Roa, T, Miksys, S, Novalen, M, Renblom, A, Sim, S C, Peñas-Lledó, E M, Courtet, P, Llerena, A, Baune, B T, de Quervain, D J, Papassotiropoulos, A, Tyndale, R F, Binder, E B, Dannlowski, U, and Ingelman-Sundberg, M
- Published
- 2017
- Full Text
- View/download PDF
33. Prefrontal gray matter volume mediates genetic risks for obesity
- Author
-
Opel, N, Redlich, R, Kaehler, C, Grotegerd, D, Dohm, K, Heindel, W, Kugel, H, Thalamuthu, A, Koutsouleris, N, Arolt, V, Teuber, A, Wersching, H, Baune, B T, Berger, K, and Dannlowski, U
- Published
- 2017
- Full Text
- View/download PDF
34. Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression
- Author
-
Culverhouse, R C, Saccone, N L, Horton, A C, Ma, Y, Anstey, K J, Banaschewski, T, Burmeister, M, Cohen-Woods, S, Etain, B, Fisher, H L, Goldman, N, Guillaume, S, Horwood, J, Juhasz, G, Lester, K J, Mandelli, L, Middeldorp, C M, Olié, E, Villafuerte, S, Air, T M, Araya, R, Bowes, L, Burns, R, Byrne, E M, Coffey, C, Coventry, W L, Gawronski, K AB, Glei, D, Hatzimanolis, A, Hottenga, J-J, Jaussent, I, Jawahar, C, Jennen-Steinmetz, C, Kramer, J R, Lajnef, M, Little, K, zu Schwabedissen, H M, Nauck, M, Nederhof, E, Petschner, P, Peyrot, W J, Schwahn, C, Sinnamon, G, Stacey, D, Tian, Y, Toben, C, Van der Auwera, S, Wainwright, N, Wang, J-C, Willemsen, G, Anderson, I M, Arolt, V, Åslund, C, Bagdy, G, Baune, B T, Bellivier, F, Boomsma, D I, Courtet, P, Dannlowski, U, de Geus, E JC, Deakin, J FW, Easteal, S, Eley, T, Fergusson, D M, Goate, A M, Gonda, X, Grabe, H J, Holzman, C, Johnson, E O, Kennedy, M, Laucht, M, Martin, N G, Munafò, M R, Nilsson, K W, Oldehinkel, A J, Olsson, C A, Ormel, J, Otte, C, Patton, G C, Penninx, B WJH, Ritchie, K, Sarchiapone, M, Scheid, J M, Serretti, A, Smit, J H, Stefanis, N C, Surtees, P G, Völzke, H, Weinstein, M, Whooley, M, Nurnberger, J I, Jr, Breslau, N, and Bierut, L J
- Published
- 2018
- Full Text
- View/download PDF
35. Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years
- Author
-
Dima, D., Modabbernia, A., Papachristou, E., Doucet, G.E., Agartz, I., Aghajani, M., Akudjedu, T.N., Albajes-Eizagirre, A., Alnaes, D., Alpert, K.I., Andersson, M., Andreasen, N.C., Andreassen, O.A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur-Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D.I., Borgwardt, S., Bourque, J., Brandeis, D., Breier, A., Brodaty, H., Brouwer, R.M., Buitelaar, J.K., Busatto, G.F., Buckner, R.L., Calhoun, V., Canales-Rodríguez, E.J., Cannon, D.M., Caseras, X., Castellanos, F.X., Cervenka, S., Chaim-Avancini, T.M., Ching, C.R., Chubar, V., Clark, V.P., Conrod, P., Conzelmann, A., Crespo-Facorro, B., Crivello, F., Crone, E.A.M., Dannlowski, U., Dale, A.M., Davey, C., Geus, E.J. de, Haan, L. de, Zubicaray, G.I. de, Braber, A., Dickie, E.W., Giorgio, A. Di, Doan, N.T., Dørum, E.S., Ehrlich, S., Erk, S., Espeseth, T., Fatouros-Bergman, H., Fisher, S.E., Fouche, J.P., Franke, B., Frodl, T., Fuentes-Claramonte, P., Glahn, D.C., Gotlib, I.H., Grabe, H.J., Grimm, O., Groenewold, N.A., Grotegerd, D., Gruber, O., Gruner, P., Gur, R.E., Gur, R.C., Hahn, T., Harrison, B.J., Hartman, Catharina A., Hatton, S.N., Heinz, A., Heslenfeld, D.J., Hibar, D.P., Hickie, I.B., Ho, B.C.H., Hoekstra, P.J., Hohmann, S., Holmes, A.J., Hoogman, M., Hosten, N., Howells, F.M., Pol, H.E.H., Huyser, C., Jahanshad, N., James, A., Jernigan, T.L., Jiang, J., Jönsson, E.G., Joska, J.A., Kahn, R., Kalnin, A., Naaijen, J., Klein, M., Thompson, P.M., Frangou, S., Dima, D., Modabbernia, A., Papachristou, E., Doucet, G.E., Agartz, I., Aghajani, M., Akudjedu, T.N., Albajes-Eizagirre, A., Alnaes, D., Alpert, K.I., Andersson, M., Andreasen, N.C., Andreassen, O.A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur-Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D.I., Borgwardt, S., Bourque, J., Brandeis, D., Breier, A., Brodaty, H., Brouwer, R.M., Buitelaar, J.K., Busatto, G.F., Buckner, R.L., Calhoun, V., Canales-Rodríguez, E.J., Cannon, D.M., Caseras, X., Castellanos, F.X., Cervenka, S., Chaim-Avancini, T.M., Ching, C.R., Chubar, V., Clark, V.P., Conrod, P., Conzelmann, A., Crespo-Facorro, B., Crivello, F., Crone, E.A.M., Dannlowski, U., Dale, A.M., Davey, C., Geus, E.J. de, Haan, L. de, Zubicaray, G.I. de, Braber, A., Dickie, E.W., Giorgio, A. Di, Doan, N.T., Dørum, E.S., Ehrlich, S., Erk, S., Espeseth, T., Fatouros-Bergman, H., Fisher, S.E., Fouche, J.P., Franke, B., Frodl, T., Fuentes-Claramonte, P., Glahn, D.C., Gotlib, I.H., Grabe, H.J., Grimm, O., Groenewold, N.A., Grotegerd, D., Gruber, O., Gruner, P., Gur, R.E., Gur, R.C., Hahn, T., Harrison, B.J., Hartman, Catharina A., Hatton, S.N., Heinz, A., Heslenfeld, D.J., Hibar, D.P., Hickie, I.B., Ho, B.C.H., Hoekstra, P.J., Hohmann, S., Holmes, A.J., Hoogman, M., Hosten, N., Howells, F.M., Pol, H.E.H., Huyser, C., Jahanshad, N., James, A., Jernigan, T.L., Jiang, J., Jönsson, E.G., Joska, J.A., Kahn, R., Kalnin, A., Naaijen, J., Klein, M., Thompson, P.M., and Frangou, S.
- Abstract
Contains fulltext : 245411.pdf (Publisher’s version ) (Open Access), Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
- Published
- 2022
36. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years
- Author
-
Frangou, S., Modabbernia, A., Williams, S.C.R., Papachristou, E., Doucet, G.E., Agartz, I., Aghajani, M., Akudjedu, T.N., Albajes-Eizagirre, A., Alnaes, D., Alpert, K.I., Andersson, M., Andreasen, N.C., Andreassen, O.A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur-Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D.I., Borgwardt, S., Bourque, J., Brandeis, D., Breier, A., Brodaty, H., Brouwer, R.M., Buitelaar, J.K., Busatto, G.F., Buckner, R.L., Calhoun, V., Canales-Rodríguez, E.J., Cannon, D.M., Caseras, X., Castellanos, F.X., Cervenka, S., Chaim-Avancini, T.M., Ching, C.R., Chubar, V., Clark, V.P., Conrod, P., Conzelmann, A., Crespo-Facorro, B., Crivello, F., Crone, E.A.M., Dale, A.M., Dannlowski, U., Davey, C., Geus, E.J. de, Haan, L. de, Zubicaray, G.I. de, Braber, A., Dickie, E.W., Giorgio, A. Di, Doan, N.T., Dørum, E.S., Ehrlich, S., Erk, S., Espeseth, T., Fatouros-Bergman, H., Fisher, S.E., Fouche, J.P., Franke, B., Frodl, T., Fuentes-Claramonte, P., Glahn, D.C., Gotlib, I.H., Grabe, H.J., Grimm, O., Groenewold, N.A., Grotegerd, D., Gruber, O., Gruner, P., Gur, R.E., Gur, R.C., Hahn, T., Harrison, B.J., Hartman, Catharina A., Hatton, S.N., Heinz, A., Heslenfeld, D.J., Hibar, D.P., Hickie, I.B., Ho, B.C.H., Hoekstra, P.J., Hohmann, S., Holmes, A.J., Hoogman, M., Hosten, N., Howells, F.M., Pol, H.E.H., Huyser, C., Jahanshad, N., James, A., Jernigan, T.L., Jiang, J., Jönsson, E.G., Joska, J.A., Kahn, R., Klein, M., Frangou, S., Modabbernia, A., Williams, S.C.R., Papachristou, E., Doucet, G.E., Agartz, I., Aghajani, M., Akudjedu, T.N., Albajes-Eizagirre, A., Alnaes, D., Alpert, K.I., Andersson, M., Andreasen, N.C., Andreassen, O.A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur-Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D.I., Borgwardt, S., Bourque, J., Brandeis, D., Breier, A., Brodaty, H., Brouwer, R.M., Buitelaar, J.K., Busatto, G.F., Buckner, R.L., Calhoun, V., Canales-Rodríguez, E.J., Cannon, D.M., Caseras, X., Castellanos, F.X., Cervenka, S., Chaim-Avancini, T.M., Ching, C.R., Chubar, V., Clark, V.P., Conrod, P., Conzelmann, A., Crespo-Facorro, B., Crivello, F., Crone, E.A.M., Dale, A.M., Dannlowski, U., Davey, C., Geus, E.J. de, Haan, L. de, Zubicaray, G.I. de, Braber, A., Dickie, E.W., Giorgio, A. Di, Doan, N.T., Dørum, E.S., Ehrlich, S., Erk, S., Espeseth, T., Fatouros-Bergman, H., Fisher, S.E., Fouche, J.P., Franke, B., Frodl, T., Fuentes-Claramonte, P., Glahn, D.C., Gotlib, I.H., Grabe, H.J., Grimm, O., Groenewold, N.A., Grotegerd, D., Gruber, O., Gruner, P., Gur, R.E., Gur, R.C., Hahn, T., Harrison, B.J., Hartman, Catharina A., Hatton, S.N., Heinz, A., Heslenfeld, D.J., Hibar, D.P., Hickie, I.B., Ho, B.C.H., Hoekstra, P.J., Hohmann, S., Holmes, A.J., Hoogman, M., Hosten, N., Howells, F.M., Pol, H.E.H., Huyser, C., Jahanshad, N., James, A., Jernigan, T.L., Jiang, J., Jönsson, E.G., Joska, J.A., Kahn, R., and Klein, M.
- Abstract
Contains fulltext : 245396.pdf (Publisher’s version ) (Open Access), Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
- Published
- 2022
37. Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group
- Author
-
Abé, C, Ching, CRK, Liberg, B, Lebedev, AV, Agartz, I, Akudjedu, TN, Alda, M, Alnæs, D, Alonso-Lana, S, Benedetti, F, Berk, Michael, Bøen, E, Bonnin, CDM, Breuer, F, Brosch, K, Brouwer, RM, Canales-Rodríguez, EJ, Cannon, DM, Chye, Y, Dahl, A, Dandash, O, Dannlowski, U, Dohm, K, Elvsåshagen, T, Fisch, L, Fullerton, JM, Goikolea, JM, Grotegerd, D, Haatveit, B, Hahn, T, Hajek, T, Heindel, W, Ingvar, M, Sim, K, Kircher, TTJ, Lenroot, RK, Malt, UF, McDonald, C, McWhinney, SR, Melle, I, Meller, T, Melloni, EMT, Mitchell, PB, Nabulsi, L, Nenadić, I, Opel, N, Overs, BJ, Panicalli, F, Pfarr, JK, Poletti, S, Pomarol-Clotet, E, Radua, J, Repple, J, Ringwald, KG, Roberts, G, Rodriguez-Cano, E, Salvador, R, Sarink, K, Sarró, S, Schmitt, S, Stein, F, Suo, C, Thomopoulos, SI, Tronchin, G, Vieta, E, Westlye, LT, White, AG, Yatham, LN, Zak, N, Thompson, PM, Andreassen, OA, Landén, M, Abé, C, Ching, CRK, Liberg, B, Lebedev, AV, Agartz, I, Akudjedu, TN, Alda, M, Alnæs, D, Alonso-Lana, S, Benedetti, F, Berk, Michael, Bøen, E, Bonnin, CDM, Breuer, F, Brosch, K, Brouwer, RM, Canales-Rodríguez, EJ, Cannon, DM, Chye, Y, Dahl, A, Dandash, O, Dannlowski, U, Dohm, K, Elvsåshagen, T, Fisch, L, Fullerton, JM, Goikolea, JM, Grotegerd, D, Haatveit, B, Hahn, T, Hajek, T, Heindel, W, Ingvar, M, Sim, K, Kircher, TTJ, Lenroot, RK, Malt, UF, McDonald, C, McWhinney, SR, Melle, I, Meller, T, Melloni, EMT, Mitchell, PB, Nabulsi, L, Nenadić, I, Opel, N, Overs, BJ, Panicalli, F, Pfarr, JK, Poletti, S, Pomarol-Clotet, E, Radua, J, Repple, J, Ringwald, KG, Roberts, G, Rodriguez-Cano, E, Salvador, R, Sarink, K, Sarró, S, Schmitt, S, Stein, F, Suo, C, Thomopoulos, SI, Tronchin, G, Vieta, E, Westlye, LT, White, AG, Yatham, LN, Zak, N, Thompson, PM, Andreassen, OA, and Landén, M
- Published
- 2022
38. In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group
- Author
-
Haukvik, UK, Gurholt, TP, Nerland, S, Elvsåshagen, T, Akudjedu, TN, Alda, M, Alnæs, D, Alonso-Lana, S, Bauer, J, Baune, BT, Benedetti, F, Berk, Michael, Bettella, F, Bøen, E, Bonnín, CM, Brambilla, P, Canales-Rodríguez, EJ, Cannon, DM, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Díaz-Zuluaga, AM, van Erp, TGM, Fatjó-Vilas, M, Foley, SF, Förster, K, Fullerton, JM, Goikolea, JM, Grotegerd, D, Gruber, O, Haarman, BCM, Haatveit, B, Hajek, T, Hallahan, B, Harris, M, Hawkins, EL, Howells, FM, Hülsmann, C, Jahanshad, N, Jørgensen, KN, Kircher, T, Krämer, B, Krug, A, Kuplicki, R, Lagerberg, TV, Lancaster, TM, Lenroot, RK, Lonning, V, López-Jaramillo, C, Malt, UF, McDonald, C, McIntosh, AM, McPhilemy, G, van der Meer, D, Melle, I, Melloni, EMT, Mitchell, PB, Nabulsi, L, Nenadić, I, Oertel, V, Oldani, L, Opel, N, Otaduy, MCG, Overs, BJ, Pineda-Zapata, JA, Pomarol-Clotet, E, Radua, J, Rauer, L, Redlich, R, Repple, J, Rive, MM, Roberts, G, Ruhe, HG, Salminen, LE, Salvador, R, Sarró, S, Savitz, J, Schene, AH, Sim, K, Soeiro-de-Souza, MG, Stäblein, M, Stein, DJ, Stein, F, Tamnes, CK, Temmingh, HS, Thomopoulos, SI, Veltman, DJ, Vieta, E, Waltemate, L, Westlye, LT, Whalley, HC, Sämann, PG, Thompson, PM, Ching, CRK, Andreassen, OA, Agartz, I, Haukvik, UK, Gurholt, TP, Nerland, S, Elvsåshagen, T, Akudjedu, TN, Alda, M, Alnæs, D, Alonso-Lana, S, Bauer, J, Baune, BT, Benedetti, F, Berk, Michael, Bettella, F, Bøen, E, Bonnín, CM, Brambilla, P, Canales-Rodríguez, EJ, Cannon, DM, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Díaz-Zuluaga, AM, van Erp, TGM, Fatjó-Vilas, M, Foley, SF, Förster, K, Fullerton, JM, Goikolea, JM, Grotegerd, D, Gruber, O, Haarman, BCM, Haatveit, B, Hajek, T, Hallahan, B, Harris, M, Hawkins, EL, Howells, FM, Hülsmann, C, Jahanshad, N, Jørgensen, KN, Kircher, T, Krämer, B, Krug, A, Kuplicki, R, Lagerberg, TV, Lancaster, TM, Lenroot, RK, Lonning, V, López-Jaramillo, C, Malt, UF, McDonald, C, McIntosh, AM, McPhilemy, G, van der Meer, D, Melle, I, Melloni, EMT, Mitchell, PB, Nabulsi, L, Nenadić, I, Oertel, V, Oldani, L, Opel, N, Otaduy, MCG, Overs, BJ, Pineda-Zapata, JA, Pomarol-Clotet, E, Radua, J, Rauer, L, Redlich, R, Repple, J, Rive, MM, Roberts, G, Ruhe, HG, Salminen, LE, Salvador, R, Sarró, S, Savitz, J, Schene, AH, Sim, K, Soeiro-de-Souza, MG, Stäblein, M, Stein, DJ, Stein, F, Tamnes, CK, Temmingh, HS, Thomopoulos, SI, Veltman, DJ, Vieta, E, Waltemate, L, Westlye, LT, Whalley, HC, Sämann, PG, Thompson, PM, Ching, CRK, Andreassen, OA, and Agartz, I
- Published
- 2022
39. Reproducibility in the absence of selective reporting: An illustration from large-scale brain asymmetry research
- Author
-
Kong, XZ, Francks, C, Mathias, SR, Guadalupe, T, Abé, C, Agartz, I, Akudjedu, TN, Aleman, A, Alhusaini, S, Allen, NB, Ames, D, Andreassen, OA, Vasquez, AA, Armstrong, NJ, Asherson, P, Bergo, F, Bastin, ME, Batalla, A, Bauer, J, Baune, BT, Baur-Streubel, R, Biederman, J, Blaine, SK, Boedhoe, P, Bøen, E, Bose, A, Bralten, J, Brandeis, D, Brem, S, Brodaty, H, Yüksel, D, Brooks, SJ, Buitelaar, J, Bürger, C, Bülow, R, Calhoun, V, Calvo, A, Canales-Rodríguez, EJ, Cannon, DM, Caparelli, EC, Castellanos, FX, Cendes, F, Chaim-Avancini, TM, Chantiluke, K, Chen, QL, Chen, X, Cheng, Y, Christakou, A, Clark, VP, Coghill, D, Connolly, CG, Conzelmann, A, Córdova-Palomera, A, Cousijn, J, Crow, T, Cubillo, A, Dannlowski, U, de Bruttopilo, SA, de Zeeuw, P, Deary, IJ, Demeter, DV, Di Martino, A, Dickie, EW, Dietsche, B, Doan, NT, Doherty, CP, Doyle, A, Durston, S, Earl, E, Ehrlich, S, Ekman, CJ, Elvsåshagen, T, Epstein, JN, Fair, DA, Faraone, SV, Fernández, G, Flint, C, Filho, GB, Förster, K, Fouche, JP, Foxe, JJ, Frodl, T, Fuentes-Claramonte, P, Fullerton, JM, Garavan, H, do Santos Garcia, D, Gotlib, IH, Goudriaan, AE, Grabe, HJ, Groenewold, NA, Grotegerd, D, Gruber, O, Gurholt, T, Haavik, J, Hahn, T, Hansell, NK, Harris, MA, Hartman, CA, del Carmen Valdés Hernández, M, Kong, XZ, Francks, C, Mathias, SR, Guadalupe, T, Abé, C, Agartz, I, Akudjedu, TN, Aleman, A, Alhusaini, S, Allen, NB, Ames, D, Andreassen, OA, Vasquez, AA, Armstrong, NJ, Asherson, P, Bergo, F, Bastin, ME, Batalla, A, Bauer, J, Baune, BT, Baur-Streubel, R, Biederman, J, Blaine, SK, Boedhoe, P, Bøen, E, Bose, A, Bralten, J, Brandeis, D, Brem, S, Brodaty, H, Yüksel, D, Brooks, SJ, Buitelaar, J, Bürger, C, Bülow, R, Calhoun, V, Calvo, A, Canales-Rodríguez, EJ, Cannon, DM, Caparelli, EC, Castellanos, FX, Cendes, F, Chaim-Avancini, TM, Chantiluke, K, Chen, QL, Chen, X, Cheng, Y, Christakou, A, Clark, VP, Coghill, D, Connolly, CG, Conzelmann, A, Córdova-Palomera, A, Cousijn, J, Crow, T, Cubillo, A, Dannlowski, U, de Bruttopilo, SA, de Zeeuw, P, Deary, IJ, Demeter, DV, Di Martino, A, Dickie, EW, Dietsche, B, Doan, NT, Doherty, CP, Doyle, A, Durston, S, Earl, E, Ehrlich, S, Ekman, CJ, Elvsåshagen, T, Epstein, JN, Fair, DA, Faraone, SV, Fernández, G, Flint, C, Filho, GB, Förster, K, Fouche, JP, Foxe, JJ, Frodl, T, Fuentes-Claramonte, P, Fullerton, JM, Garavan, H, do Santos Garcia, D, Gotlib, IH, Goudriaan, AE, Grabe, HJ, Groenewold, NA, Grotegerd, D, Gruber, O, Gurholt, T, Haavik, J, Hahn, T, Hansell, NK, Harris, MA, Hartman, CA, and del Carmen Valdés Hernández, M
- Published
- 2022
40. Genome-wide interaction study with major depression identifies novel variants associated with cognitive function
- Author
-
Thalamuthu, A, Mills, NT, Berger, K, Minnerup, H, Grotegerd, D, Dannlowski, U, Meinert, S, Opel, N, Repple, J, Gruber, M, Stein, F, Brosch, K, Meller, T, Pfarr, J-K, Forstner, AJ, Hoffmann, P, Nothen, MM, Witt, S, Rietschel, M, Kircher, T, Adams, M, McIntosh, AM, Porteous, DJ, Deary, IJ, Hayward, C, Campbell, A, Grabe, HJ, Teumer, A, Homuth, G, Van der Auwera-Palitschka, S, Schubert, KO, Baune, BT, Thalamuthu, A, Mills, NT, Berger, K, Minnerup, H, Grotegerd, D, Dannlowski, U, Meinert, S, Opel, N, Repple, J, Gruber, M, Stein, F, Brosch, K, Meller, T, Pfarr, J-K, Forstner, AJ, Hoffmann, P, Nothen, MM, Witt, S, Rietschel, M, Kircher, T, Adams, M, McIntosh, AM, Porteous, DJ, Deary, IJ, Hayward, C, Campbell, A, Grabe, HJ, Teumer, A, Homuth, G, Van der Auwera-Palitschka, S, Schubert, KO, and Baune, BT
- Abstract
Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data from four large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia (SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study (GWAS) of cognitive domains of executive function, processing speed, and global cognition. Several of these SNPs are located in genes expressed in brain, with important roles such as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination (ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and causal networks impacting on the expression of dataset genes, providing a genetic basis for further clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results suggest several genes involved in physiological processes for the development and maintenance of cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients with MDD associated cognitive dysfunction.
- Published
- 2022
41. Association Between Genetic Risk for Type 2 Diabetes and Structural Brain Connectivity in Major Depressive Disorder
- Author
-
Repple, J, Koenig, A, de Lange, SC, Opel, N, Redlich, R, Meinert, S, Grotegerd, D, Mauritz, M, Hahn, T, Borgers, T, Leehr, EJ, Winter, N, Goltermann, J, Enneking, V, Fingas, SM, Lemke, H, Waltemate, L, Dohm, K, Richter, M, Holstein, V, Gruber, M, Nenadic, I, Krug, A, Brosch, K, Schmitt, S, Stein, F, Meller, T, Jansen, A, Steinstraeter, O, Amare, AT, Kircher, T, Baune, BT, van den Heuvel, MP, Dannlowski, U, Repple, J, Koenig, A, de Lange, SC, Opel, N, Redlich, R, Meinert, S, Grotegerd, D, Mauritz, M, Hahn, T, Borgers, T, Leehr, EJ, Winter, N, Goltermann, J, Enneking, V, Fingas, SM, Lemke, H, Waltemate, L, Dohm, K, Richter, M, Holstein, V, Gruber, M, Nenadic, I, Krug, A, Brosch, K, Schmitt, S, Stein, F, Meller, T, Jansen, A, Steinstraeter, O, Amare, AT, Kircher, T, Baune, BT, van den Heuvel, MP, and Dannlowski, U
- Abstract
BACKGROUND: Major depressive disorder (MDD) and type 2 diabetes mellitus (T2D) are known to share clinical comorbidity and to have genetic overlap. Besides their shared genetics, both diseases seem to be associated with alterations in brain structural connectivity and impaired cognitive performance, but little is known about the mechanisms by which genetic risk of T2D might affect brain structure and function and if they do, how these effects could contribute to the disease course of MDD. METHODS: This study explores the association of polygenic risk for T2D with structural brain connectome topology and cognitive performance in 434 nondiabetic patients with MDD and 539 healthy control subjects. RESULTS: Polygenic risk score for T2D across MDD patients and healthy control subjects was found to be associated with reduced global fractional anisotropy, a marker of white matter microstructure, an effect found to be predominantly present in MDD-related fronto-temporo-parietal connections. A mediation analysis further suggests that this fractional anisotropy variation may mediate the association between polygenic risk score and cognitive performance. CONCLUSIONS: Our findings provide preliminary evidence of a polygenic risk for T2D to be linked to brain structural connectivity and cognition in patients with MDD and healthy control subjects, even in the absence of a direct T2D diagnosis. This suggests an effect of T2D genetic risk on white matter integrity, which may mediate an association of genetic risk for diabetes and cognitive impairments.
- Published
- 2022
42. Neurobiologically Based Stratification of Recent- Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes
- Author
-
Lalousis, PA, Schmaal, L, Wood, SJ, Reniers, RLEP, Barnes, NM, Chisholm, K, Griffiths, SL, Stainton, A, Wen, J, Hwang, G, Davatzikos, C, Wenzel, J, Kambeitz-Ilankovic, L, Andreou, C, Bonivento, C, Dannlowski, U, Ferro, A, Lichtenstein, T, Riecher-Rossler, A, Romer, G, Upthegrove, R, Lencer, R, Pantelis, C, Ruhrmann, S, Salokangas, RKR, Schultze-Lutter, F, Schmidt, A, Meisenzahl, E, Koutsouleris, N, Dwyer, D, Rosen, M, Bertolino, A, Borgwardt, S, Brambilla, P, Kambeitz, J, Lalousis, PA, Schmaal, L, Wood, SJ, Reniers, RLEP, Barnes, NM, Chisholm, K, Griffiths, SL, Stainton, A, Wen, J, Hwang, G, Davatzikos, C, Wenzel, J, Kambeitz-Ilankovic, L, Andreou, C, Bonivento, C, Dannlowski, U, Ferro, A, Lichtenstein, T, Riecher-Rossler, A, Romer, G, Upthegrove, R, Lencer, R, Pantelis, C, Ruhrmann, S, Salokangas, RKR, Schultze-Lutter, F, Schmidt, A, Meisenzahl, E, Koutsouleris, N, Dwyer, D, Rosen, M, Bertolino, A, Borgwardt, S, Brambilla, P, and Kambeitz, J
- Abstract
BACKGROUND: Identifying neurobiologically based transdiagnostic categories of depression and psychosis may elucidate heterogeneity and provide better candidates for predictive modeling. We aimed to identify clusters across patients with recent-onset depression (ROD) and recent-onset psychosis (ROP) based on structural neuroimaging data. We hypothesized that these transdiagnostic clusters would identify patients with poor outcome and allow more accurate prediction of symptomatic remission than traditional diagnostic structures. METHODS: HYDRA (Heterogeneity through Discriminant Analysis) was trained on whole-brain volumetric measures from 577 participants from the discovery sample of the multisite PRONIA study to identify neurobiologically driven clusters, which were then externally validated in the PRONIA replication sample (n = 404) and three datasets of chronic samples (Centre for Biomedical Research Excellence, n = 146; Mind Clinical Imaging Consortium, n = 202; Munich, n = 470). RESULTS: The optimal clustering solution was two transdiagnostic clusters (cluster 1: n = 153, 67 ROP, 86 ROD; cluster 2: n = 149, 88 ROP, 61 ROD; adjusted Rand index = 0.618). The two clusters contained both patients with ROP and patients with ROD. One cluster had widespread gray matter volume deficits and more positive, negative, and functional deficits (impaired cluster), and one cluster revealed a more preserved neuroanatomical signature and more core depressive symptomatology (preserved cluster). The clustering solution was internally and externally validated and assessed for clinical utility in predicting 9-month symptomatic remission, outperforming traditional diagnostic structures. CONCLUSIONS: We identified two transdiagnostic neuroanatomically informed clusters that are clinically and biologically distinct, challenging current diagnostic boundaries in recent-onset mental health disorders. These results may aid understanding of the etiology of poor outcome patients transdiagnost
- Published
- 2022
43. Genetic variants associated with longitudinal changes in brain structure across the lifespan
- Author
-
Brouwer, RM, Klein, M, Grasby, KL, Schnack, HG, Jahanshad, N, Teeuw, J, Thomopoulos, SI, Sprooten, E, Franz, CE, Gogtay, N, Kremen, WS, Panizzon, MS, Olde Loohuis, LM, Whelan, CD, Aghajani, M, Alloza, C, Alanaes, D, Artiges, E, Ayesa-Arriola, R, Barker, GJ, Bastin, ME, Blok, E, Boen, E, Breukelaar, IA, Bright, JK, Buimer, EEL, Bulow, R, Cannon, DM, Ciufolini, S, Crossley, NA, Damatac, CG, Dazzan, P, de Mol, CL, de Zwarte, SMC, Desrivieres, S, Diaz-Caneja, CM, Doan, NT, Dohm, K, Froehner, JH, Goltermann, J, Grigis, A, Grotegerd, D, Han, LKM, Harris, MA, Hartman, CA, Heany, SJ, Heindel, W, Heslenfeld, DJ, Hohmann, S, Ittermann, B, Jansen, PR, Janssen, J, Jia, T, Jiang, J, Jockwitz, C, Karali, T, Keeser, D, Koevoets, MGJC, Lenroot, RK, Malchow, B, Mandl, RCW, Medel, V, Meinert, S, Morgan, CA, Muehleisen, TW, Nabulsi, L, Opel, N, de la Foz, VO-G, Overs, BJ, Paillere Martinot, M-L, Redlich, R, Marques, TR, Repple, J, Roberts, G, Roshchupkin, GV, Setiaman, N, Shumskaya, E, Stein, F, Sudre, G, Takahashi, S, Thalamuthu, A, Tordesillas-Gutierrez, D, van der Lugt, A, van Haren, NEM, Wardlaw, JM, Wen, W, Westeneng, H-J, Wittfeld, K, Zhu, AH, Zugman, A, Armstrong, NJ, Bonfiglio, G, Bralten, J, Dalvie, S, Davies, G, Di Forti, M, Ding, L, Donohoe, G, Forstner, AJ, Gonzalez-Penas, J, Guimaraes, JPOFT, Homuth, G, Hottenga, J-J, Knol, MJ, Kwok, JBJ, Le Hellard, S, Mather, KA, Milaneschi, Y, Morris, DW, Noethen, MM, Papiol, S, Rietschel, M, Santoro, ML, Steen, VM, Stein, JL, Streit, F, Tankard, RM, Teumer, A, van 't Ent, D, van der Meer, D, van Eijk, KR, Vassos, E, Vazquez-Bourgon, J, Witt, SH, Adams, HHH, Agartz, I, Ames, D, Amunts, K, Andreassen, OA, Arango, C, Banaschewski, T, Baune, BT, Belangero, SI, Bokde, ALW, Boomsma, DI, Bressan, RA, Brodaty, H, Buitelaar, JK, Cahn, W, Caspers, S, Cichon, S, Crespo-Facorro, B, Cox, SR, Dannlowski, U, Elvsashagen, T, Espeseth, T, Falkai, PG, Fisher, SE, Flor, H, Fullerton, JM, Garavan, H, Gowland, PA, Grabe, HJ, Hahn, T, Heinz, A, Hillegers, M, Hoare, J, Hoekstra, PJ, Ikram, MA, Jackowski, AP, Jansen, A, Jonsson, EG, Kahn, RS, Kircher, T, Korgaonkar, MS, Krug, A, Lemaitre, H, Malt, UF, Martinot, J-L, McDonald, C, Mitchell, PB, Muetzel, RL, Murray, RM, Nees, F, Nenadic, I, Oosterlaan, J, Ophoff, RA, Pan, PM, Penninx, BWJH, Poustka, L, Sachdev, PS, Salum, GA, Schofield, PR, Schumann, G, Shaw, P, Sim, K, Smolka, MN, Stein, DJ, Trollor, JN, van den Berg, LH, Veldink, JH, Walter, H, Westlye, LT, Whelan, R, White, T, Wright, MJ, Medland, SE, Franke, B, Thompson, PM, Hulshoff Pol, HE, Brouwer, RM, Klein, M, Grasby, KL, Schnack, HG, Jahanshad, N, Teeuw, J, Thomopoulos, SI, Sprooten, E, Franz, CE, Gogtay, N, Kremen, WS, Panizzon, MS, Olde Loohuis, LM, Whelan, CD, Aghajani, M, Alloza, C, Alanaes, D, Artiges, E, Ayesa-Arriola, R, Barker, GJ, Bastin, ME, Blok, E, Boen, E, Breukelaar, IA, Bright, JK, Buimer, EEL, Bulow, R, Cannon, DM, Ciufolini, S, Crossley, NA, Damatac, CG, Dazzan, P, de Mol, CL, de Zwarte, SMC, Desrivieres, S, Diaz-Caneja, CM, Doan, NT, Dohm, K, Froehner, JH, Goltermann, J, Grigis, A, Grotegerd, D, Han, LKM, Harris, MA, Hartman, CA, Heany, SJ, Heindel, W, Heslenfeld, DJ, Hohmann, S, Ittermann, B, Jansen, PR, Janssen, J, Jia, T, Jiang, J, Jockwitz, C, Karali, T, Keeser, D, Koevoets, MGJC, Lenroot, RK, Malchow, B, Mandl, RCW, Medel, V, Meinert, S, Morgan, CA, Muehleisen, TW, Nabulsi, L, Opel, N, de la Foz, VO-G, Overs, BJ, Paillere Martinot, M-L, Redlich, R, Marques, TR, Repple, J, Roberts, G, Roshchupkin, GV, Setiaman, N, Shumskaya, E, Stein, F, Sudre, G, Takahashi, S, Thalamuthu, A, Tordesillas-Gutierrez, D, van der Lugt, A, van Haren, NEM, Wardlaw, JM, Wen, W, Westeneng, H-J, Wittfeld, K, Zhu, AH, Zugman, A, Armstrong, NJ, Bonfiglio, G, Bralten, J, Dalvie, S, Davies, G, Di Forti, M, Ding, L, Donohoe, G, Forstner, AJ, Gonzalez-Penas, J, Guimaraes, JPOFT, Homuth, G, Hottenga, J-J, Knol, MJ, Kwok, JBJ, Le Hellard, S, Mather, KA, Milaneschi, Y, Morris, DW, Noethen, MM, Papiol, S, Rietschel, M, Santoro, ML, Steen, VM, Stein, JL, Streit, F, Tankard, RM, Teumer, A, van 't Ent, D, van der Meer, D, van Eijk, KR, Vassos, E, Vazquez-Bourgon, J, Witt, SH, Adams, HHH, Agartz, I, Ames, D, Amunts, K, Andreassen, OA, Arango, C, Banaschewski, T, Baune, BT, Belangero, SI, Bokde, ALW, Boomsma, DI, Bressan, RA, Brodaty, H, Buitelaar, JK, Cahn, W, Caspers, S, Cichon, S, Crespo-Facorro, B, Cox, SR, Dannlowski, U, Elvsashagen, T, Espeseth, T, Falkai, PG, Fisher, SE, Flor, H, Fullerton, JM, Garavan, H, Gowland, PA, Grabe, HJ, Hahn, T, Heinz, A, Hillegers, M, Hoare, J, Hoekstra, PJ, Ikram, MA, Jackowski, AP, Jansen, A, Jonsson, EG, Kahn, RS, Kircher, T, Korgaonkar, MS, Krug, A, Lemaitre, H, Malt, UF, Martinot, J-L, McDonald, C, Mitchell, PB, Muetzel, RL, Murray, RM, Nees, F, Nenadic, I, Oosterlaan, J, Ophoff, RA, Pan, PM, Penninx, BWJH, Poustka, L, Sachdev, PS, Salum, GA, Schofield, PR, Schumann, G, Shaw, P, Sim, K, Smolka, MN, Stein, DJ, Trollor, JN, van den Berg, LH, Veldink, JH, Walter, H, Westlye, LT, Whelan, R, White, T, Wright, MJ, Medland, SE, Franke, B, Thompson, PM, and Hulshoff Pol, HE
- Abstract
Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.
- Published
- 2022
44. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from theENIGMABipolar Disorder Working Group
- Author
-
Ching, CRK, Hibar, DP, Gurholt, TP, Nunes, A, Thomopoulos, SI, Abe, C, Agartz, I, Brouwer, RM, Cannon, DM, de Zwarte, SMC, Eyler, LT, Favre, P, Hajek, T, Haukvik, UK, Houenou, J, Landen, M, Lett, TA, McDonald, C, Nabulsi, L, Patel, Y, Pauling, ME, Paus, T, Radua, J, Soeiro-de-Souza, MG, Tronchin, G, van Haren, NEM, Vieta, E, Walter, H, Zeng, L-L, Alda, M, Almeida, J, Alnaes, D, Alonso-Lana, S, Altimus, C, Bauer, M, Baune, BT, Bearden, CE, Bellani, M, Benedetti, F, Berk, M, Bilderbeck, AC, Blumberg, HP, Boen, E, Bollettini, I, del Mar Bonnin, C, Brambilla, P, Canales-Rodriguez, EJ, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Diaz-Zuluaga, AM, Dima, D, Duchesnay, E, Elvsashagen, T, Fears, SC, Frangou, S, Fullerton, JM, Glahn, DC, Goikolea, JM, Green, MJ, Grotegerd, D, Gruber, O, Haarman, BCM, Henry, C, Howells, FM, Ives-Deliperi, V, Jansen, A, Kircher, TTJ, Knoechel, C, Kramer, B, Lafer, B, Lopez-Jaramillo, C, Machado-Vieira, R, MacIntosh, BJ, Melloni, EMT, Mitchell, PB, Nenadic, I, Nery, F, Nugent, AC, Oertel, V, Ophoff, RA, Ota, M, Overs, BJ, Pham, DL, Phillips, ML, Pineda-Zapata, JA, Poletti, S, Polosan, M, Pomarol-Clotet, E, Pouchon, A, Quide, Y, Rive, MM, Roberts, G, Ruhe, HG, Salvador, R, Sarro, S, Satterthwaite, TD, Schene, AH, Sim, K, Soares, JC, Staeblein, M, Stein, DJ, Tamnes, CK, Thomaidis, GV, Upegui, CV, Veltman, DJ, Wessa, M, Westlye, LT, Whalley, HC, Wolf, DH, Wu, M-J, Yatham, LN, Zarate, CA, Thompson, PM, Andreassen, OA, Ching, CRK, Hibar, DP, Gurholt, TP, Nunes, A, Thomopoulos, SI, Abe, C, Agartz, I, Brouwer, RM, Cannon, DM, de Zwarte, SMC, Eyler, LT, Favre, P, Hajek, T, Haukvik, UK, Houenou, J, Landen, M, Lett, TA, McDonald, C, Nabulsi, L, Patel, Y, Pauling, ME, Paus, T, Radua, J, Soeiro-de-Souza, MG, Tronchin, G, van Haren, NEM, Vieta, E, Walter, H, Zeng, L-L, Alda, M, Almeida, J, Alnaes, D, Alonso-Lana, S, Altimus, C, Bauer, M, Baune, BT, Bearden, CE, Bellani, M, Benedetti, F, Berk, M, Bilderbeck, AC, Blumberg, HP, Boen, E, Bollettini, I, del Mar Bonnin, C, Brambilla, P, Canales-Rodriguez, EJ, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Diaz-Zuluaga, AM, Dima, D, Duchesnay, E, Elvsashagen, T, Fears, SC, Frangou, S, Fullerton, JM, Glahn, DC, Goikolea, JM, Green, MJ, Grotegerd, D, Gruber, O, Haarman, BCM, Henry, C, Howells, FM, Ives-Deliperi, V, Jansen, A, Kircher, TTJ, Knoechel, C, Kramer, B, Lafer, B, Lopez-Jaramillo, C, Machado-Vieira, R, MacIntosh, BJ, Melloni, EMT, Mitchell, PB, Nenadic, I, Nery, F, Nugent, AC, Oertel, V, Ophoff, RA, Ota, M, Overs, BJ, Pham, DL, Phillips, ML, Pineda-Zapata, JA, Poletti, S, Polosan, M, Pomarol-Clotet, E, Pouchon, A, Quide, Y, Rive, MM, Roberts, G, Ruhe, HG, Salvador, R, Sarro, S, Satterthwaite, TD, Schene, AH, Sim, K, Soares, JC, Staeblein, M, Stein, DJ, Tamnes, CK, Thomaidis, GV, Upegui, CV, Veltman, DJ, Wessa, M, Westlye, LT, Whalley, HC, Wolf, DH, Wu, M-J, Yatham, LN, Zarate, CA, Thompson, PM, and Andreassen, OA
- Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
- Published
- 2022
45. In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics throughMeta-AnalysisBipolar Disorder Working Group
- Author
-
Haukvik, UK, Gurholt, TP, Nerland, S, Elvsashagen, T, Akudjedu, TN, Alda, M, Alnaes, D, Alonso-Lana, S, Bauer, J, Baune, BT, Benedetti, F, Berk, M, Bettella, F, Boen, E, Bonnin, CM, Brambilla, P, Canales-Rodriguez, EJ, Cannon, DM, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Diaz-Zuluaga, AM, Erp, TGM, Fatjo-Vilas, M, Foley, SF, Foerster, K, Fullerton, JM, Goikolea, JM, Grotegerd, D, Gruber, O, Haarman, BCM, Haatveit, B, Hajek, T, Hallahan, B, Harris, M, Hawkins, EL, Howells, FM, Huelsmann, C, Jahanshad, N, Jorgensen, KN, Kircher, T, Kraemer, B, Krug, A, Kuplicki, R, Lagerberg, T, Lancaster, TM, Lenroot, RK, Lonning, V, Lopez-Jaramillo, C, Malt, UF, McDonald, C, McIntosh, AM, McPhilemy, G, Meer, D, Melle, I, Melloni, EMT, Mitchell, PB, Nabulsi, L, Nenadic, I, Oertel, V, Oldani, L, Opel, N, Otaduy, MCG, Overs, BJ, Pineda-Zapata, JA, Pomarol-Clotet, E, Radua, J, Rauer, L, Redlich, R, Repple, J, Rive, MM, Roberts, G, Ruhe, HG, Salminen, LE, Salvador, R, Sarro, S, Savitz, J, Schene, AH, Sim, K, Soeiro-de-Souza, MG, Staeblein, M, Stein, DJ, Stein, F, Tamnes, CK, Temmingh, HS, Thomopoulos, S, Veltman, DJ, Vieta, E, Waltemate, L, Westlye, LT, Whalley, HC, Saemann, PG, Thompson, PM, Ching, CRK, Andreassen, OA, Agartz, I, Haukvik, UK, Gurholt, TP, Nerland, S, Elvsashagen, T, Akudjedu, TN, Alda, M, Alnaes, D, Alonso-Lana, S, Bauer, J, Baune, BT, Benedetti, F, Berk, M, Bettella, F, Boen, E, Bonnin, CM, Brambilla, P, Canales-Rodriguez, EJ, Cannon, DM, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Diaz-Zuluaga, AM, Erp, TGM, Fatjo-Vilas, M, Foley, SF, Foerster, K, Fullerton, JM, Goikolea, JM, Grotegerd, D, Gruber, O, Haarman, BCM, Haatveit, B, Hajek, T, Hallahan, B, Harris, M, Hawkins, EL, Howells, FM, Huelsmann, C, Jahanshad, N, Jorgensen, KN, Kircher, T, Kraemer, B, Krug, A, Kuplicki, R, Lagerberg, T, Lancaster, TM, Lenroot, RK, Lonning, V, Lopez-Jaramillo, C, Malt, UF, McDonald, C, McIntosh, AM, McPhilemy, G, Meer, D, Melle, I, Melloni, EMT, Mitchell, PB, Nabulsi, L, Nenadic, I, Oertel, V, Oldani, L, Opel, N, Otaduy, MCG, Overs, BJ, Pineda-Zapata, JA, Pomarol-Clotet, E, Radua, J, Rauer, L, Redlich, R, Repple, J, Rive, MM, Roberts, G, Ruhe, HG, Salminen, LE, Salvador, R, Sarro, S, Savitz, J, Schene, AH, Sim, K, Soeiro-de-Souza, MG, Staeblein, M, Stein, DJ, Stein, F, Tamnes, CK, Temmingh, HS, Thomopoulos, S, Veltman, DJ, Vieta, E, Waltemate, L, Westlye, LT, Whalley, HC, Saemann, PG, Thompson, PM, Ching, CRK, Andreassen, OA, and Agartz, I
- Abstract
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
- Published
- 2022
46. FreeSurfer-based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts
- Author
-
Samann, PG, Iglesias, JE, Gutman, B, Grotegerd, D, Leenings, R, Flint, C, Dannlowski, U, Clarke-Rubright, EK, Morey, RA, van Erp, TGM, Whelan, CD, Han, LKM, van Velzen, LS, Cao, B, Augustinack, JC, Thompson, PM, Jahanshad, N, Schmaal, L, Samann, PG, Iglesias, JE, Gutman, B, Grotegerd, D, Leenings, R, Flint, C, Dannlowski, U, Clarke-Rubright, EK, Morey, RA, van Erp, TGM, Whelan, CD, Han, LKM, van Velzen, LS, Cao, B, Augustinack, JC, Thompson, PM, Jahanshad, N, and Schmaal, L
- Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013-12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi-)genetics. Finally, we highlight points where FreeSurfer-based hippocampal subfield studies may be optimized.
- Published
- 2022
47. Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study
- Author
-
Kirschner, M, Hodzic-Santor, B, Antoniades, M, Nenadic, I, Kircher, T, Krug, A, Meller, T, Grotegerd, D, Fornito, A, Arnatkeviciute, A, Bellgrove, MA, Tiego, J, Dannlowski, U, Koch, K, Huelsmann, C, Kugel, H, Enneking, V, Klug, M, Leehr, EJ, Boehnlein, J, Gruber, M, Mehler, D, DeRosse, P, Moyett, A, Baune, BT, Green, M, Quide, Y, Pantelis, C, Chan, R, Wang, Y, Ettinger, U, Debbane, M, Derome, M, Gaser, C, Besteher, B, Diederen, K, Spencer, TJ, Fletcher, P, Roessler, W, Smigielski, L, Kumari, V, Premkumar, P, Park, HRP, Wiebels, K, Lemmers-Jansen, I, Gilleen, J, Allen, P, Kozhuharova, P, Marsman, J-B, Lebedeva, I, Tomyshev, A, Mukhorina, A, Kaiser, S, Fett, A-K, Sommer, I, Schuite-Koops, S, Paquola, C, Lariviere, S, Bernhardt, B, Dagher, A, Grant, P, van Erp, TGM, Turner, JA, Thompson, PM, Aleman, A, Modinos, G, Kirschner, M, Hodzic-Santor, B, Antoniades, M, Nenadic, I, Kircher, T, Krug, A, Meller, T, Grotegerd, D, Fornito, A, Arnatkeviciute, A, Bellgrove, MA, Tiego, J, Dannlowski, U, Koch, K, Huelsmann, C, Kugel, H, Enneking, V, Klug, M, Leehr, EJ, Boehnlein, J, Gruber, M, Mehler, D, DeRosse, P, Moyett, A, Baune, BT, Green, M, Quide, Y, Pantelis, C, Chan, R, Wang, Y, Ettinger, U, Debbane, M, Derome, M, Gaser, C, Besteher, B, Diederen, K, Spencer, TJ, Fletcher, P, Roessler, W, Smigielski, L, Kumari, V, Premkumar, P, Park, HRP, Wiebels, K, Lemmers-Jansen, I, Gilleen, J, Allen, P, Kozhuharova, P, Marsman, J-B, Lebedeva, I, Tomyshev, A, Mukhorina, A, Kaiser, S, Fett, A-K, Sommer, I, Schuite-Koops, S, Paquola, C, Lariviere, S, Bernhardt, B, Dagher, A, Grant, P, van Erp, TGM, Turner, JA, Thompson, PM, Aleman, A, and Modinos, G
- Abstract
Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.
- Published
- 2022
48. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group
- Author
-
Ho, TC, Gutman, B, Pozzi, E, Grabe, HJ, Hosten, N, Wittfeld, K, Voelzke, H, Baune, B, Dannlowski, U, Foerster, K, Grotegerd, D, Redlich, R, Jansen, A, Kircher, T, Krug, A, Meinert, S, Nenadic, I, Opel, N, Dinga, R, Veltman, DJ, Schnell, K, Veer, I, Walter, H, Gotlib, IH, Sacchet, MD, Aleman, A, Groenewold, NA, Stein, DJ, Li, M, Walter, M, Ching, CRK, Jahanshad, N, Ragothaman, A, Isaev, D, Zavaliangos-Petropulu, A, Thompson, PM, Saemann, PG, Schmaal, L, Ho, TC, Gutman, B, Pozzi, E, Grabe, HJ, Hosten, N, Wittfeld, K, Voelzke, H, Baune, B, Dannlowski, U, Foerster, K, Grotegerd, D, Redlich, R, Jansen, A, Kircher, T, Krug, A, Meinert, S, Nenadic, I, Opel, N, Dinga, R, Veltman, DJ, Schnell, K, Veer, I, Walter, H, Gotlib, IH, Sacchet, MD, Aleman, A, Groenewold, NA, Stein, DJ, Li, M, Walter, M, Ching, CRK, Jahanshad, N, Ragothaman, A, Isaev, D, Zavaliangos-Petropulu, A, Thompson, PM, Saemann, PG, and Schmaal, L
- Abstract
Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.
- Published
- 2022
49. In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group
- Author
-
Haukvik, U.K., Gurholt, T.P., Nerland, S., Elvsåshagen, T., Akudjedu, T.N., Alda, M., Alnaes, D., Alonso-Lana, S., Bauer, J., Baune, B.T., Benedetti, F. De, Berk, M., Bettella, F., Bøen, E., Bonnín, C.M., Brambilla, P., Canales-Rodríguez, E.J., Cannon, D.M., Caseras, X., Dandash, O., Dannlowski, U., Delvecchio, G., Díaz-Zuluaga, A.M., Erp, T.G. van, Fatjó-Vilas, M., Foley, S.F., Förster, K., Fullerton, J.M., Goikolea, J.M., Grotegerd, D., Gruber, O., Haarman, B.C.M., Haatveit, B., Hajek, T., Hallahan, B., Harris, M., Hawkins, E.L., Howells, F.M., Hülsmann, C., Jahanshad, N., Jørgensen, K.N., Kircher, T., Krämer, B., Krug, A., Kuplicki, R., Lagerberg, T.V., Lancaster, T.M., Lenroot, R.K., Lonning, V., López-Jaramillo, C., Malt, U.F., McDonald, C., McIntosh, A.M., McPhilemy, G., Meer, D. van der, Melle, I., Melloni, E.M.T., Mitchell, P.B., Nabulsi, L., Nenadić, I., Oertel, V., Oldani, L., Opel, N., Otaduy, M.C.G., Overs, B.J., Pineda-Zapata, J.A., Pomarol-Clotet, E., Radua, J., Rauer, L., Redlich, R., Repple, J., Rive, M.M., Roberts, G., Ruhe, H.G., Salminen, L.E., Salvador, R., Sarró, S., Savitz, J., Schene, A.H., Sim, K., Soeiro-de-Souza, M.G., Stäblein, M., Stein, D.J., Stein, F., Tamnes, C.K., Temmingh, H.S., Thomopoulos, S.I., Veltman, D.J., Vieta, E., Waltemate, L., Westlye, L.T., Whalley, H.C., Sämann, P.G., Thompson, P.M., Ching, C.R., Andreassen, O.A., Agartz, I., Haukvik, U.K., Gurholt, T.P., Nerland, S., Elvsåshagen, T., Akudjedu, T.N., Alda, M., Alnaes, D., Alonso-Lana, S., Bauer, J., Baune, B.T., Benedetti, F. De, Berk, M., Bettella, F., Bøen, E., Bonnín, C.M., Brambilla, P., Canales-Rodríguez, E.J., Cannon, D.M., Caseras, X., Dandash, O., Dannlowski, U., Delvecchio, G., Díaz-Zuluaga, A.M., Erp, T.G. van, Fatjó-Vilas, M., Foley, S.F., Förster, K., Fullerton, J.M., Goikolea, J.M., Grotegerd, D., Gruber, O., Haarman, B.C.M., Haatveit, B., Hajek, T., Hallahan, B., Harris, M., Hawkins, E.L., Howells, F.M., Hülsmann, C., Jahanshad, N., Jørgensen, K.N., Kircher, T., Krämer, B., Krug, A., Kuplicki, R., Lagerberg, T.V., Lancaster, T.M., Lenroot, R.K., Lonning, V., López-Jaramillo, C., Malt, U.F., McDonald, C., McIntosh, A.M., McPhilemy, G., Meer, D. van der, Melle, I., Melloni, E.M.T., Mitchell, P.B., Nabulsi, L., Nenadić, I., Oertel, V., Oldani, L., Opel, N., Otaduy, M.C.G., Overs, B.J., Pineda-Zapata, J.A., Pomarol-Clotet, E., Radua, J., Rauer, L., Redlich, R., Repple, J., Rive, M.M., Roberts, G., Ruhe, H.G., Salminen, L.E., Salvador, R., Sarró, S., Savitz, J., Schene, A.H., Sim, K., Soeiro-de-Souza, M.G., Stäblein, M., Stein, D.J., Stein, F., Tamnes, C.K., Temmingh, H.S., Thomopoulos, S.I., Veltman, D.J., Vieta, E., Waltemate, L., Westlye, L.T., Whalley, H.C., Sämann, P.G., Thompson, P.M., Ching, C.R., Andreassen, O.A., and Agartz, I.
- Abstract
Contains fulltext : 252169.pdf (Publisher’s version ) (Open Access), The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
- Published
- 2022
50. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
- Author
-
Ching, C.R., Hibar, D.P., Gurholt, T.P., Nunes, A., Thomopoulos, S.I., Abé, C., Agartz, I., Brouwer, R.M., Cannon, D.M., Zwarte, S.M.C. de, Eyler, L.T., Favre, P., Hajek, T., Haukvik, U.K., Houenou, J., Landén, M., Lett, T.A., McDonald, C., Nabulsi, L., Patel, Y., Pauling, M.E., Paus, T., Radua, J., Soeiro-de-Souza, M.G., Tronchin, G., Haren, N.E.M. van, Vieta, E., Walter, H., Zeng, L.L., Alda, M., Almeida, J., Alnaes, D., Alonso-Lana, S., Altimus, C., Bauer, M, Baune, B.T., Bearden, C.E., Bellani, M., Benedetti, F. De, Berk, M., Bilderbeck, A.C., Blumberg, H.P., Bøen, E., Bollettini, I., Bonnin, C. Del Mar, Brambilla, P., Canales-Rodríguez, E.J., Caseras, X., Dandash, O., Dannlowski, U., Delvecchio, G., Díaz-Zuluaga, A.M., Dima, D., Duchesnay, É., Elvsåshagen, T., Fears, S.C., Frangou, S., Fullerton, J.M., Glahn, D.C., Goikolea, J.M., Green, M.J., Grotegerd, D., Gruber, O., Haarman, B.C.M., Henry, C., Howells, F.M., Ives-Deliperi, V., Jansen, Andreas, Kircher, T.T.J., Knöchel, C., Kramer, B., Lafer, B., López-Jaramillo, C., Machado-Vieira, R., MacIntosh, B.J., Melloni, E.M.T., Mitchell, P.B., Nenadic, I., Nery, F., Nugent, A.C., Oertel, V., Ophoff, R.A., Ota, M., Overs, B.J., Pham, D.L., Phillips, M.L., Pineda-Zapata, J.A., Poletti, S., Polosan, M., Pomarol-Clotet, E., Pouchon, A., Quidé, Y., Rive, M.M., Roberts, G., Ruhe, H.G., Salvador, R., Sarró, S., Satterthwaite, T.D., Schene, A.H., Sim, K., Thompson, P.M., Andreassen, O.A., Ching, C.R., Hibar, D.P., Gurholt, T.P., Nunes, A., Thomopoulos, S.I., Abé, C., Agartz, I., Brouwer, R.M., Cannon, D.M., Zwarte, S.M.C. de, Eyler, L.T., Favre, P., Hajek, T., Haukvik, U.K., Houenou, J., Landén, M., Lett, T.A., McDonald, C., Nabulsi, L., Patel, Y., Pauling, M.E., Paus, T., Radua, J., Soeiro-de-Souza, M.G., Tronchin, G., Haren, N.E.M. van, Vieta, E., Walter, H., Zeng, L.L., Alda, M., Almeida, J., Alnaes, D., Alonso-Lana, S., Altimus, C., Bauer, M, Baune, B.T., Bearden, C.E., Bellani, M., Benedetti, F. De, Berk, M., Bilderbeck, A.C., Blumberg, H.P., Bøen, E., Bollettini, I., Bonnin, C. Del Mar, Brambilla, P., Canales-Rodríguez, E.J., Caseras, X., Dandash, O., Dannlowski, U., Delvecchio, G., Díaz-Zuluaga, A.M., Dima, D., Duchesnay, É., Elvsåshagen, T., Fears, S.C., Frangou, S., Fullerton, J.M., Glahn, D.C., Goikolea, J.M., Green, M.J., Grotegerd, D., Gruber, O., Haarman, B.C.M., Henry, C., Howells, F.M., Ives-Deliperi, V., Jansen, Andreas, Kircher, T.T.J., Knöchel, C., Kramer, B., Lafer, B., López-Jaramillo, C., Machado-Vieira, R., MacIntosh, B.J., Melloni, E.M.T., Mitchell, P.B., Nenadic, I., Nery, F., Nugent, A.C., Oertel, V., Ophoff, R.A., Ota, M., Overs, B.J., Pham, D.L., Phillips, M.L., Pineda-Zapata, J.A., Poletti, S., Polosan, M., Pomarol-Clotet, E., Pouchon, A., Quidé, Y., Rive, M.M., Roberts, G., Ruhe, H.G., Salvador, R., Sarró, S., Satterthwaite, T.D., Schene, A.H., Sim, K., Thompson, P.M., and Andreassen, O.A.
- Abstract
Contains fulltext : 252204.pdf (Publisher’s version ) (Open Access), MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.