229 results on '"Daniel Taton"'
Search Results
2. The promise of N-heterocyclic carbenes to capture and valorize carbon dioxide
- Author
-
Pierre Stiernet, Bo Pang, Daniel Taton, and Jiayin Yuan
- Subjects
Carbene ,N-heterocyclic carbene, CO2 capture ,CO2 valorization ,Catalysis ,Chemistry ,QD1-999 ,Environmental protection ,TD169-171.8 - Abstract
With increasing environmental concerns due to the anthropologic emissions of greenhouse gasses, especially carbon dioxide (CO2), the development of new technologies to capture the latter is of great public value. While amino-containing materials excel in capturing CO2, they generally suffer from a few limitations, namely, the high energy penalty for desorption and the obstacle to directly convert CO2 into valuable resources. In this context, molecular or polymeric compounds based on N-heterocyclic carbenes (NHCs) have emerged as versatile alternatives to efficiently sequester CO2. NHCs are among the most investigated reactive species in chemistry: not only have they been intensively used as ligands for transition metal catalysts but also they exhibit a rich chemistry, either as true reagents or as organic catalysts. However, their air- and moisture-sensitivity represents a limitation to their use in synthesis. As reviewed thereafter, NHCs can selectively react with CO2 forming stable adducts, in the form of zwitterionic betaine-type species, providing CO2 directly-on-site for further fixation. Advances in the use of NHCs in this field are illustrated in this paper with a special emphasis on integration of NHCs in materials enabling heterogeneous utilizations in capture and catalysis.
- Published
- 2023
- Full Text
- View/download PDF
3. Direct and selective access to amino-poly(phenylene vinylenes)s with switchable properties by dimerizing polymerization of aminoaryl carbenes
- Author
-
Quentin Sobczak, Aravindu Kunche, Damien Magis, Daiann Sosa Carrizo, Karinne Miqueu, Jean-Marc Sotiropoulos, Eric Cloutet, Cyril Brochon, Yannick Landais, Daniel Taton, and Joan Vignolle
- Subjects
Science - Abstract
Despite the ubiquity of singlet carbenes in chemistry, their utility as true monomeric building blocks for the synthesis of functional organic polymers has been underexplored. Here the authors show mono- and bis-acyclic amino(aryl)carbenes selectively dimerize to form diaminoalkenes and hitherto unknown amino-containing poly(p-phenylene vinylene)s.
- Published
- 2021
- Full Text
- View/download PDF
4. Stereoselective ROP of rac- and meso-Lactides Using Achiral TBD as Catalyst
- Author
-
Sébastien Moins, Sébastien Hoyas, Vincent Lemaur, Beste Orhan, Kayla Delle Chiaie, Roberto Lazzaroni, Daniel Taton, Andrew P. Dove, and Olivier Coulembier
- Subjects
organocatalyst ,stereocontrol ,lactide ,ring-opening polymerization ,TBD ,Chemical technology ,TP1-1185 ,Chemistry ,QD1-999 - Abstract
1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) polymerizes rac-lactide (rac-LA) to form highly isotactic polylactide (PLA) with a Pm = 0.88, while meso-LA yields heterotactic PLA (Pm ~ 0.8) at −75 °C. The stereocontrol of the cryogenic-based ring-opening polymerization comes from a perfect imbrication of both chiral LA and the propagating chiral end-group interacting with the achiral TBD catalyst.
- Published
- 2020
- Full Text
- View/download PDF
5. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications
- Author
-
Annamaria Panniello, Chiara Ingrosso, Paul Coupillaud, Michela Tamborra, Enrico Binetti, Maria Lucia Curri, Angela Agostiano, Daniel Taton, and Marinella Striccoli
- Subjects
colloidal nanocrystals ,polymeric ionic liquids ,nanocomposites ,surface functionalization ,time-resolved spectroscopy ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.
- Published
- 2014
- Full Text
- View/download PDF
6. Structural Effect of Organic Catalytic Pairs Based on Chiral Amino(thio)ureas and Phosphazene Bases for the Isoselective Ring-Opening Polymerization of Racemic Lactide
- Author
-
Mohamed Samir Zaky, Gilles Guichard, and Daniel Taton
- Subjects
Inorganic Chemistry ,Polymers and Plastics ,Organic Chemistry ,Materials Chemistry - Published
- 2023
7. Enzymes’ Power for Plastics Degradation
- Author
-
Vincent Tournier, Sophie Duquesne, Frédérique Guillamot, Henri Cramail, Daniel Taton, Alain Marty, Isabelle André, Carbios, Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Université de Bordeaux (UB)
- Subjects
[SDV]Life Sciences [q-bio] ,General Chemistry - Abstract
International audience; Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
- Published
- 2023
8. Tuning the activity and selectivity of polymerised ionic liquid-stabilised ruthenium nanoparticles through anion exchange reactions
- Author
-
Dambarudhar Parida, Camille Bakkali-Hassani, Eric Lebraud, Christophe Schatz, Stéphane Grelier, Daniel Taton, and Joan Vignolle
- Subjects
General Materials Science - Abstract
The development of highly active and selective heterogeneous-based catalysts with tailorable properties is not only a fundamental challenge, but is also crucial in the context of energy savings and sustainable chemistry. Here, we show that ruthenium nanoparticles (RuNPs) stabilised with simple polymerised ionic liquids (PILs) based on
- Published
- 2022
9. Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and aiN/i-Heterocyclic Carbene
- Author
-
Mohamed Samir Zaky, Anne-Laure Wirotius, Olivier Coulembier, Gilles Guichard, and Daniel Taton
- Subjects
Inorganic Chemistry ,Dioxanes ,Polymers and Plastics ,Polyesters ,Organic Chemistry ,Materials Chemistry ,Thiourea ,Urea ,Stereoisomerism ,Methane ,Plastics ,Polymerization ,Toluene - Abstract
Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (irac/i-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP ofirac/i-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selectediN/i-heterocyclic carbene (NHC) to trigger the stereoselective ROP ofirac/i-LA at room temperature in toluene. Both a high organic catalysis activity (gt;90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads,iP/isubm/sub, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearingitert/i-butyl substituents (NHCsubtBu/sub), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.
- Published
- 2022
10. Block Copolymer Synthesis by a Sequential Addition Strategy from the Organocatalytic Group Transfer Polymerization of Methyl Methacrylate to the Ring-Opening Polymerization of Lactide
- Author
-
Mohamed Samir Zaky, Gilles Guichard, and Daniel Taton
- Subjects
Acetals ,Polymers and Plastics ,Polymers ,Organic Chemistry ,Materials Chemistry ,Polymethyl Methacrylate ,Methacrylates ,Methylmethacrylate ,Polymerization - Abstract
Sequential block copolymerization involving comonomers belonging to different classes, e.g., a vinyl-type monomer and a heterocycle, is a challenging task in macromolecular chemistry, as corresponding propagating species do not interconvert easily from one to the other by crossover reactions. Here, it is first evidenced that 1-methoxy 2-methyl 1-trimethylsilyloxypropene (MTS), i.e., a silyl ketene acetal (SKA)-containing initiator, can be used in presence of the P
- Published
- 2022
11. Isoselective Ring-Opening Polymerization of
- Author
-
Beste, Orhan, Mathieu J-L, Tschan, Anne-Laure, Wirotius, Andrew P, Dove, Olivier, Coulembier, and Daniel, Taton
- Abstract
Despite significant advances in organocatalysis, stereoselective polymerization reactions utilizing chiral organocatalysts have received very little attention, and much about the underlying mechanisms remains unknown. Here, we report that both commercially available (
- Published
- 2022
12. Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers
- Author
-
Andrew P. Dove, Sètuhn Jimaja, Yujie Xie, Rachel K. O'Reilly, Jeffrey C. Foster, Daniel Taton, Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), University of Warwick [Coventry], School of Chemistry [Birmingham], and University of Birmingham [Birmingham]
- Subjects
Circular dichroism ,Materials science ,Polymers and Plastics ,Aryl ,Isocyanide ,Organic Chemistry ,Bioengineering ,Pentafluorophenyl esters ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Micelle ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Amphiphile ,Polymer chemistry ,Copolymer ,0210 nano-technology ,Maleimide - Abstract
International audience; Herein, we present a straightforward and versatile methodology to achieve functional polymeric nano-objects that contain helical cores. Nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers was conducted, affording micelles containing controllable quantities of activated ester groups (i.e. pentafluorophenyl esters) in the core that were subsequently modified using post-polymerisation modification (PPM) with amine nucleophiles. Three amines bearing different functionalities (alcohol, trifluoro and a maleimide dye) were successfully introduced into the nano-object cores as verified via NMR and FT-IR spectroscopy, while the retention of helicity within the resulting diblock copolymers was confirmed by circular dichroism (CD) spectroscopy. Changes in nanostructure morphology following modification were monitored by dynamic light-scattering (DLS), confirming the disassembly of the nano-objects when the core hydrophilicity was increased through the introduction of polar functionalities. These readily-synthesised and modified nanostructures containing helical cores are valuable scaffolds for use in applications such as circularly polarised luminescence, enantioselective chemistry or chiral separation.
- Published
- 2021
13. A chiral thiourea and a phosphazene for fast and stereoselective organocatalytic ring-opening-polymerization of racemic lactide
- Author
-
Mohamed Samir Zaky, Olivier Coulembier, Anne-Laure Wirotius, Daniel Taton, Gilles Guichard, Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre d'Innovation et de Recherche en Matériaux Polymères (CIRMAP), Université de Mons (UMons), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), and École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lactide ,010405 organic chemistry ,Metals and Alloys ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Chemistry ,010402 general chemistry ,01 natural sciences ,Combinatorial chemistry ,Ring-opening polymerization ,Catalysis ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Monomer ,chemistry ,Thiourea ,Polymerization ,Organocatalysis ,Tacticity ,Materials Chemistry ,Ceramics and Composites ,Phosphazene - Abstract
International audience; Control of stereoregularity is inherent to precision polymerization chemistry for the development of functional materials. A prototypal example of this strategy is the ring-opening polymerization (ROP) of racemic lactide (rac-LA), a bio-sourced monomer. Despite significant advances in organocatalysis, stereoselective ROP of rac-LA employing chiral organocatalysts remains unexplored. Here we tackle that challenge by resorting to Takemoto's catalyst, a chiral aminothiourea, in the presence of a phosphazene base. This chiral binary organocatalytic system allows for fast, chemo- and stereoselective ROP of rac-LA at room temperature, yielding highly isotactic, semi-crystalline and metal-free polylactide, with a melting temperature as high as 187 °C.
- Published
- 2021
14. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl isocyanide)s
- Author
-
Sètuhn Jimaja, Spyridon Varlas, Jeffrey C. Foster, Daniel Taton, Andrew P. Dove, Rachel K. O'Reilly, School of Chemistry [Birmingham], University of Birmingham [Birmingham], University of Warwick [Coventry], Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and European Project: 642671,H2020,H2020-MSCA-ITN-2014,SUSPOL(2015)
- Subjects
[CHIM.POLY]Chemical Sciences/Polymers ,Polymers and Plastics ,Organic Chemistry ,Bioengineering ,Biochemistry - Abstract
International audience; We report the synthesis of redox- and pH-sensitive block copolymer micelles that contain chiral cores composed of helical poly(aryl isocyanide)s. Pentafluorophenyl (PFP) ester-containing micelles synthesised via nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers are modified post-polymerisation with various diamines to introduce cross-links and/or achieve stimulus-sensitive nanostructures. The successful introduction of the diamines is confirmed by Fourier-transform infrared spectroscopy (FT-IR), while the stabilisation effect of the cross-linking is explored by dynamic light scattering (DLS). The retention of the helicity of the core-forming polymer block is verified by circular dichroism (CD) spectroscopy and the stimuli-responsiveness of the nanoparticles towards a reducing agent (L-glutathione, GSH) and pH is evaluated by following the change in the size of the nanoparticles by DLS. These stimuli-responsive nanoparticles could find use in applications such as drug delivery, nanosensors or biological imaging.
- Published
- 2022
15. Ester-Containing Imidazolium-Type Ionic Liquid Crystals Derived from Bio-based Fatty Alcohols
- Author
-
Wafa Gati, Daniel Taton, Etienne Grau, Thomas Vidil, Henri Cramail, Enrique del Río, Team 2 LCPO : Biopolymers & Bio-sourced Polymers, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Fédération de recherche INCREASE (INCREASE), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre de Recherche sur l'Intégration Economique et Financière (CRIEF), Université de Poitiers-Université de Poitiers-LIttoral ENvironnement et Sociétés - UMRi 7266 (LIENSs), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Laboratoire de Génie Chimique (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Génie Chimique (LGC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre de recherche sur l'intégration économique et financière (CRIEF), Université de Poitiers-Université de Poitiers, ANR-10-LABEX-0042-AMADEUS, Universit?? de Bordeaux, Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut de Chimie du CNRS (INC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut de Chimie du CNRS (INC)-Institut des Sciences Chimiques de Rennes (ISCR), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA)
- Subjects
Renewable feedstock ,General Chemical Engineering ,Iodide ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Differential scanning calorimetry ,Environmental Chemistry ,Moiety ,Organic chemistry ,Aza-Michael addition ,Alkyl ,chemistry.chemical_classification ,Acrylate ,010405 organic chemistry ,Renewable Energy, Sustainability and the Environment ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Mesophase ,General Chemistry ,0104 chemical sciences ,chemistry ,Smectic-A mesophase ,Ionic liquid ,Biodegradable ,Ionic liquid crystals ,Imidazolium-based ionic liquids ,Vegetable oils ,Methyl iodide - Abstract
International audience; The need to take into account the life cycle of ionic liquids (ILs), from the sourcing of the raw materials involved in their synthesis to their disposal and degradation, has become paramount in the design of new IL-type molecular structures. In the case of 1-alkyl-3-methylimidazolium salts, one of the prominent IL families, there is an increasing demand for synthetic methods involving (i) the substitution of the petro-based alkyl derivatives by readily available bio-sourced surrogates, and (ii) the functionalization of the alkyl tail with hetero-functional groups enabling the (bio)degradation of the IL after use. Herein, a straightforward and industrially viable synthesis of lipidic imidazolium salts is reported, starting from different bio-sourced fatty alcohols, including oleic, stearyl and lauryl alcohols. The procedure is based on the acrylation of the fatty alcohol, followed by the aza-Michael addition of the imidazole group onto the acrylate moiety. Subsequent quaternization, using either methyl iodide or methyl tosylate, provides a library of 1-alkylpropionate-3-methylimidazolium salts with various alkyl chain length (C18, C12, C11) and incorporating different types of counter-anions (iodate, tosylate, tetrafluoroborate). These ester-containing analogs of classical 1-alkyl-3-methylimidazolium salts are all ILs, i.e., with a melting point below 100 °C. In addition, most of them exhibit a liquid crystal behavior and can be referred to as ionic liquid crystals (ILCs). The thermal stability, as well as the phase transitions of these ILs, have been investigated by thermogravimetric analysis and differential scanning calorimetry, respectively, while the molecular structure into the crystalline phase and the mesophase is studied by X-ray scattering. Interestingly, ILCs featuring unsaturated alkyl tails exhibit a low melting point, close to room temperature and the presence of the ester function is shown to provide an enhanced stabilization of the mesophase.
- Published
- 2021
16. Direct and selective access to amino-poly(phenylene vinylenes)s with switchable properties by dimerizing polymerization of aminoaryl carbenes
- Author
-
Daniel Taton, Karinne Miqueu, Jean-Marc Sotiropoulos, Quentin Sobczak, Aravindu Kunche, Joan Vignolle, Damien Magis, Yannick Landais, Eric Cloutet, Daiann Sosa Carrizo, Cyril Brochon, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, ANR-19-CE06-0015,CARBENOPOL,Plateformes Polymères Modulaires par Synthèse Macromoléculaire Impliquant la Polymérisation de Bis-carbènes Comme Briques de Base(2019), and ANR-10-LABX-0042,AMADEus,Advanced Materials by Design(2010)
- Subjects
Double bond ,Polymers ,Science ,General Physics and Astronomy ,Protonation ,010402 general chemistry ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,chemistry.chemical_compound ,Phenylene ,Singlet state ,chemistry.chemical_classification ,Multidisciplinary ,010405 organic chemistry ,Aryl ,General Chemistry ,Combinatorial chemistry ,0104 chemical sciences ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Polymer synthesis ,Piperidine - Abstract
Despite the ubiquity of singlet carbenes in chemistry, their utility as true monomeric building blocks for the synthesis of functional organic polymers has been underexplored. In this work, we exploit the capability of purposely designed mono- and bis-acyclic amino(aryl)carbenes to selectively dimerize as a general strategy to access diaminoalkenes and hitherto unknown amino-containing poly(p-phenylene vinylene)s (N-PPV’s). The unique selectivity of the dimerization of singlet amino(aryl)carbenes, relative to putative C-H insertion pathways, is rationalized by DFT calculations. Of particular interest, unlike classical PPV’s, the presence of amino groups in α-position of C=C double bonds in N-PPV’s allows their physico-chemical properties to be manipulated in different ways by a simple protonation reaction. Hence, depending on the nature of the amino group (iPr2N vs. piperidine), either a complete loss of conjugation or a blue-shift of the maximum of absorption is observed, as a result of the protonation at different sites (nitrogen vs. carbon). Overall, this study highlights that singlet bis-amino(aryl)carbenes hold great promise to access functional polymeric materials with switchable properties, through a proper selection of their substitution pattern., Despite the ubiquity of singlet carbenes in chemistry, their utility as true monomeric building blocks for the synthesis of functional organic polymers has been underexplored. Here the authors show mono- and bis-acyclic amino(aryl)carbenes selectively dimerize to form diaminoalkenes and hitherto unknown amino-containing poly(p-phenylene vinylene)s.
- Published
- 2021
17. Benzoic Acid as an Efficient Organocatalyst for the Statistical Ring-Opening Copolymerization of ε-Caprolactone and <scp>L</scp>-Lactide: A Computational Investigation
- Author
-
Haritz Sardon, Daniel Taton, Coralie Jehanno, Fernando Ruipérez, Olivier Coulembier, Leila Mezzasalma, University of Mons [Belgium] (UMONS), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos (POLYMAT), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institute of Physics, Stockholm University-Albanova University Center, Center of innovation and research in materials and polymers (CIRMAP), and Laboratory of polymeric and composite materials
- Subjects
Polymers and Plastics ,Organic Chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Ring (chemistry) ,01 natural sciences ,0104 chemical sciences ,3. Good health ,Inorganic Chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymer chemistry ,Materials Chemistry ,Copolymer ,L lactide ,0210 nano-technology ,Caprolactone ,ComputingMilieux_MISCELLANEOUS ,Benzoic acid - Abstract
Statistical copolymers of l-lactide (L-LA) and e-caprolactone (CL) are of major interest as a result of the desired combination of properties they exhibit for high-added-value applications, includi...
- Published
- 2019
18. C–C couplings in water by micellar catalysis at low loadings from a recyclable polymer-supported Pd(<scp>ii</scp>)–NHC nanocatalyst
- Author
-
Joan Vignolle, Anne-Laure Wirotius, Romain Lambert, and Daniel Taton
- Subjects
Polymers and Plastics ,Chemistry ,Organic Chemistry ,Substrate (chemistry) ,Bioengineering ,Chain transfer ,02 engineering and technology ,Raft ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,Catalysis ,chemistry.chemical_compound ,Polymerization ,Amphiphile ,Polymer chemistry ,Copolymer ,0210 nano-technology ,Carbene - Abstract
A specifically devised amphiphilic star-like polymer-supported Pd(II)–NHC2 unit (NHC = N-heterocyclic carbene) enables highly efficient micellar catalysis in pure water. An amphiphilic block copolymer carrying benzimidazolium moieties randomly distributed along the hydrophobic block is precisely synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Addition of Pd(OAc)2 followed by nanoprecipitation in water drives the metal–ligand coordination core-crosslinking reaction and the segregation of Pd–NHC2 units in the hydrophobic core to form robust polymeric micelles. This approach confers multiple advantages to both the Suzuki–Miyaura and Heck cross-coupling reactions, including robustness, almost no metal leaching, low catalyst loadings (0.1 mol% rel. to the substrate), easy recycling, very broad substrate scope and exceptionally high catalytic activity in water.
- Published
- 2019
19. Synthetic strategies to access linear and branched amphiphilic copolymers based on polystyrene and poly(ethylene oxide)
- Author
-
Yves Gnanou and Daniel Taton
- Subjects
chemistry.chemical_compound ,Materials science ,Chemical engineering ,chemistry ,Oxide ,Polystyrene ,Poly ethylene ,Amphiphilic copolymer - Published
- 2020
20. Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s
- Author
-
Daniel Taton, Jeffrey C. Foster, Yujie Xie, Spyridon Varlas, Andrew P. Dove, Sètuhn Jimaja, Rachel K. O'Reilly, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and University of Birmingham [Birmingham]
- Subjects
Materials science ,Polymers and Plastics ,Aryl ,Isocyanide ,Organic Chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Combinatorial chemistry ,0104 chemical sciences ,Catalysis ,Nanomaterials ,Inorganic Chemistry ,chemistry.chemical_compound ,Nickel ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Materials Chemistry ,Coordination polymerization ,Nanomedicine ,Self-assembly ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
The interest in helix-containing nanostructures is currently growing as a consequence of their potential applications in areas such as nanomedicine, nanomaterial design, chiral recognition, and asymmetric catalysis. Herein, we present a facile and tunable one-pot methodology to achieve chiral nano-objects. The nickel-catalyzed coordination polymerization-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers was realized and allowed access to various nano-object morphologies (spheres, worm-like micelles, and polymersomes). The helicity of the core block was confirmed via circular dichroism (CD) spectroscopy for all morphologies, proving their chiral nature. Small-molecule uptake by the spherical nanoparticles was investigated by encapsulating Nile Red into the core of the spheres and subsequent transfer into aqueous media. The presence of a CD signal for the otherwise CD-inactive dye proved the chiral induction effect of the nano-objects' helical core. This demonstrates the potential of NiCCo-PISA to prepare nanoparticles for applications in nanomaterials, catalysis, and recognition.
- Published
- 2020
21. N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 1: Triisobutylaluminum as an efficient controlling agent
- Author
-
Junpeng Zhao, Qilei Song, Guangzhao Zhang, Stéphane Carlotti, Daniel Taton, Frédéric Peruch, South China University of Technology [Guangzhou] (SCUT), Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Polymers and Plastics ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Ring-opening polymerization ,Catalysis ,chemistry.chemical_compound ,Nucleophile ,Polymer chemistry ,Materials Chemistry ,Propylene oxide ,Lewis acids and bases ,bicomponent catalyst ,Organic Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,substituted epoxides ,block copolymers ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,0210 nano-technology ,anionic ring-opening polymerization ,Carbene ,N-heterocyclic carbene - Abstract
International audience; Ring-opening polymerization (ROP) of propylene oxide (PO) is achieved at 25 °C either in bulk or in solution, using N-heterocyclic carbenes (NHCs) and triisobutylaluminum (i-Bu3Al) as a bicomponent catalytic system. Transfer to monomer was not observed and poly(propylene oxide)s with predictable molar masses up to 60 000 g·mol−1 and low dispersities were obtained. In presence/absence of an alcohol as the initiator, the polymerization of PO follows anionic or zwitterionic ROP mechanisms, respectively. The addition of the Lewis acid strongly improves the efficiency of NHCs for the polymerization of substituted epoxides. It is established that i-Bu3Al is involved both in the formation of an initiating/propagating complex of moderate basicity/nucleophilicity and in the coordination of PO, enabling the activation of the monomer towards the complexed nucleophilic active species. Block copolyethers are also prepared by PPO chain extension experiments. All (co)polyethers were thoroughly characterized by 1H NMR spectroscopy, SEC and MALDI-TOF mass spectrometry as means to prove the control and benefit of this NHC approach for epoxides ROP.
- Published
- 2020
22. N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 2: Toward dihydroxytelechelic polyethers using triethylborane
- Author
-
Qilei Song, Guangzhao Zhang, Frédéric Peruch, Stéphane Carlotti, Junpeng Zhao, Daniel Taton, South China University of Technology [Guangzhou] (SCUT), Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Molar mass ,Polymers and Plastics ,Organic Chemistry ,Triethylborane ,Dispersity ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ring-opening polymerization ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Polymer chemistry ,Materials Chemistry ,Propylene oxide ,Lewis acids and bases ,0210 nano-technology ,Carbene - Abstract
International audience; Propylene oxide (PO) is polymerized by metal-free ring-opening 11 polymerization (ROP) at 25 °C using N-heterocyclic carbenes (NHCs) and 12 triethylborane (Et 3 B) as a bicomponent catalytic system. Poly(propylene oxide)s with 13 predictable molar mass up to 60 000 g.mol-1 and low dispersity (Ð < 1.10) were 14 obtained without the occurrence of undesirable transfer reaction to the monomer. In 15 presence of an alcohol as the initiator, the ROP of PO follows an anionic mechanism 16 assisted by monomer activation improving the efficiency of NHCs for the 17 polymerization of substituted epoxides. Et 3 B is involved both in the formation of a 18 complexed active center and in the activation of PO. Interestingly, 19 dihydroxytelechelic PPOs can be readily synthesized not only using 1,4-20 benzenedimethanol but also water, both serving as difunctional initiators. Block
- Published
- 2020
23. Isoselective Ring-Opening Polymerization of rac-Lactide from Chiral Takemoto’s Organocatalysts: Elucidation of Stereocontrol
- Author
-
Olivier Coulembier, Beste Orhan, Anne-Laure Wirotius, Daniel Taton, Mathieu Jean-Luc Joseph Tschan, Andrew P. Dove, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), University of Birmingham [Birmingham], Laboratoire de Chimie des Matériaux et Polymères (SMPC), and Université de Mons-Hainaut
- Subjects
Lactide ,Polymers and Plastics ,Stereochemistry ,Organic Chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ring-opening polymerization ,0104 chemical sciences ,Kinetic resolution ,Inorganic Chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Organocatalysis ,Tacticity ,Materials Chemistry ,Epimer ,Stereoselectivity ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Despite significant advances in organocatalysis, stereoselective polymerization reactions utilizing chiral organocatalysts have received very little attention, and much about the underlying mechanisms remains unknown. Here, we report that both commercially available (R,R)- and (S,S)-enantiomers of chiral thiourea-amine Takemoto’s organocatalysts promote efficient control and high isoselectivity at room temperature of the ring-opening polymerization (ROP) of racemic lactide by kinetic resolution, yielding highly isotactic, semicrystalline and metal-free polylactide (PLA). Kinetic investigations and combined analyses of the resulting PLAs have allowed the stereocontrol mechanism, which eventually involves both enantiomorphic site control and chain-end control, to be determined. Moreover, epimerization of rac-LA to meso-LA is identified as being responsible for the introduction of some stereoerrors during the ROP process.
- Published
- 2018
24. Partially Biosourced Poly(1,2,3-triazolium)-Based Diblock Copolymers Derived from Levulinic Acid
- Author
-
Karim Aissou, Anatoli Serghei, Eric Drockenmuller, Daniel Taton, Imen Miladi, Amira Kallel Elloumi, Hatem Ben Romdhane, Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Laboratoire de Chimie Organique Structurale et Macromoléculaire (LR99ES14), Université de Tunis El Manar (UTM), Ingénierie des Matériaux Polymères - Laboratoire des Matériaux Polymères et des Biomatériaux (IMP-LMPB), Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut de Chimie du CNRS (INC), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des polymères organiques (LCPO), Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), MIT, Dept Mat Sci & Engn, Cambridge, Massachusetts Institute of Technology (MIT), and Université Tunis El Manar (UTM)
- Subjects
TRANSFER RAFT POLYMERIZATION ,Polymers and Plastics ,SOLID ELECTROLYTES ,02 engineering and technology ,TRIBLOCK COPOLYMERS ,010402 general chemistry ,ANION-EXCHANGE MEMBRANES ,01 natural sciences ,Styrene ,Inorganic Chemistry ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Levulinic acid ,Copolymer ,[CHIM]Chemical Sciences ,Reversible addition−fragmentation chain-transfer polymerization ,Imide ,ComputingMilieux_MISCELLANEOUS ,POLYMERIZED IONIC LIQUID ,Acrylate ,MEDIATED RADICAL POLYMERIZATION ,Organic Chemistry ,Chain transfer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,POLY(IONIC LIQUID)S ,SENSITIZED SOLAR-CELLS ,0210 nano-technology ,VINYL LEVULINATE - Abstract
International audience; Partially biobased poly(1,2,3-triazolium)s are synthesized by reversible additionfragmentation chain transfer (RAFT) polymerization of tailor-made 1,2,3-triazole-functionalized (meth)acrylate monomers derived from levulinic acid, followed by N-alkylation of the 1,2,3-triazole moieties by methyl iodide (CH3I) and subsequent anion exchange with lithium bis(trifluoromethylsulfonyl)imide (LiTFSI). Chain extension of a 1,2,3-triazole-functionalized polymethacrylate by RAFT polymerization of styrene followed by N-alkylation with CH3I and anion exchange with LiTFSI affords two poly(1,2,3-triazole)- and two poly(1,2,3-triazolium)-based diblock copolymers (BCPs) with different weight fractions of each block. Discussion of the structure/properties relationships of all obtained materials is based on NMR spectroscopy, size exclusion chromatography, differential scanning calorimetry, thermogravimetric analysis, and broadband dielectric spectroscopy. The morphological and self-assembling properties of neutral and charged BCPs in bulk and in thin films are investigated by small-angle X-ray scattering and atomic force microscopy experiments, respectively.
- Published
- 2018
25. Alcohol- and Water-Tolerant Living Anionic Polymerization of Aziridines
- Author
-
Frederik R. Wurm, Elisabeth Rieger, Daniel Taton, Camille Bakkali-Hassani, Stéphane Carlotti, Denis Andrienko, Manfred Wagner, Lei Liu, Tassilo Gleede, Max-Planck-Institut für Polymerforschung (MPI-P), Max-Planck-Gesellschaft, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
chemistry.chemical_classification ,Polymers and Plastics ,Chemistry ,Organic Chemistry ,Alcohol ,02 engineering and technology ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Anionic addition polymerization ,Nucleophile ,Polymerization ,Tosyl ,Polymer chemistry ,Materials Chemistry ,Living polymerization ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Living anionic polymerization - Abstract
Living anionic polymerization gives access to well-defined polymers, but it demands strict purification of reagents and solvents. This work presents the azaanionic polymerization (AAROP) of aziridines as a robust living polymerization technique, with the ease of controlled radical polymerizations. AAROP does not require inert atmosphere and remains living in the presence of large amounts of water or alcohols. Mesyl-, tosyl-, or brosyl-activated aziridines were polymerized with up to 100-fold excess of a protic impurity with respect to the initiator and still being active for chain extension. This allowed the preparation of polyols by anionic polymerization without protective groups, as only minor initiation occurred from the alcohols. The tolerance toward protic additives lies in the electron-withdrawing effect of the activating groups, decreasing the basicity of the propagating species, while maintaining a strong nucleophilic character. In this way, competing alcohols and water are only slightly involved...
- Published
- 2018
26. Benzoic acid-organocatalyzed ring-opening (co)polymerization (ORO(c)P) of <scp>l</scp>-lactide and ε-caprolactone under solvent-free conditions: from simplicity to recyclability
- Author
-
Olivier Coulembier, Julien De Winter, Daniel Taton, Leila Mezzasalma, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Mass Spectrometry Research Group, Université de Mons (UMons), Laboratoire de Chimie des Matériaux et Polymères (SMPC), and Université de Mons-Hainaut
- Subjects
02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Pollution ,0104 chemical sciences ,Catalysis ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Monomer ,chemistry ,Polymerization ,Polymer chemistry ,Copolymer ,Environmental Chemistry ,Sublimation (phase transition) ,0210 nano-technology ,Bifunctional ,Caprolactone ,ComputingMilieux_MISCELLANEOUS ,Benzoic acid - Abstract
The development of sustainable synthetic approaches to biodegradable and biocompatible polymeric materials represents a key challenge in polymer chemistry. A novel solvent-free and organocatalyzed ring-opening (co)polymerization (ORO(c)P) method utilizing benzoic acid(BA) as simple thermostable carboxylic acid-type catalyst is proposed to not only produce structurally well-defined aliphatic homopolyesters derived from L-lactide (L-LA) and e-caprolactone (CL), but also and, unexpectedly, statistical copolyesters based on the two monomer units. RO(c)P reactions were conducted in bulk in a temperature range of 155–180 °C, in presence of alcohols as initiators. A triblock copolymer, namely, PLLA-b-PCL-b-PLLA, was also synthesized, attesting to the “controlled/living” character of this BA-OROP process. A bifunctional mechanism is proposed to operate, involving activation of both the monomer and the propagating hydroxyl by H-bonding. Very importantly, the BA organocatalyst could be readily recycled by simple sublimation and could be reused in further organocatalytic cycles.
- Published
- 2018
27. Extending the Scope of Benign and Thermally Stable Organocatalysts: Application of Dibenzoylmethane for the Bulk Copolymerization of <scp>l</scp> -Lactide and ɛ-Caprolactone
- Author
-
Daniel Taton, Julien De Winter, Olivier Coulembier, and Leila Mezzasalma
- Subjects
Lactide ,Polymers and Plastics ,Dibenzoylmethane ,Scope (project management) ,Organic Chemistry ,ɛ caprolactone ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Catalysis ,Polyester ,chemistry.chemical_compound ,chemistry ,Organocatalysis ,Polymer chemistry ,Materials Chemistry ,Copolymer ,0210 nano-technology - Published
- 2017
28. Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment
- Author
-
Girum Ayalneh Tiruye, Rebeca Marcilla, Nagaraj Patil, Luca Porcarelli, Fatima Nadia Ajjan, David Mecerreyes, Erica Zeglio, Niclas Solin, Olle Inganäs, Gillem Rocasalbas, Konrad Grygiel, Cristophe Detrembleur, Jiayin Yuan, Mónica Moreno, Martina Ambrogi, Christine Jérôme, Markus Antonietti, Mehmet Isik, Giordano Vendramientto, Daniela Cordella, Ana M. Fernandes, and Daniel Taton
- Subjects
Materials science ,Polymers and Plastics ,Nanotechnology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Energy storage ,12. Responsible consumption ,chemistry.chemical_compound ,Dry water ,Materials Chemistry ,Organic chemistry ,chemistry.chemical_classification ,Conductive polymer ,Supercapacitor ,Organic Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Polyelectrolyte ,0104 chemical sciences ,chemistry ,13. Climate action ,Ionic liquid ,0210 nano-technology - Abstract
This paper presents the work carried out within the European project RENAISSANCE-ITN, which was dedicated to the development of innovative polyelectrolytes for energy and environmental applications. Within the project different types of innovative polyelectrolytes were synthesized such as poly(ionic liquid)s coming from renewable or natural ions, thiazolium cations, catechol functionalities or from a new generation of cheap deep eutectic monomers. Further, macromolecular architectures such as new poly(ionic liquid) block copolymers and new (semi)conducting polymer/polyelectrolyte complexes were also developed. As the final goal, the application of these innovative polymers in energy and the environment was investigated. Important advances in energy storage technologies included the development of new carbonaceous materials, new lignin/conducting polymer biopolymer electrodes, new iongels and single-ion conducting polymer electrolytes for supercapacitors and batteries and new poly(ionic liquid) binders for batteries. On the other hand, the use of innovative polyelectrolytes in sustainable environmental technologies led to the development of new liquid and dry water, new materials for water cleaning technologies such as flocculants, oil absorbers, new recyclable organocatalyst platforms and new multifunctional polymer coatings with antifouling and antimicrobial properties. All in all this paper demonstrates the potential of poly(ionic liquid)s for high-value applications in energy and enviromental areas. © 2017 Society of Chemical Industry
- Published
- 2017
29. Synthesis of self-healable waterborne isocyanate-free poly(hydroxyurethane)-based supramolecular networks by ionic interactions
- Author
-
Lourdes Irusta, Haritz Sardon, Robert H. Aguirresarobe, Jaime Martín, Amaury Bossion, Ion Olazabal, Daniel Taton, Sara Marina, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos (POLYMAT), and Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU)
- Subjects
Adipic acid ,Polymers and Plastics ,Organic Chemistry ,Supramolecular chemistry ,Ionic bonding ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Isocyanate ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Chemical engineering ,Dicarbonate ,0210 nano-technology ,Citric acid ,Phase inversion ,ComputingMilieux_MISCELLANEOUS - Abstract
A novel synthetic strategy to isocyanate-free supramolecular polyhydroxyurethanes based on ionic interactions is described. Water-dispersible non-isocyanate polyhydroxyurethanes (WPHUs) dispersions were first prepared from aminoalkyl-terminated poly(dimethylsiloxane), diglycerol dicarbonate and a 8-membered cyclic carbonate (bis-N-8-C) via phase inversion polymerization. Taking advantage of the tertiary amino-groups present in bis-N-8-C, which acted as an internal emulsifier in presence of acetic acid, WPHUs dispersions could thus be achieved. After optimizing the internal surfactant concentration, namely at 30 mol% of bis-N-8-C, stable waterborne PHU dispersions with particle size around 200 nm were obtained. Supramolecular PHU assemblies based on ionic interactions were generated by mixing carboxylic acids of different functionalities, including adipic acid or citric acid, with the optimal dispersion, in absence of any organic solvents. This simple post-chemical modification step enabled to improve the film properties. Formation of the supramolecular network was evidenced by FTIR and 1H NMR spectroscopies. Use of citric acid was found to greatly improve the mechanical properties of the resulting films, as characterized by a transition solid/liquid, which varied from 60 °C. Supramolecular interactions impart healing abilities to the films, as determined by optical microscopy. Altogether, this study demonstrates for the first time the potential of combining water-dispersible non-isocyanate polyhydroxyurethanes with simple carboxylic acid-containing reagents, providing a straightforward and sustainable approach to novel reprocessable PHU-type materials.
- Published
- 2019
30. Opportunities for organocatalysis in polymer synthesis via step-growth methods
- Author
-
Haritz Sardon, Nicolas Zivic, Katherine V. Heifferon, James L. Hedrick, Amaury Bossion, Daniel Taton, Timothy Edward Long, Leire Meabe, European Commission, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 1 LCPO : Polymerization Catalyses & Engineering, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos (POLYMAT), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Polymers and Plastics ,Large array ,polyurethanes ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,step-growth ,01 natural sciences ,Materials Chemistry ,organocatalysis ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Organic Chemistry ,Surfaces and Interfaces ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Step-growth polymerization ,Polyester ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,chemistry ,Organocatalysis ,Ceramics and Composites ,0210 nano-technology - Abstract
Organocatalysis has emerged as an invaluable tool for polymer synthesis and has already demonstrated versatility for replacing organometallic catalysts in many polymerization reactions. The overall ease of removal and lower toxicity of organocatalysts relative to their common metal counterparts has also nurtured development especially in chain growth polymerizations to achieve precision macromolecular architectures for application in the biomedical space. The application of organocatalysts in step-growth polymerizations of polymers, including polyesters, polycarbonates, and polyurethanes, has garnered fewer studies in spite of the large array of benefits that could be achieved. Step-growth polymers account for nearly 20 wt. % of the Word Plastic Production and play a vital role in many technologies as engineering plastics and high performance polymeric materials with outstanding thermomechanical performance. Step-growth polymerizations are achieved using monomers with a diversity of chemical functionality. Consequently, a vast array of polymeric structures are attainable and will impact diverse applications in energy, aerospace, medicine, transportation, and construction. This review article will highlight the recent advances in organocatalysis in step growth polymerizations. We will primarily focus our review on the synthesis of commercially important polyesters and polyurethanes using organocatalysis, however, the review will also emphasize recent literature describing less explored polymers, such as polyethers, polycarbonates, and polybenzoins, which have recently employed organocatalysts. Moreover, the article will draw attention to recent efforts in the use of carbon dioxide as a monomer for the preparation of step-growth polymers in the presence of organocatalysis. The authors thank the European Commission for its financial support through the projects SUSPOL-EJD 642671. Haritz Sardon gratefully acknowledges financial support from MINECO through project MAT2017-83373-R.
- Published
- 2019
31. Self-catalysed folding of single chain nanoparticles (SCNPs) by NHC-mediated intramolecular benzoin condensation
- Author
-
Rachel K. O'Reilly, Sofiem Garmendia, Daniel Taton, Andrew P. Dove, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and University of Birmingham [Birmingham]
- Subjects
Polymers and Plastics ,Organic Chemistry ,Bioengineering ,Chain transfer ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,3. Good health ,0104 chemical sciences ,Catalysis ,Benzaldehyde ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Benzyl alcohol ,Intramolecular force ,Polymer chemistry ,Vinyl acetate ,Copolymer ,[CHIM]Chemical Sciences ,Benzoin condensation ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
A self-catalysed folding strategy to form single chain nanoparticles (SCNPs) was developed via an intramolecular N-heterocyclic carbene (NHC)-mediated benzoin condensation. Benzaldehyde, styrene and benzimidazolium chloride units were randomly incorporated into a poly(ionic liquid)-based (PIL) copolymer precursor by reversible addition–fragmentation chain transfer (RAFT) copolymerisation. Post-chemical modification of this linear precursor by insertion of a non-innocent acetate counter-anion into the benzimidazolium moieties conferred thermolatent catalytic behaviour owing to the equilibrium between benzimidazolium acetate units and corresponding NHC ones. Upon heating, catalytically active NHCs allowed the formation of benzoin-type intramolecular cross-links, thus folding linear chains into SCNPs. NHC moieties became deactivated after cooling to room temperature, which enabled easy isolation and purification of the covalently and intramolecularly cross-linked SCNPs. Importantly, the latent NHC moieties were proven to retain their catalytic activity when arranged into SCNPs as evidenced through their reactivation by simple heating. The catalytic activity of these SCNPs was further confirmed by implementing another NHC-organocatalysed reaction, namely, transesterification reaction between vinyl acetate and benzyl alcohol. This work represents the first example of catalysis by a parent linear precursor which drives its own folding and remains catalytically active.
- Published
- 2019
32. Catalytically Active N ‐Heterocyclic Carbene Release from Single‐Chain Nanoparticles Following a Thermolysis‐Driven Unfolding Strategy
- Author
-
Rachel K. O'Reilly, Andrew P. Dove, Stefan B. Lawrenson, Sofiem Garmendia, Maria C. Arno, Daniel Taton, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and University of Birmingham [Birmingham]
- Subjects
Silver ,Polymers and Plastics ,Metalation ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Heterocyclic Compounds ,Materials Chemistry ,Copolymer ,Benzoin condensation ,ComputingMilieux_MISCELLANEOUS ,Molecular Structure ,Chemistry ,Organic Chemistry ,Temperature ,Nuclear magnetic resonance spectroscopy ,021001 nanoscience & nanotechnology ,Combinatorial chemistry ,0104 chemical sciences ,Cross-Linking Reagents ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Organocatalysis ,Nanoparticles ,0210 nano-technology ,Methane ,Carbene ,Macromolecule - Abstract
The need for efficient, tailor-made catalysts has inspired chemists to design synthetic macromolecular architectures for selective catalysis. To this purpose, herein the synthesis and in-depth characterization of Ag(I)-crosslinked single-chain nanoparticles (SCNPs) is reported and their application as catalysts is demonstrated. Specifically, a copolymer of styrenic benzimidazolium chloride is synthesized as a linear precursor via reversible addition-fragmentation chain-transfer polymerization. Metalation of the benzimidazolium moieties by Ag(I) resulted in the intramolecular cross-linking of single chains via the formation of silver-N-heterocyclic carbene (Ag-NHC) linkages under dilute conditions. The successful formation of well-defined, robust SCNPs is evidenced by size-exclusion chromatography, dynamic light scattering, nuclear magnetic resonance spectroscopy, and transmission electron microscopy. Finally, it is demonstrated that the Ag-SCNPs can be used as NHC pre-catalysts, by first indirectly evidencing the formation of the corresponding unfolded NHC-CS2 polybetaine and then organocatalysing a benzoin condensation reaction.
- Published
- 2019
33. Bulk Organocatalytic Synthetic Access to Statistical Copolyesters from l-Lactide and ε-Caprolactone Using Benzoic Acid
- Author
-
Olivier Coulembier, Simon Harrisson, Saad Saba, Pascal Loyer, Leila Mezzasalma, Daniel Taton, University of Mons [Belgium] (UMONS), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 1 LCPO : Polymerization Catalyses & Engineering, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Interactions moléculaires et réactivité chimique et photochimique (IMRCP), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), P3R - Polymères de Précision par Procédés Radicalaires (P3R), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT), Nutrition, Métabolismes et Cancer (NuMeCan), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM), Fonds De La Recherche Scientifique - FNRS, European Commission, Institut National de la Santé et de la Recherche Médicale, European Regional Development Fund, Belgian Federal Science Policy Office, European Project: 642671,H2020,H2020-MSCA-ITN-2014,SUSPOL(2015), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Polymers and Plastics ,Polyesters ,Diol ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Catalysis ,Polymerization ,Biomaterials ,Dioxanes ,chemistry.chemical_compound ,Lactones ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Reactivity (chemistry) ,organocatalysis ,bulk ,Caproates ,Benzoic acid ,statistical copolymers ,caprolactone ,Lactide ,Molar mass ,Benzoic Acid ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,copolymerization ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,lactide ,0210 nano-technology ,Caprolactone - Abstract
International audience; The development of synthetic strategies to produce statistical copolymers based on l-lactide (l-LA) and ε-caprolactone (CL), denoted as P(LA- stat-CL), remains highly challenging in polymer chemistry. This is due to the differing reactivity of the two monomers during their ring-opening copolymerization (ROcP). Yet, P(LA- stat-CL) materials are highly sought after as they combine the properties of both polylactide (PLA) and poly(ε-caprolactone) (PCL). Here, benzoic acid (BA), a naturally occurring, cheap, readily recyclable, and thermally stable weak acid, is shown to trigger the organocatalyzed ring-opening copolymerization (OROcP) of l-LA and CL under solvent-free conditions at 155 °C, in presence of various alcohols as initiators, with good control over molar masses and dispersities (1.11 < Đ < 1.35) of the resulting copolyesters. Various compositions can be achieved, and the formation of statistical compounds is shown through characterization by H, C, and diffusion ordered spectroscopy NMR spectroscopies and by differential scanning calorimetry, as well as through the determination of reactivity ratios ( r = 0.86, r = 0.86), using the visualization of the sum of squared residuals space method. Furthermore, this BA-OROcP process can be exploited to access metal-free PLA- b-P(LA- stat-CL)- b-PLA triblock copolymers, using a diol as an initiator. Finally, residual traces of BA remaining in P(LA- stat-CL) copolymers (
- Published
- 2019
34. Hyperbranched polyesters by polycondensation of fatty acid-based ABn-type monomers
- Author
-
Daniel Taton, Didier Pintori, Etienne Grau, Henri Cramail, Blandine Testud, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut des Corps Gras (ITERG), ITERG, Team 2 LCPO : Biopolymers & Bio-sourced Polymers, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Team 1 LCPO : Polymerization Catalyses & Engineering
- Subjects
Condensation polymer ,Double bond ,FOS: Physical sciences ,02 engineering and technology ,Applied Physics (physics.app-ph) ,Condensed Matter - Soft Condensed Matter ,010402 general chemistry ,Branching (polymer chemistry) ,01 natural sciences ,Sodium methoxide ,chemistry.chemical_compound ,Polymer chemistry ,Environmental Chemistry ,[CHIM]Chemical Sciences ,polyester ,chemistry.chemical_classification ,bio-sourced ,Physics - Applied Physics ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Pollution ,0104 chemical sciences ,3. Good health ,Polyester ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,HyperBranched polymers ,Soft Condensed Matter (cond-mat.soft) ,0210 nano-technology ,Glass transition - Abstract
Widely available vegetable oils were readily derivatized into chemically pure ABn-type monomers (n = 2 or 3). Their polymerization led to unprecedented hyperbranched polyesters. Four different AB2/AB3-type monomers bearing one A-type methyl ester and two or three B-type alcohol functions were purposely synthesized via two elementary steps, i.e. epoxidation of the internal double bond of the vegetable oil precursors followed by ring-opening of the epoxy groups under acidic conditions. The polycondensation of these bio-sourced monomers was performed in bulk, in the presence of an appropriate catalyst, giving access to modular hyperbranched polyesters with tunable properties. Among the catalysts tested, zinc acetate, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and sodium methoxide proved the most effective, allowing the achievement of molar masses in the range 3000--10 000 g mol--1 and dispersities varying from 2 to 15, depending on the initial conditions. The degree of branching, DB, as determined by 1H NMR spectroscopy, was found to be between 0.07 and 0.45. The as-devised hyperbranched polyesters displayed either amorphous or semi-crystalline properties, as a function of the selected AB2/AB3-type initial monomers, with a glass transition temperature, Tg, ranging from --33 to 9 {\textdegree}C and a decomposition temperature at 5 wt% of the sample, Td5%, varying from 204 to 340 {\textdegree}C., Comment: http://lcpo.fr/index.php/research-teams/2-biopolymers-and-bio-sourced-polymers, http://lcpo.fr/index.php/research-teams/1-polymerization-catalyses-and-engineering
- Published
- 2019
- Full Text
- View/download PDF
35. The organocatalytic ring-opening polymerization of N-tosyl aziridines by an N-heterocyclic carbene
- Author
-
Daniel Taton, Frederik R. Wurm, Camille Bakkali-Hassani, Joan Vignolle, Stéphane Carlotti, Elisabeth Rieger, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Polymerforschung (MPI-P), Max-Planck-Gesellschaft, Team 1 LCPO : Polymerization Catalyses & Engineering, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), French Ministry of Education and Research, European Union’s Horizon 2020 research and innovation programme, MSCA-ITN action, SUSPOL project, grant agreement no 642671, European Project: 642671,H2020,H2020-MSCA-ITN-2014,SUSPOL(2015), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Stereochemistry ,CATALYSTS ,MONOMERS ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Ring-opening polymerization ,Catalysis ,LIVING ANIONIC-POLYMERIZATION ,chemistry.chemical_compound ,Tosyl ,Polymer chemistry ,Materials Chemistry ,Copolymer ,POLYESTERS ,COPOLYMERIZATION ,Living anionic polymerization ,EPSILON-CAPROLACTONE ,Metals and Alloys ,PROTON-TRANSFER POLYMERIZATION ,General Chemistry ,Aziridine ,021001 nanoscience & nanotechnology ,POLYAMINES ,3. Good health ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Ceramics and Composites ,POLYMERS ,STABLE CARBENES ,0210 nano-technology ,Carbene ,Isopropyl - Abstract
International audience; The ring-opening polymerization of N-tosyl aziridines, in the presence of 1,3-bis(isopropyl)-4,5(dimethyflimidazol-2-ylidene as an organocatalyst and an N-tosyl secondary amine as initiator mimicking the growing chain, provides the first metal-free route to well defined poly(aziridine)s (PAz) and related PAz-based block copolymers.
- Published
- 2016
36. Direct one-pot synthesis of poly(ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media
- Author
-
Daniel Taton, Daniela Cordella, Mathilde Weiss-Maurin, Christophe Detrembleur, Christine Jérôme, Univ Liege, Dept Chem, CERM, Université de Liège-CERM, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Kinetic chain length ,Polymers and Plastics ,Ethyl acetate ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,MOLECULAR-SIZE DISTRIBUTION ,chemistry.chemical_compound ,LIVING COPOLYMERIZATION ,Bromide ,Polymer chemistry ,Copolymer ,Vinyl acetate ,POLY(VINYL ACETATE) ,DRUG-DELIVERY ,VINYL-ACETATE ,Aqueous solution ,Organic Chemistry ,RAFT POLYMERIZATION ,THERMOSENSITIVE NANOGELS ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,BLOCK-COPOLYMERS ,[CHIM.POLY]Chemical Sciences/Polymers ,Monomer ,chemistry ,Ionic liquid ,CLICK CHEMISTRY ,FUNCTIONAL MATERIALS ,0210 nano-technology - Abstract
International audience; Nanogels of controlled kinetic chain length were synthesized by cobalt-mediated radical cross-linking copolymerization (CMRccP) involving a vinyl monomer and a divinyl cross-linker. This strategy was first validated to achieve neutral poly(vinyl acetate) nanogels by CMRccP of vinyl acetate and divinyl adipate as a cross-linker at 40 degrees C in the presence of an alkyl-cobalt(III) serving both as an initiator and a controlling agent using ethyl acetate as a solvent. Poly(ionic liquid) nanogels were then directly obtained by CMRccP of N-vinyl-3-ethyl imidazolium bromide in the presence of 1,13-divinyl-3-decyl diimidazolium bromide as a cross-linker. CMRccP experiments could be conducted either in an organic solvent using dimethyl formamide or, more interestingly, in aqueous solution, demonstrating the robustness and versatility of this one-step process. Chain extensions of PIL nanogels were also carried out in water, forming core-shell structures, thus opening new avenues in the design of functional nanogels.
- Published
- 2016
37. Metal-free Polyether Synthesis by Organocatalyzed Ring-opening Polymerization
- Author
-
Daniel Taton
- Subjects
chemistry.chemical_classification ,chemistry.chemical_compound ,Monomer ,Materials science ,chemistry ,Polymerization ,Metal free ,Polymer chemistry ,Copolymer ,Polymer ,Ring-opening polymerization - Abstract
Given the importance of polyether-based materials and related copolymers in industrial applications, the present chapter focuses on recent synthetic efforts on such polymers by ring-opening (co)polymerization of epoxide-containing monomers with the aid of an organocatalyst. The chapter is organized by discussing in priority the main families of organocatalysts employed for metal-free (co)polyether and polyepoxide synthesis. Representative organocatalysts are discussed for each family, both through seminal works and more recent developments. The main monomer substrates and structure of the as-prepared copolyethers are presented, and underlying polymerization mechanisms are highlighted.
- Published
- 2018
38. Reversible ionically-crosslinked single chain nanoparticles as bioinspired and recyclable nanoreactors for N -heterocyclic carbene organocatalysis
- Author
-
Rachel K. O'Reilly, Sofiem Garmendia, Daniel Taton, Andrew P. Dove, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 1 LCPO : Polymerization Catalyses & Engineering, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of Birmingham [Birmingham], The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 642671, project 'SUSPOL-EJD'., European Project: 642671,H2020,H2020-MSCA-ITN-2014,SUSPOL(2015), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Polymers and Plastics ,Organic Chemistry ,Bioengineering ,Chain transfer ,02 engineering and technology ,Nanoreactor ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Combinatorial chemistry ,0104 chemical sciences ,chemistry.chemical_compound ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Benzoin ,Organocatalysis ,Amphiphile ,Ionic liquid ,Salt metathesis reaction ,[CHIM]Chemical Sciences ,0210 nano-technology - Abstract
International audience; The intrinsic advantages of poly(ionic liquid)s (PILs), based on their high chemical activity and flexible structure, have been harnessed by exploring their applicability as catalytic single chain nanoparticles (SCNPs). A non-covalent bioinspired approach has been established to ionically crosslink an imidazolium-based poly(ionic liquid) to form folded SCNPs. An amphiphilic styrenic-type coPIL was synthesized by reversible addition fragmentation chain transfer (RAFT) to include hydrophilic stabilizer units, hydrophobic spacers and two antagonist functionalities randomly distributed through the polymer backbone. The antagonist functionalities were then intramolecularly and ionically crosslinked using a simple anion metathesis reaction, which resulted in folding to form the SCNPs under mild conditions. The folding process enabled the protection of the N-heterocyclic carbene (NHC) functionality, through the benzoate–imidazolium interaction between antagonist monomer units. Upon the application of heat, free NHCs could be generated within the confined SCNPs, which could be further utilized in benzoin catalysis. Most importantly, the reversible nature of the crosslinking and reversible generation of the active functionality allowed for the utilization of the SCNPs as a recyclable catalytic support.
- Published
- 2018
39. Poly(arylene vinylene) Synthesis via a Precursor Step-Growth Polymerization Route Involving the Ramberg–Bäcklund Reaction as a Key Post-Chemical Modification Step
- Author
-
Georges Hadziioannou, Yannick Landais, Kunche Aravindu, Daniel Taton, Frédéric Robert, Cyril Brochon, Joan Vignolle, Eric Cloutet, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des polymères organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Team 1 LCPO : Polymerization Catalyses & Engineering
- Subjects
Polymers and Plastics ,02 engineering and technology ,Fluorene ,Conjugated system ,010402 general chemistry ,01 natural sciences ,Step-growth polymerization ,Inorganic Chemistry ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Copolymer ,chemistry.chemical_classification ,Ramberg–Bäcklund reaction ,Ramberg-Bäcklund reaction ,Organic Chemistry ,Arylene ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,π-Conjugated polymers ,Poly(fluorene vinylene-co-carbazole vinylene) ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Poly(fluorene vinylene) ,0210 nano-technology - Abstract
International audience; The synthesis of conjugated copolymers based on poly(fluorene vinylene) [PFV] and poly(fluorene vinylene-co-carbazole vinylene) [PFVCV] was achieved via a previously unexplored precursor three-step synthetic route involving the Ramberg-Bäcklund reaction. The resulting -conjugated (co)polymers proved highly soluble in common organic solvents, such as DCM, THF, or CHCl3. The solution step-growth polymerization between 2,7-bis(bromomethyl)-9,9'-dihexyl-9H-fluorene [F-Br] and 2,7-bis(mercaptomethyl)-9,9'-dihexyl-9H-fluorene [F-SH] was carried out under basic conditions at 100 °C in a mixture of MeOH and THF. The resulting polysulfides were then subjected to an oxidation reaction using m-CPBA, which was followed by the Ramberg-Bäcklund reaction in the presence of CF2Br2/Al2O3-KOH, thus achieving the desired PFV. Similarly, PFVCV could be synthesized through the same three-step sequence employing, in this case, 2,7-bis(mercaptomethyl)-9-(tridecan-7-yl)-9H-carbazole (C-SH) and F-Br. Conjugated polymers with apparent molecular weights up to 15 kg.mol-1 and exhibiting promising optical features were obtained following this convenient synthetic strategy.
- Published
- 2018
40. Unexpected Synthesis of Segmented Poly(hydroxyurea−urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis
- Author
-
Daniel Taton, Etienne Grau, Henri Cramail, David Mecerreyes, Alejandro J. Müller, Amaury Bossion, Haritz Sardon, Lourdes Irusta, Guoming Liu, Roberto Hernández Aguirresarobe, Cui Su, European Commission, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos (POLYMAT), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Team 2 LCPO : Biopolymers & Bio-sourced Polymers, and University of Chinese Academy of Sciences [Beijing] (UCAS)
- Subjects
Polymers and Plastics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Inorganic Chemistry ,chemistry.chemical_compound ,Diamine ,Polymer chemistry ,Materials Chemistry ,organocatalysis ,Dicarbonate ,Polyurethane ,chemistry.chemical_classification ,Organic Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,polyurethane ,Organocatalysis ,Urea ,0210 nano-technology ,Ethylene glycol ,polyurea - Abstract
A complete study of the effect of different organocatalysts on the step-growth polyaddition of a five-membered dicyclic carbonate, namely diglycerol dicarbonate, with a poly(ethylene glycol)-based diamine in bulk at 120 °C was first carried out. The reaction was found to be dramatically catalyst-dependent, higher rates being observed in the presence of strong bases, such as phosphazenes (t-Bu-P4 or P4) and 5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). Unexpectedly, the as-formed urethane linkages entirely vanished with time, as evidenced by FTIR and 13C NMR spectroscopies, while signals due to urea bond formation progressively appeared. An advantage of the chemical transformation occurring from urethane to urea linkages was further taken by optimizing the polymerization conditions to access a range of poly(hydroxyurea−urethane)s (PHUUs) with precise urethane to urea ratio in a one-pot process. Characterization of the corresponding polymers by rheological measurements showed that the storage modulus reached a plateau at high temperatures and at high urea contents. The application temperature range of poly(hydroxyurea−urethane)s could thus be increased from 30 to 140 °C, as for regular polyurethanes. Furthermore, SAXS and phase-contrast microscopy images demonstrated that increasing the urea content improved the phase separation between soft and hard segments of these PHUUs. Altogether, this novel, straightforward, efficient, and environmentally friendly strategy enables the access to non-isocyanate poly(urea−urethane)s with tunable urethane-to-urea ratio from five-membered dicyclic carbonates following an organocatalytic pathway The authors thank the European Commission for its financial support through the projects SUSPOL-EJD 642671, Renaissance-ITN 289347, and OrgBIO-ITN 607896. Haritz Sardon gratefully acknowledges financial support from MINECO through project SUSPOL and FDI 16507. A. J. Müller, G. Liu, and H. Sardon also acknowledge European funding by the RISE BIODEST project (H2020-MSCA-RISE-2017-778092). G. Liu is grateful to the support from the Youth Innovation Promotion Association of CAS (2015026).
- Published
- 2018
41. Selective Initiation from Unprotected Aminoalcohols for the N -Heterocyclic Carbene-Organocatalyzed Ring-Opening Polymerization of 2-Methyl- N- tosyl Aziridine: Telechelic and Block Copolymer Synthesis
- Author
-
Tassilo Gleede, Clément Coutouly, Frederik R. Wurm, Daniel Taton, Joan Vignolle, Camille Bakkali-Hassani, Stéphane Carlotti, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Max-Planck-Institut für Polymerforschung (MPI-P), and Max-Planck-Gesellschaft
- Subjects
Diethanolamine ,Polymers and Plastics ,Organic Chemistry ,02 engineering and technology ,Aziridine ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ring-opening polymerization ,0104 chemical sciences ,Inorganic Chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Tosyl ,Polymerization ,Polymer chemistry ,Materials Chemistry ,Copolymer ,[CHIM]Chemical Sciences ,0210 nano-technology ,Tetrahydrofuran ,Isopropyl ,ComputingMilieux_MISCELLANEOUS - Abstract
Commercial aminoalcohols, namely, 2-(methyl amino)ethanol (1) and diethanolamine (2), are investigated as direct initiators, i.e., with no need of protection of the hydroxyl groups, for the N-heterocyclic carbene-organocatalyzed ring-opening polymerization (NHC-OROP) of 2-methyl-N-p-toluenesulfonyl aziridine. NHC-OROP’s are performed at 50 °C in tetrahydrofuran, in the presence of 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene (Me5-IPr) as organocatalyst. Thus, nonprotected and nonactivated aminoalcohol initiators 1 and 2 provide a direct access to metal-free α-hydroxy-ω-amino- and α,α′-bis-hydroxy-ω-amino telechelics on the basis of polyaziridine (PAz), respectively. Excellent control over molar masses, narrow dispersities (Đ ≤ 1.20), and high chain-end fidelity are evidenced by combined analyses, including NMR spectroscopy, size exclusion chromatography, and MALDI ToF mass spectrometry. The amino-initiated NHC-OROP is therefore tolerant to the presence of nonprotected hydroxyl group(s). The as-obtai...
- Published
- 2018
42. Facile Synthesis of Reversibly Crosslinked Poly(ionic liquid)-type Gels: Recyclable Supports for Organocatalysis by N-Heterocyclic Carbenes
- Author
-
Daniel Taton, Sofiem Garmendia, Romain Lambert, Andrew P. Dove, Rachel K. O'Reilly, Anne-Laure Wirotius, Joan Vignolle, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry [University of Warwick], University of Warwick [Coventry], School of Chemistry University of Birmingham, University of Birmingham [Birmingham], Team 1 LCPO : Polymerization Catalyses & Engineering, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 642671, project 'SUSPOL-EJD'., European Project: 642671,H2020,H2020-MSCA-ITN-2014,SUSPOL(2015), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Polymers and Plastics ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Catalysis ,Styrene ,chemistry.chemical_compound ,Polymer chemistry ,N-Heterocyclic carbene ,Materials Chemistry ,Copolymer ,Benzoin condensation ,Poly(ionic liquid) ,Chemistry ,Organocatalysis ,Organic Chemistry ,Masked-carbene ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Reagent ,Ionic liquid ,0210 nano-technology ,Carbene - Abstract
International audience; Owing to their broad modularity, polymeric versions of ionic liquids, referred to as poly(ionic liquids) (PILs), have attracted increasing attention as recyclable polymer-supported (pre)catalysts for various chemical transformations. Herein, an imidazolium-based statistical copolymer based on PIL (=coPIL) is specifically designed by free-radical copolymerization of styrene and 4-vinylbenzylethyl(benz)imidazolium chloride. A selective ion-exchange reaction can be subsequently achieved to incorporate bio-sourced difunctional sebacate-type counter-anions, causing the physical crosslinking of the coPIL precursor via electrostatic interactions between pendant imidazolium moieties and sebacate dianions. The as-obtained gel-type precursor exhibits a thermally latent behavior in THF, proving advantageous for a facile manipulation and practical use for organocatalysis. Upon heating, typically at 80 °C, interaction between the sebacate dianion and the proton in C2-position of the imidazolium moieties generates polymer-supported N-heterocyclic carbene units that act as catalytic active species towards NHC-organocatalyzed reactions, namely, benzoin condensation, transesterification and cyanosilylation. The PIL-based gel precursors can be restored, recycled and reused by simply cooling down, i.e. with no need of an external chemical reagent, due to the shift of the intramolecular equilibrium towards the formation of imidazolium sebacate-type units. Overall, this novel gel-type copolymeric platform shows a thermo-responsive behaviour, and proves particularly versatile for heterogeneous organocatalysis.
- Published
- 2018
43. Pd( ii )–NHC coordination-driven formation of water-soluble catalytically active single chain nanoparticles
- Author
-
Daniel Taton, Joan Vignolle, Romain Lambert, Pierre Berto, Sofiem Garmendia, Anne-Laure Wirotius, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Polymers and Plastics ,Ethylene oxide ,Ligand ,Organic Chemistry ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,Styrene ,Catalysis ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Suzuki reaction ,chemistry ,Intramolecular force ,Polymer chemistry ,Copolymer ,0210 nano-technology ,Carbene ,ComputingMilieux_MISCELLANEOUS - Abstract
A well-defined linear statistical copolymer precursor, made of styrene, grafted poly(ethylene oxide) and benzimidazolium chloride units serving as N-heterocyclic carbene (NHC) ligand precursors, is designed by random RAFT copolymerization. Intramolecular coordination forming Pd(II)–NHC2 crosslinks yields single chain nanoparticles (SCNPs). The formation of SCNPs is achieved by the insertion of Pd(OAc)2 into diluted solution, which is monitored by combined analyses, including NMR, SEC, DLS and TEM. When used for the Suzuki coupling in water, the catalytic activity of these Pd(II)–NHC2-containing SCNPs is greatly improved relative to Pd(OAc)2 as a benchmark molecular catalyst. When compared to a molecular catalyst of Pd–NHC2-type, i.e. with a structure similar to that of the SCNP-supported catalytic units, the conversion to a reaction product is again higher, owing to a beneficial SCNP effect, although an increase in catalytic efficiency is not spectacular.
- Published
- 2018
44. All Poly(ionic liquid)-Based Block Copolymers by Sequential Controlled Radical Copolymerization of Vinylimidazolium Monomers
- Author
-
Daniel Taton, Daniela Cordella, Anthony Kermagoret, David Mecerreyes, Christophe Detrembleur, Mehmet Isik, Christine Jérôme, Antoine Debuigne, Univ Liege, Dept Chem, CERM, Université de Liège-CERM, Univ Basque Country UPV EHU, Joxe Mari Korta Ctr, POLYMAT, Univ Basque Country, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Polymers and Plastics ,Radical polymerization ,Ethyl acetate ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,METATHESIS ,Inorganic Chemistry ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Vinyl acetate ,Reversible addition−fragmentation chain-transfer polymerization ,CONDUCTIVITY ,VINYL-ACETATE ,Alkyl ,chemistry.chemical_classification ,FRAGMENTATION CHAIN TRANSFER ,POLYMERIZED IONIC LIQUIDS ,ELECTROLYTES ,Organic Chemistry ,RAFT POLYMERIZATION ,PERFORMANCE ,021001 nanoscience & nanotechnology ,ANION-EXCHANGE ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Monomer ,chemistry ,Ionic liquid ,SEPARATION ,0210 nano-technology - Abstract
International audience; The organometallic-mediated radical polymerization (OMRP) of N-vinyl-3-alkylimidazolium-type monomers, featuring the bis(trifluoromethylsulfonyl)imide counter-anion (Tf2N-) in the presence of Co(acac)(2) as controlling agent, is reported. Polymerizations of monomers with methyl, ethyl, and butyl substituents are fast, reaching high monomer conversion in ethyl acetate as solvent at 30 degrees C, and afford structurally well-defined hydrophobic poly(ionic liquid)s (PILs) of N-vinyl type. Block copolymer synthesis is also achieved by sequential OMRP of N-vinyl-3-alkyldazolium salts carrying different alkyl chains and different counteranions (Tf2N- or Br-). These block copolymerizations are carried out at 30 degrees C, either under homogeneous solution in methanol or in a biphasic medium consisting of a mixture of ethyl acetate and water. Unprecedented PIL-b-PIL block copolymers are thus prepared under these conditions. However, anion exchange occurs at the early stage of the growth of the second block. Finally, diblock copolymers generated in the biphasic medium can be readily coupled by addition of isoprene, forming all PIL-based and symmetrical ABA-type triblock copolymers in a one-pot process. Such a direct block copolymerization method, involving vinylimidazolium monomers bearing different alkyl chains, thus opens new opportunities in the precision synthesis of all PIL-based block copolymers of tunable properties.
- Published
- 2015
45. Special Issue in: Organocatalyzed polymerizations
- Author
-
Andrew P. Dove, Olivier Coulembier, Daniel Taton, Haritz Sardon, Alejandro J. Müller, Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos (POLYMAT), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), University of Warwick [Coventry], Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Center of innovation and research in materials and polymers (CIRMAP), and Laboratory of polymeric and composite materials
- Subjects
[CHIM.POLY]Chemical Sciences/Polymers ,Polymers and Plastics ,Chemistry ,Organic Chemistry ,Materials Chemistry ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,0104 chemical sciences - Abstract
International audience
- Published
- 2017
46. Expanding the scope of N -heterocyclic carbene-organocatalyzed ring-opening polymerization of N -tosyl aziridines using functional and non-activated amine initiators
- Author
-
Frederik R. Wurm, Joan Vignolle, Camille Bakkali-Hassani, Stéphane Carlotti, Daniel Taton, Elisabeth Rieger, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Max-Planck-Institut für Polymerforschung (MPI-P), and Max-Planck-Gesellschaft
- Subjects
Sulfonyl ,chemistry.chemical_classification ,Polymers and Plastics ,Alkene ,Organic Chemistry ,General Physics and Astronomy ,02 engineering and technology ,Aziridine ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ring-opening polymerization ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Tosyl ,Polymer chemistry ,Trimethylsilyl azide ,Materials Chemistry ,Amine gas treating ,0210 nano-technology ,Isopropyl ,ComputingMilieux_MISCELLANEOUS - Abstract
Polyaziridines (PAz) were synthesized for the first time by the 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene-organocatalyzed ring-opening polymerization (OROP) of 2-alkyl- N - p -toluenesulfonyl aziridine (alkyl = methyl or phenyl), in the presence of both functional activated amine and non-functional non-activated amine initiators. Thus, not only an allyl-functionalized N -sulfonyl amine could serve as initiator, but also trimethylsilyl azide allowed introducing an allyl and an azido functionality in α-position of PAz chains, respectively. A non-activated and commercially available secondary amine, such as di- n -butylamine, also effectively initiated the OROP of N -tosylaziridines. Excellent control over molar masses, high chain-end fidelity and narrow dispersities ( Ð ≤ 1.20) were achieved, as attested by NMR spectroscopy, size exclusion chromatography and MALDI ToF mass spectrometry. PAz precursors consisting of the alkene or the azido functionality could further be derivatized, highlighting the accessibility of those functional groups. Overall, this N -heterocyclic carbene-OROP methodology offers a metal-free route to well-defined α-functionalized PAz.
- Published
- 2017
47. Fluorinated Poly(ionic liquid) Diblock Copolymers Obtained by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly
- Author
-
Abdelhafid Aqil, Farid Ouhib, Eric Drockenmuller, Daniela Cordella, Thomas Defize, Christine Jérôme, Anatoli Serghei, Daniel Taton, Karim Aissou, Christophe Detrembleur, Center for Education and Research on Macromolecules - CERM [Liège, Belgium], CESAM RU [Liège, Belgium]-Université de Liège, Centre d'Etude et de Recherche sur les Macromolécules (CERM), Université de Liège, CERM, Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon
- Subjects
Materials science ,Polymers and Plastics ,Organic Chemistry ,Radical polymerization ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Polyelectrolyte ,0104 chemical sciences ,Inorganic Chemistry ,chemistry.chemical_compound ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Cobalt-mediated radical polymerization ,Polymer chemistry ,Ionic liquid ,Materials Chemistry ,Copolymer ,Ionic conductivity ,Self-assembly ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Poly(ionic liquid)s (PILs) have attracted considerable attention as innovative single-ion solid polyelectrolytes (SPEs) in substitution to the more conventional electrolytes for a variety of electrochemical devices. Herein, we report the precise synthesis, characterization, and use as single-ion SPEs of a novel double PIL-based amphiphilic diblock copolymer (BCP), i.e., where all monomer units are of N-vinyl-imidazolium type, with triethylene glycol pendant groups in the first block and a statistical distribution of N-vinyl-3-ethyl- and N-vinyl-3-perfluorooctyl-imidazolium bromides in the second block. BCP synthesis is achieved directly in water by a one-pot process, by cobalt-mediated radical polymerization-induced self-assembly (CMR-PISA). A subsequent anion exchange reaction substituting bis(trifluoromethylsulfonyl)imide (Tf2N–) for bromide (Br–) counter-anions leads to PIL BCPs with two different lengths of the first block. They demonstrate ionic conductivity σDC = 1–3 × 10–7 S cm–1, as determined by ...
- Published
- 2017
48. Non-Isocyanate Polyurethane Soft Nanoparticles Obtained by Surfactant-Assisted Interfacial Polymerization
- Author
-
James L. Hedrick, Daniel Taton, Zhan Yuin Ong, Yi Yan Yang, Gavin O. Jones, Haritz Sardon, Amaury Bossion, David Mecerreyes, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Univ Basque Country UPV EHU, Joxe Mari Korta Ctr, POLYMAT, Univ Basque Country, IBM Almaden Research Center [San Jose], IBM, Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos (POLYMAT), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), and European Commission
- Subjects
Materials science ,polyurethanes ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,nanogels ,Polymer chemistry ,Electrochemistry ,General Materials Science ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Polyurethane ,isocyanate free ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Interfacial polymerization ,Isocyanate ,0104 chemical sciences ,Miniemulsion ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Drug delivery ,0210 nano-technology - Abstract
Polyurethanes (PUs) are considered ideal candidates for drug delivery applications due to their easy synthesis, excellent mechanical properties, and biodegradability. Unfortunately, methods for preparing well-defined PU nanoparticles required miniemulsion polymerization techniques with a nontrivial control of the polymerization conditions due to the inherent incompatibility of isocyanate-containing monomers and water. In this work, we report the preparation of soft PU nanoparticles in a one-pot process using interfacial polymerization that employs a non-isocyanate polymerization route that minimizes side reactions with water. Activated pentafluorophenyl dicarbonates were polymerized with diamines and/or triamines by interfacial polymerization in the presence of an anionic emulsifier, which afforded non-isocyanate polyurethane (NIPU) nanoparticles with sizes in the range of 200–300 nm. Notably, 5 wt % of emulsifier was required in combination with a trifunctional amine to achieve stable PU dispersions and avoid particle aggregation. The versatility of this polymerization process allows for incorporation of functional groups into the PU nanoparticles, such as carboxylic acids, which can encapsulate the chemotherapeutic doxorubicin through ionic interactions. Altogether, this waterborne synthetic method for functionalized NIPU soft nanoparticles holds great promise for the preparation of drug delivery nanocarriers. The authors thank the European Commission for their financial support through the project SUSPOL-EJD 642671 and the Gobierno Vasco/Eusko Jaurlaritza (IT 999-16). Haritz Sardon gratefully acknowledges financial support from MINECO through project SUSPOL and FDI 16507. Yi Yan Yang gratefully acknowledges financial support from the Institute of Bioengineering and Nanotechnology (Biomedical Research Council and Joint Council Office, Agency for Science, Technology and Research, Singapore).
- Published
- 2017
49. Intramolecular Quaternization as Folding Strategy for the Synthesis of Catalytically Active Imidazolium-Based Single Chain Nanoparticles
- Author
-
Anne-Laure Wirotius, Romain Lambert, Daniel Taton, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 1 LCPO : Polymerization Catalyses & Engineering, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Polymers and Plastics ,Intramolecular reaction ,Comonomer ,Organic Chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Metathesis ,01 natural sciences ,0104 chemical sciences ,Styrene ,Inorganic Chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Intramolecular force ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Reversible addition−fragmentation chain-transfer polymerization ,Benzoin condensation ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
A novel synthetic strategy to single chain nanoparticles (SCNP) based on a previously unexplored intramolecular reaction as a means to autonomously fold a parent copolymer precursor is reported. The latter is a statistical styrenic-type copolymer synthesized by RAFT polymerization and is composed of four different comonomer units, including styrene, grafted poly(ethylene oxide) chains, and antagonist benzimidazol- and chlorobenzyl-based units. The two latter functions are reacted together by a quaternization reaction to spark the folding process, creating imidazolium-based cross-link points. Formation of SCNP with a hydrodynamic diameter
- Published
- 2017
50. Organic Lewis Pairs Based on Phosphine and Electrophilic Silane for the Direct and Controlled Polymerization of Methyl Methacrylate: Experimental and Theoretical Investigations
- Author
-
Frédéric Robert, Winnie Nzahou Ottou, Yannick Landais, Damien Bourichon, Anne-Laure Wirotius, Joan Vignolle, Egoitz Conde-Mendizabal, Karinne Miqueu, Daniel Taton, Jean-Marc Sotiropoulos, Ana Pascual, Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Caractérisation Physique Off-line (LCPO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-BS08-0011,CATAPULT,POLYMERISATIONS ORGANOCATALYSEES PAR LES CARBENES : VERS UNE PLATEFORME CATALYTIQUE MULTI-TACHE(2011), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Université Montesquieu - Bordeaux 4-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Pau et des Pays de l'Adour (UPPA)
- Subjects
Sulfonyl ,chemistry.chemical_classification ,Polymers and Plastics ,Trimethylsilyl ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Organic Chemistry ,MESH: Phosphine, Silane, Lewis Pair, Metal-free polymerization, Methyl methacrylate, Density Functional Theory ,010402 general chemistry ,01 natural sciences ,Frustrated Lewis pair ,0104 chemical sciences ,Inorganic Chemistry ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry.chemical_compound ,chemistry ,Polymerization ,Polymer chemistry ,Materials Chemistry ,[CHIM]Chemical Sciences ,Phosphonium ,Lewis acids and bases ,Methyl methacrylate ,Phosphine - Abstract
International audience; Fully organic Lewis pairs, combining a phosphine such as tri-n-butylphosphine (PnBu3), tritert-butylphosphine (PtBu3) or tris(2,4,6-trimethoxyphenyl) phosphine (TTMPP) as a Lewis base, and N-(trimethylsilyl)bis(trifluoromethane sulfonyl)imide (Me3SiNTf2) as a Lewis acid, are shown to directly initiate the polymerization of methyl methacrylate (MMA) at room temperature in toluene. A dual reaction mechanism involving an optimal TTMPP:Me3SiNTf2 ratio of 1:2 accounts for the control of the polymerization. Molar masses of poly(methyl methacrylate)’s (PMMA’s) can be varied by the initial [MMA]0/[TTMPP]0 molar ratio. Chain extension experiments confirm that a majority of chains of a TTMPP/Me3SiNTf2-derived PMMA can be reactivated. Both density functional theory (DFT) calculations and stoichiometric studies reveal that TTMPP and Me3SiNTf2 form a P-silyl phosphonium intermediate that is in equilibrium with the corresponding frustrated Lewis pair (FLP). This FLP could correspond to the active form of the initiation step. Both computational and experimental data support the existence of a cooperative mechanism during the TTMPP/Me3SiNTf2 Lewis pair-mediated polymerization of MMA.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.