101 results on '"Daniel Taillandier"'
Search Results
2. Muscle wasting in patients with end‐stage renal disease or early‐stage lung cancer: common mechanisms at work
- Author
-
Julien Aniort, Alexandre Stella, Carole Philipponnet, Anais Poyet, Cécile Polge, Agnès Claustre, Lydie Combaret, Daniel Béchet, Didier Attaix, Stéphane Boisgard, Marc Filaire, Eugénio Rosset, Odile Burlet‐Schiltz, Anne‐Elisabeth Heng, and Daniel Taillandier
- Subjects
Proteomics ,Skeletal muscle ,Proteasome ,Autophagy ,Renal failure ,Cancer ,Diseases of the musculoskeletal system ,RC925-935 ,Human anatomy ,QM1-695 - Abstract
Abstract Background Loss of muscle mass worsens many diseases such as cancer and renal failure, contributes to the frailty syndrome, and is associated with an increased risk of death. Studies conducted on animal models have revealed the preponderant role of muscle proteolysis and in particular the activation of the ubiquitin proteasome system (UPS). Studies conducted in humans remain scarce, especially within renal deficiency. Whether a shared atrophying programme exists independently of the nature of the disease remains to be established. The aim of this work was to identify common modifications at the transcriptomic level or the proteomic level in atrophying skeletal muscles from cancer and renal failure patients. Methods Muscle biopsies were performed during scheduled interventions in early‐stage (no treatment and no detectable muscle loss) lung cancer (LC), chronic haemodialysis (HD), or healthy (CT) patients (n = 7 per group; 86% male; 69.6 ± 11.4, 67.9 ± 8.6, and 70.2 ± 7.9 years P > 0.9 for the CT, LC, and HD groups, respectively). Gene expression of members of the UPS, autophagy, and apoptotic systems was measured by quantitative real‐time PCR. A global analysis of the soluble muscle proteome was conducted by shotgun proteomics for investigating the processes altered. Results We found an increased expression of several UPS and autophagy‐related enzymes in both LC and HD patients. The E3 ligases MuRF1 (+56 to 78%, P 1700 proteins, and principal component analysis revealed three differential proteomes that matched to the three groups of patients. Orthogonal partial least square discriminant analysis created a model, which distinguished the muscles of diseased patients (LC or HD) from those of CT subjects. Proteins that most contributed to the model were selected. Functional analysis revealed up to 238 proteins belonging to nine metabolic processes (inflammatory response, proteolysis, cytoskeleton organization, glucose metabolism, muscle contraction, oxidant detoxification, energy metabolism, fatty acid metabolism, and extracellular matrix) involved in and/or altered by the atrophying programme in both LC and HD patients. This was confirmed by a co‐expression network analysis. Conclusions We were able to identify highly similar modifications of several metabolic pathways in patients exhibiting diseases with different aetiologies (early‐stage LC vs. long‐term renal failure). This strongly suggests that a common atrophying programme exists independently of the disease in human.
- Published
- 2019
- Full Text
- View/download PDF
3. A muscle‐specific MuRF1‐E2 network requires stabilization of MuRF1‐E2 complexes by telethonin, a newly identified substrate
- Author
-
Cécile Polge, Stéphanie Cabantous, Christiane Deval, Agnès Claustre, Antoine Hauvette, Catherine Bouchenot, Julien Aniort, Daniel Béchet, Lydie Combaret, Didier Attaix, and Daniel Taillandier
- Subjects
E3 ubiquitin ligase ,muscle wasting ,ubiquitin‐conjugating enzyme ,UBE2 ,Tcap ,split‐GFP ,Diseases of the musculoskeletal system ,RC925-935 ,Human anatomy ,QM1-695 - Abstract
Abstract Background Muscle wasting is observed in the course of many diseases and also during physiological conditions (disuse, ageing). Skeletal muscle mass is largely controlled by the ubiquitin‐proteasome system and thus by the ubiquitinating enzymes (E2s and E3s) that target substrates for subsequent degradation. MuRF1 is the only E3 ubiquitin ligase known to target contractile proteins (α‐actin, myosins) during catabolic situations. However, MuRF1 depends on E2 ubiquitin‐conjugating enzymes for ubiquitin chain formation on the substrates. MuRF1‐E2 couples are therefore putative targets for preventing muscle wasting. Methods We focused on 14 E2 enzymes that are either expressed in skeletal muscle or up‐regulated during atrophying conditions. In this work, we demonstrated that only highly sensitive and complementary interactomic approaches (surface plasmon resonance, yeast three‐hybrid, and split green fluorescent protein) allowed the identification of MuRF1 E2 partners. Results Five E2 enzymes physically interacted with MuRF1, namely, E2E1, E2G1, E2J1, E2J2, and E2L3. Moreover, we demonstrated that MuRF1‐E2E1 and MuRF1‐E2J1 interactions are facilitated by telethonin, a newly identified MuRF1 substrate. We next showed that the five identified E2s functionally interacted with MuRF1 since, in contrast to the non‐interacting E2D2, their co‐expression in HEK293T cells with MuRF1 led to increased telethonin degradation. Finally, we showed that telethonin governed the affinity between MuRF1 and E2E1 or E2J1. Conclusions We report here the first MuRF1‐E2s network, which may prove valuable for deciphering the precise mechanisms involved in the atrophying muscle programme and for proposing new therapeutical approaches.
- Published
- 2018
- Full Text
- View/download PDF
4. UBE2L3, a Partner of MuRF1/TRIM63, Is Involved in the Degradation of Myofibrillar Actin and Myosin
- Author
-
Dulce Peris-Moreno, Mélodie Malige, Agnès Claustre, Andrea Armani, Cécile Coudy-Gandilhon, Christiane Deval, Daniel Béchet, Pierre Fafournoux, Marco Sandri, Lydie Combaret, Daniel Taillandier, and Cécile Polge
- Subjects
MuRF1/TRIM63 ,skeletal muscle atrophy ,glucocorticoids ,UBE2L3/UbcH7 ,alpha-actin ,myosin ,Cytology ,QH573-671 - Abstract
The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1–UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.
- Published
- 2021
- Full Text
- View/download PDF
5. Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle Atrophy in the Hibernating Bear
- Author
-
Laura Cussonneau, Christian Boyer, Charlotte Brun, Christiane Deval, Emmanuelle Loizon, Emmanuelle Meugnier, Elise Gueret, Emeric Dubois, Daniel Taillandier, Cécile Polge, Daniel Béchet, Guillemette Gauquelin-Koch, Alina L. Evans, Jon M. Arnemo, Jon E. Swenson, Stéphane Blanc, Chantal Simon, Etienne Lefai, Fabrice Bertile, and Lydie Combaret
- Subjects
brown bear hibernation ,mouse unloading ,muscle atrophy ,physical inactivity ,RNA sequencing ,TGF-β/BMP signaling ,Cytology ,QH573-671 - Abstract
Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-β and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-β- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-β/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-β inhibiting therapies already targeted to prevent muscle atrophy.
- Published
- 2021
- Full Text
- View/download PDF
6. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control
- Author
-
Dulce Peris-Moreno, Laura Cussonneau, Lydie Combaret, Cécile Polge, and Daniel Taillandier
- Subjects
skeletal muscle atrophy ,hypertrophy ,E3 ubiquitin ligase ,MuRF1 ,MAFbx ,anabolism ,Organic chemistry ,QD241-441 - Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
- Published
- 2021
- Full Text
- View/download PDF
7. Erratum: Polge, C., et al. UBE2E1 Is Preferentially Expressed in the Cytoplasm of Slow-Twitch Fibers and Protects Skeletal Muscles from Exacerbated Atrophy upon Dexamethasone Treatment. Cells 2018, 7, 214
- Author
-
Cécile Polge, Julien Aniort, Andrea Armani, Agnès Claustre, Cécile Coudy-Gandilhon, Clara Tournebize, Christiane Deval, Lydie Combaret, Daniel Béchet, Marco Sandri, Didier Attaix, and Daniel Taillandier
- Subjects
n/a ,Cytology ,QH573-671 - Abstract
Change in author names (order). [...]
- Published
- 2018
- Full Text
- View/download PDF
8. Induction of ATF4-Regulated Atrogenes Is Uncoupled from Muscle Atrophy during Disuse in Halofuginone-Treated Mice and in Hibernating Brown Bears
- Author
-
Laura Cussonneau, Cécile Coudy-Gandilhon, Christiane Deval, Ghita Chaouki, Mehdi Djelloul-Mazouz, Yoann Delorme, Julien Hermet, Guillemette Gauquelin-Koch, Cécile Polge, Daniel Taillandier, Julien Averous, Alain Bruhat, Céline Jousse, Isabelle Papet, Fabrice Bertile, Etienne Lefai, Pierre Fafournoux, Anne-Catherine Maurin, Lydie Combaret, Unité de Nutrition Humaine (UNH), and Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA)
- Subjects
muscle atrophy ,[SDV]Life Sciences [q-bio] ,Organic Chemistry ,General Medicine ,hibernating bear ,Catalysis ,Computer Science Applications ,atrogenes ,Inorganic Chemistry ,halofuginone ,TGF-beta/BMP signalling ,unloading ,hindlimb suspension ,skeletal muscle ,ATF4 ,TGF-β/BMP signalling ,Physical and Theoretical Chemistry ,Molecular Biology ,Spectroscopy - Abstract
Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming growth factor-β (TGF-β) signalling, while promoting bone morphogenetic protein (BMP) signalling in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atrogenes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we previously also reported concurrent TGF-β inhibition and BMP activation. Overall, we show that ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate that halofuginone can control the TGF-β/BMP balance towards muscle mass maintenance. Whether halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study opens the way for further studies to identify well-tolerated chemical compounds in humans that are able to fine-tune the TGF-β/BMP balance and could be used to preserve muscle mass during catabolic situations.
- Published
- 2022
9. Muscle Atrophy: From Bench to Bedside
- Author
-
Daniel Taillandier
- Subjects
Inorganic Chemistry ,Organic Chemistry ,General Medicine ,Physical and Theoretical Chemistry ,Molecular Biology ,Spectroscopy ,Catalysis ,Computer Science Applications - Abstract
The loss of muscle mass is a common adaptation to some physiological situations (e [...]
- Published
- 2023
10. Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique
- Author
-
Daniel Taillandier
- Subjects
Biology ,Therapeutic targeting ,Molecular biology ,General Biochemistry, Genetics and Molecular Biology - Abstract
Depuis sa découverte, le Système Ubiquitine Protéasome (UPS) est reconnu pour son rôle majeur dans le contrôle de la plupart des voies métaboliques de la cellule. Outre son rôle primordial dans la dégradation des protéines, il intervient aussi dans l’adressage, la signalisation ou la réparation de l’ADN, ce qui en fait un acteur incontournable de l’homéostasie cellulaire. Bien que d’autres systèmes de contrôles existent dans la cellule, l’UPS est souvent considéré comme le chef d’orchestre. Au vu de son importance, toute dérégulation de l’UPS entraîne des désordres plus ou moins sévères pour la cellule et donc l’organisme. De fait, l’UPS est impliqué dans de nombreuses pathologies (cancer, maladie d’Alzheimer, de Huntington, etc.). L’UPS est composé de plus de 1000 protéines différentes dont les combinaisons permettent le ciblage fin de virtuellement toutes les protéines de l’organisme. L’UPS fait appel à une cascade enzymatique (E1, 2 isoformes ; E2 > 35 isoformes ; E3 > 800 isoformes) qui permet le transfert de l’ubiquitine, une petite protéine de 8,5 kDa, sur la protéine à cibler soit pour sa dégradation, soit pour modifier son activité. Ce signal d’ubiquitinylation est réversible et de nombreuses déubiquitinylases (DUB, ∼ 80 isoformes) jouent aussi un rôle important. Les enzymes E3 sont les plus nombreuses et leur fonction est de reconnaître la protéine cible, ce qui en fait des acteurs importants dans la spécificité d’action de l’UPS. La nature même des E3 et la complexité de leurs interactions avec différents partenaires offrent un champ d’investigation très large et donc des potentialités importantes pour le développement d’approches thérapeutiques. Sans être exhaustive, cette revue illustre les différentes stratégies ayant déjà été mises en œuvre pour lutter contre différentes pathologies (à l’exclusion des infections bactériennes ou virales).
- Published
- 2021
11. A Single Bout of Ultra-Endurance Exercise Reveals Early Signs of Muscle Aging in Master Athletes
- Author
-
Cécile Coudy-Gandilhon, Marine Gueugneau, Christophe Chambon, Daniel Taillandier, Lydie Combaret, Cécile Polge, Guillaume Y. Millet, Léonard Féasson, Daniel Béchet, Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Université Jean Monnet - Saint-Étienne (UJM), Qualité des Produits Animaux (QuaPA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Plateforme Exploration du Métabolisme-Composante Protéomique (PFEM-CP)
- Subjects
Aging ,lipid droplets ,extracellular matrix ,Organic Chemistry ,General Medicine ,Middle Aged ,Catalysis ,Computer Science Applications ,Inorganic Chemistry ,aging ,exercise ,skeletal muscle ,capillaries ,Athletes ,Physical Endurance ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Physical and Theoretical Chemistry ,Muscle, Skeletal ,Molecular Biology ,Exercise ,Spectroscopy - Abstract
International audience; Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.
- Published
- 2022
12. Proteasomes and Ubiquitin
- Author
-
Didier Attaix and Daniel Taillandier
- Published
- 2022
13. UBE2L3, a Partner of MuRF1/TRIM63, Is Involved in the Degradation of Myofibrillar Actin and Myosin
- Author
-
Polge, Dulce Peris-Moreno, Mélodie Malige, Agnès Claustre, Andrea Armani, Cécile Coudy-Gandilhon, Christiane Deval, Daniel Béchet, Pierre Fafournoux, Marco Sandri, Lydie Combaret, Daniel Taillandier, and Cécile
- Subjects
MuRF1/TRIM63 ,skeletal muscle atrophy ,glucocorticoids ,UBE2L3/UbcH7 ,alpha-actin ,myosin ,ubiquitinating enzymes ,contractile proteins ,MicroScale-Thermophoresis ,macromolecular substances - Abstract
The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1–UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.
- Published
- 2021
- Full Text
- View/download PDF
14. [Metabolic pathways controlled by E3 ligases: an opportunity for therapeutic targeting]
- Author
-
Daniel, Taillandier
- Subjects
Proteasome Endopeptidase Complex ,Ubiquitin ,Ubiquitin-Protein Ligases ,Ubiquitination ,Metabolic Networks and Pathways - Abstract
Since its discovery, the Ubiquitin Proteasome System (UPS) has been recognized for its major role in controlling most of the cell's metabolic pathways. In addition to its essential role in the degradation of proteins, it is also involved in the addressing, signaling or repair of DNA, which makes it a key player in cellular homeostasis. Although other control systems exist in the cell, the UPS is often referred to as the conductor. In view of its importance, any dysregulation of the UPS leads to more or less severe disorders for the cell and therefore the body, which accounts for UPS implication in many pathologies (cancer, Alzheimer's disease, Huntington's disease, etc.). UPS is made up of more than 1000 different proteins, the combinations of which allow the fine targeting of virtually all proteins in the body. UPS uses an enzymatic cascade (E1, 2 members; E2 35; E3 800) which allows the transfer of ubiquitin, a small protein of 8.5 kDa onto the protein to be targeted either for its degradation or to modify its activity. This ubiquitinylation signal is reversible and many deubiquitinylases (DUB, ∼ 80 isoforms) also have an important role. E3 enzymes are the most numerous and their function is to recognize the target protein, which makes them important players in the specific action of UPS. The very nature of E3 and the complexity of their interactions with different partners offer a very broad field of investigation and therefore significant potential for the development of therapeutic approaches. Without being exhaustive, this review illustrates the different strategies that have already been implemented to fight against different pathologies (excluding bacterial or viral infections).Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique.Depuis sa découverte, le Système Ubiquitine Protéasome (UPS) est reconnu pour son rôle majeur dans le contrôle de la plupart des voies métaboliques de la cellule. Outre son rôle primordial dans la dégradation des protéines, il intervient aussi dans l’adressage, la signalisation ou la réparation de l’ADN, ce qui en fait un acteur incontournable de l’homéostasie cellulaire. Bien que d’autres systèmes de contrôles existent dans la cellule, l’UPS est souvent considéré comme le chef d’orchestre. Au vu de son importance, toute dérégulation de l’UPS entraîne des désordres plus ou moins sévères pour la cellule et donc l’organisme. De fait, l’UPS est impliqué dans de nombreuses pathologies (cancer, maladie d’Alzheimer, de Huntington, etc.). L’UPS est composé de plus de 1000 protéines différentes dont les combinaisons permettent le ciblage fin de virtuellement toutes les protéines de l’organisme. L’UPS fait appel à une cascade enzymatique (E1, 2 isoformes ; E2 35 isoformes ; E3 800 isoformes) qui permet le transfert de l’ubiquitine, une petite protéine de 8,5 kDa, sur la protéine à cibler soit pour sa dégradation, soit pour modifier son activité. Ce signal d’ubiquitinylation est réversible et de nombreuses déubiquitinylases (DUB, ∼ 80 isoformes) jouent aussi un rôle important. Les enzymes E3 sont les plus nombreuses et leur fonction est de reconnaître la protéine cible, ce qui en fait des acteurs importants dans la spécificité d’action de l’UPS. La nature même des E3 et la complexité de leurs interactions avec différents partenaires offrent un champ d’investigation très large et donc des potentialités importantes pour le développement d’approches thérapeutiques. Sans être exhaustive, cette revue illustre les différentes stratégies ayant déjà été mises en œuvre pour lutter contre différentes pathologies (à l’exclusion des infections bactériennes ou virales).
- Published
- 2021
15. Concurrent BMP signalling maintenance and TGF-β signalling inhibition is a hallmark of natural resistance to muscle atrophy in the hibernating bear
- Author
-
Elise Gueret, Stéphane Blanc, Emmanuelle Meugnier, Etienne Lefai, Cécile Polge, Chantal Simon, Guillemette Gauquelin-Koch, Charlotte Brun, Laura Cussonneau, Alina L. Evans, Fabrice Bertile, Daniel Béchet, Jon M. Arnemo, Christian Boyer, Lydie Combaret, Daniel Taillandier, Christiane Deval, Emmanuelle Loizon, Jon E. Swenson, Emeric Dubois, Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Université Côte d'Azur - Faculté de Médecine (UCA Faculté Médecine), Université Côte d'Azur (UCA), Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Génomique Fonctionnelle (IGF), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle - Montpellier GenomiX (IGF MGX), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), Inland Norway University of Applied Sciences - Høgskolen i Innlandet, Norwegian University of Life Sciences (NMBU), Département Ecologie, Physiologie et Ethologie (DEPE-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Département Sciences Analytiques et Interactions Ioniques et Biomoléculaires (DSA-IPHC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-BioCampus (BCM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Male ,muscle atrophy ,Time Factors ,[SDV]Life Sciences [q-bio] ,Quadriceps Muscle ,Transcriptome ,Mice ,0302 clinical medicine ,Transforming Growth Factor beta ,Hibernation ,Gene Regulatory Networks ,RNA-Seq ,Biology (General) ,mouse unloading ,RNA sequencing ,General Medicine ,TGF-/BMP signaling ,Muscle atrophy ,TGF-β/BMP signaling ,Cell biology ,Muscular Atrophy ,Hindlimb Suspension ,Bone Morphogenetic Proteins ,Female ,medicine.symptom ,brown bear hibernation ,Ursidae ,Signal Transduction ,QH301-705.5 ,Period (gene) ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Bone morphogenetic protein ,Article ,03 medical and health sciences ,Atrophy ,medicine ,Animals ,Gene ,Gene Expression Profiling ,RNA ,medicine.disease ,Mice, Inbred C57BL ,Disease Models, Animal ,030104 developmental biology ,Gene Expression Regulation ,physical inactivity ,030217 neurology & neurosurgery ,Transforming growth factor - Abstract
International audience; Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-β and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-β- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-β/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-β inhibiting therapies already targeted to prevent muscle atrophy.
- Published
- 2021
16. MuRF1/TRIM63, Master Regulator of Muscle Mass
- Author
-
Daniel Taillandier, Cécile Polge, Dulce Peris-Moreno, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), This work was supported by grants from the AFM/Telethon (grant #19521), from the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20e25) and from the Fondation pour la Recherche Médicale (labelling FRM, DEQ20180339180). This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813599., ANR-16-IDEX-0001,CAP 20-25,CAP 20-25(2016), Unité de Nutrition Humaine - Clermont Auvergne (UNH), and Université Clermont Auvergne (UCA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SDV]Life Sciences [q-bio] ,Cardiomyopathy ,Muscle Proteins ,Review ,Bioinformatics ,TRIM E3 ligase ,Muscle hypertrophy ,lcsh:Chemistry ,chronic diseases ,0302 clinical medicine ,MuRF1/TRIM63 ,Wasting ,lcsh:QH301-705.5 ,Spectroscopy ,0303 health sciences ,biology ,General Medicine ,pharmacological inhibitors ,3. Good health ,Ubiquitin ligase ,Computer Science Applications ,Muscular Atrophy ,medicine.anatomical_structure ,contractile proteins ,medicine.symptom ,hypertrophy ,Ubiquitin-Protein Ligases ,heart ,Catalysis ,Sepsis ,Inorganic Chemistry ,03 medical and health sciences ,Atrophy ,atrophy ,Diabetes mellitus ,medicine ,Animals ,Humans ,Physical and Theoretical Chemistry ,skeletal muscle ,Muscle, Skeletal ,Molecular Biology ,030304 developmental biology ,business.industry ,Myocardium ,Organic Chemistry ,Skeletal muscle ,medicine.disease ,lcsh:Biology (General) ,lcsh:QD1-999 ,biology.protein ,business ,cardiomyopathy ,030217 neurology & neurosurgery - Abstract
International audience; The E3 ubiquitin ligase MuRF1/TRIM63 was identified 20 years ago and suspected to play important roles during skeletal muscle atrophy. Since then, numerous studies have been conducted to decipher the roles, molecular mechanisms and regulation of this enzyme. This revealed that MuRF1 is an important player in the skeletal muscle atrophy process occurring during catabolic states, making MuRF1 a prime candidate for pharmacological treatments against muscle wasting. Indeed, muscle wasting is an associated event of several diseases (e.g., cancer, sepsis, diabetes, renal failure, etc.) and negatively impacts the prognosis of patients, which has stimulated the search for MuRF1 inhibitory molecules. However, studies on MuRF1 cardiac functions revealed that MuRF1 is also cardioprotective, revealing a yin and yang role of MuRF1, being detrimental in skeletal muscle and beneficial in the heart. This review discusses data obtained on MuRF1, both in skeletal and cardiac muscles, over the past 20 years, regarding the structure, the regulation, the location and the dierent functions identified, and the first inhibitors reported, and aim to draw the picture of what is known about MuRF1. The review also discusses important MuRF1 characteristics to consider for the design of future drugs to maintain skeletal muscle mass in patients with dierent pathologies.
- Published
- 2020
17. Mitophagy and Mitochondria Biogenesis Are Differentially Induced in Rat Skeletal Muscles during Immobilization and/or Remobilization
- Author
-
Christiane Deval, Cécile Coudy-Gandilhon, Emilie Vazeille, Daniel Taillandier, Didier Attaix, Julie Calonne, Daniel Béchet, Cécile Polge, Lydie Combaret, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Fribourg = University of Fribourg (UNIFR), Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre de Recherche en Nutrition Humaine d'Auvergne (CRNH d'Auvergne)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), CHU Gabriel Montpied [Clermont-Ferrand], CHU Clermont-Ferrand, Institut National de la Recherche Agronomique Association Francaise contre les MyopathiesCentre National de la Recherche Spatiale, University of Fribourg, and Polge, Cécile
- Subjects
Male ,Restraint, Physical ,[SDV.BA] Life Sciences [q-bio]/Animal biology ,Mitochondrion ,Motor Activity ,Catalysis ,Article ,Inorganic Chemistry ,lcsh:Chemistry ,microtubules ,03 medical and health sciences ,recovery ,0302 clinical medicine ,Atrophy ,Mitophagy ,medicine ,Animals ,Physical and Theoretical Chemistry ,Rats, Wistar ,skeletal muscle ,Muscle, Skeletal ,Molecular Biology ,lcsh:QH301-705.5 ,Spectroscopy ,030304 developmental biology ,0303 health sciences ,Chemistry ,[SDV.BA]Life Sciences [q-bio]/Animal biology ,Organic Chemistry ,Autophagy ,Skeletal muscle ,General Medicine ,medicine.disease ,Muscle atrophy ,Computer Science Applications ,Cell biology ,Mitochondria, Muscle ,Rats ,Muscular Atrophy ,medicine.anatomical_structure ,mitophagy ,Mitochondrial biogenesis ,lcsh:Biology (General) ,lcsh:QD1-999 ,immobilization ,physical inactivity ,medicine.symptom ,030217 neurology & neurosurgery ,Biogenesis - Abstract
International audience; Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role of mitophagy that involved Parkin-dependent and/or independent processes during immobilization in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during remobilization in both muscles. This strongly emphasized the need to consider several muscle groups to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide broad and/or specific clues for the development of strategies to maintain muscle mass and improve the health and quality of life of patients.
- Published
- 2020
- Full Text
- View/download PDF
18. A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate
- Author
-
Stéphanie Cabantous, Didier Attaix, Daniel Taillandier, Lydie Combaret, Agnès Claustre, Catherine Bouchenot, Antoine Hauvette, Cécile Polge, Daniel Béchet, Julien Aniort, and Christiane Deval
- Subjects
0301 basic medicine ,chemistry.chemical_classification ,biology ,business.industry ,HEK 293 cells ,Skeletal muscle ,Ubiquitin-conjugating enzyme ,Telethonin ,Ubiquitin ligase ,Cell biology ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,Enzyme ,medicine.anatomical_structure ,chemistry ,Ubiquitin ,030220 oncology & carcinogenesis ,Physiology (medical) ,Myosin ,biology.protein ,Medicine ,Orthopedics and Sports Medicine ,business - Abstract
Muscle wasting is observed in the course of many diseases and also during physiological conditions (disuse, aging). Skeletal muscle mass is largely controlled by the ubiquitin-proteasome system and thus by the ubiquitinating enzymes (E2s and E3s) that target substrates for subsequent degradation. MuRF1 is the only E3 ubiquitin ligase known to target contractile proteins (α-actin, myosins) during catabolic situations. MuRF1 is therefore a putative target for preventing muscle wasting. However, MuRF1 depends on E2 ubiquitin conjugating enzymes for ubiquitin chain formation on the substrates. We focused on 14 E2 enzymes that are either expressed in skeletal muscle or up-regulated during atrophying conditions. In this work, we demonstrated that only highly sensitive and complementary interactomic approaches (Surface Plasmon Resonance, Yeast three-Hybrid and split-GFP) allowed the identification of MuRF1 E2 partners. Five E2 enzymes physically interacted with MuRF1, namely E2E1, E2G1, E2J1, E2J2 and E2L3. Moreover, we demonstrated that MuRF1-E2E1 and MuRF1-E2J1 interactions are facilitated by telethonin, a newly identified MuRF1 substrate. We next showed that the 5 identified E2s functionally interacted with MuRF1 since, in contrast to the non-interacting E2D2, their co-expression in HEK293T cells with MuRF1 led to increased telethonin degradation. Finally, we showed that telethonin governed the affinity between MuRF1 and E2E1 or E2J1.We report here the first MuRF1-E2s network, which may prove valuable for deciphering the precise mechanisms involved in the atrophying muscle program and for proposing new therapeutical approaches.
- Published
- 2017
19. Muscle wasting in patients with end‐stage renal disease or early‐stage lung cancer: common mechanisms at work
- Author
-
Stéphane Boisgard, Cécile Polge, Carole Philipponnet, Lydie Combaret, Julien Aniort, E. Rosset, Daniel Béchet, Odile Burlet-Schiltz, Anne-Elisabeth Heng, Alexandre Stella, A. Poyet, Daniel Taillandier, Didier Attaix, Agnès Claustre, Marc Filaire, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, Institut de pharmacologie et de biologie structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Néphrologie, Centre Hospitalier Universitaire (CHU), Unité de Nutrition Humaine - Clermont Auvergne (UNH), Université Clermont Auvergne (UCA)-Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne (UCA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de nutrition cellulaire et moléculaire, Institut National de la Recherche Agronomique (INRA), Institut de Chimie de Clermont-Ferrand - Clermont Auvergne (ICCF), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Sigma CLERMONT (Sigma CLERMONT), CHU Clermont-Ferrand, Service de Chirurgie vasculaire, Unité de nutrition et métabolisme protéique, Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Service d’Orthopédie Traumatologie [CHU Clermont-Ferrand], CHU Gabriel Montpied [Clermont-Ferrand], CHU Clermont-Ferrand-CHU Clermont-Ferrand, Service de Chirurgie Vasculaire, CHU Clermont-Ferrand, Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Service de Chirurgie Orthopédique et Traumatologique Hôpital Gabriel Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Aniort, Julien, Stella, Alexandre, Philipponnet, Carole, Poyet, Anaïs, Polge, Cécile, Claustre, Agnes, Combaret, Lydie, Béchet, Daniel, Attaix, Didier, Boisgard, Stéphane, Rosset, Eugenio, Burlet-Schiltz, Odile, Heng, Anne-Elisabeth, and Taillandier, Daniel
- Subjects
Male ,Proteomics ,0301 basic medicine ,lcsh:Diseases of the musculoskeletal system ,Lung Neoplasms ,Cytoskeleton organization ,Biopsy ,[SDV]Life Sciences [q-bio] ,Skeletal muscle ,Physiology ,0302 clinical medicine ,Orthopedics and Sports Medicine ,Wasting ,Geriatry and gerontology ,Cancer ,lcsh:Human anatomy ,Middle Aged ,3. Good health ,Muscular Atrophy ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,Female ,Original Article ,medicine.symptom ,Signal Transduction ,Muscle contraction ,Proteasome Endopeptidase Complex ,Renal failure ,Frailty syndrome ,Proteasome ,Autophagy ,Médecine humaine et pathologie ,Hemolysis ,lcsh:QM1-695 ,End stage renal disease ,03 medical and health sciences ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Physiology (medical) ,medicine ,Humans ,Muscle, Skeletal ,Lung cancer ,Aged ,business.industry ,Computational Biology ,Original Articles ,medicine.disease ,030104 developmental biology ,Proteolysis ,Gériatrie et gérontologie ,Kidney Failure, Chronic ,Human health and pathology ,lcsh:RC925-935 ,Energy Metabolism ,business ,Biomarkers ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
International audience; Background Loss of muscle mass worsens many diseases such as cancer and renal failure, contributes to the frailty syndrome , and is associated with an increased risk of death. Studies conducted on animal models have revealed the preponderant role of muscle proteolysis and in particular the activation of the ubiquitin proteasome system (UPS). Studies conducted in humans remain scarce, especially within renal deficiency. Whether a shared atrophying programme exists independently of the nature of the disease remains to be established. The aim of this work was to identify common modifications at the transcriptomic level or the proteomic level in atrophying skeletal muscles from cancer and renal failure patients. Methods Muscle biopsies were performed during scheduled interventions in early-stage (no treatment and no detectable muscle loss) lung cancer (LC), chronic haemodialysis (HD), or healthy (CT) patients (n = 7 per group; 86% male; 69.6 ± 11.4, 67.9 ± 8.6, and 70.2 ± 7.9 years P > 0.9 for the CT, LC, and HD groups, respectively). Gene expression of members of the UPS, autophagy, and apoptotic systems was measured by quantitative real-time PCR. A global analysis of the soluble muscle proteome was conducted by shotgun proteomics for investigating the processes altered. Results We found an increased expression of several UPS and autophagy-related enzymes in both LC and HD patients. The E3 ligases MuRF1 (+56 to 78%, P < 0.01), MAFbx (+68 to 84%, P = 0.02), Hdm2 (+37 to 59%, P = 0.02), and MUSA1/Fbxo30 (+47 to 106%, P = 0.01) and the autophagy-related genes CTPL (+33 to 47%, P = 0.03) and SQSTM1 (+47 to 137%, P < 0.01) were overexpressed. Mass spectrometry identified >1700 proteins, and principal component analysis revealed three differential proteomes that matched to the three groups of patients. Orthogonal partial least square discriminant analysis created a model, which distinguished the muscles of diseased patients (LC or HD) from those of CT subjects. Proteins that most contributed to the model were selected. Functional analysis revealed up to 238 proteins belonging to nine metabolic processes (inflammatory response, proteolysis, cytoskeleton organization, glucose metabolism, muscle contraction, oxidant detoxifica-tion, energy metabolism, fatty acid metabolism, and extracellular matrix) involved in and/or altered by the atrophying programme in both LC and HD patients. This was confirmed by a co-expression network analysis. Conclusions We were able to identify highly similar modifications of several metabolic pathways in patients exhibiting diseases with different aetiologies (early-stage LC vs. long-term renal failure). This strongly suggests that a common atrophying programme exists independently of the disease in human.
- Published
- 2019
20. Skeletal muscle atrogenes: from rodent models to human pathologies
- Author
-
Daniel Taillandier, Cécile Polge, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Unité de nutrition et métabolisme protéique, Institut National de la Recherche Agronomique (INRA), Unité de Nutrition Humaine - Clermont Auvergne (UNH), Université Clermont Auvergne (UCA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-16-IDEX-0001,CAP 20-25,CAP 20-25(2016), and Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA)
- Subjects
0301 basic medicine ,Anabolism ,Rodent ,[SDV]Life Sciences [q-bio] ,Biology ,Biochemistry ,03 medical and health sciences ,Mice ,Atrophy ,biology.animal ,medicine ,Animals ,Humans ,Organism ,Regulation of gene expression ,030102 biochemistry & molecular biology ,Proteolytic enzymes ,Skeletal muscle ,General Medicine ,medicine.disease ,Muscle atrophy ,Rats ,Disease Models, Animal ,Muscular Atrophy ,030104 developmental biology ,medicine.anatomical_structure ,Gene Expression Regulation ,Genes ,medicine.symptom ,Neuroscience ,Metabolic Networks and Pathways ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Epub ahead of print; Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
- Published
- 2019
21. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control
- Author
-
Cécile Polge, Daniel Taillandier, Laura Cussonneau, Lydie Combaret, Dulce Peris-Moreno, Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), AFM/Telethon (grant #19521), from the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20e25) and from the Fondation pour la Recherche Médicale (labelling FRM, labelling FRM, DEQ20180339180 and from CNES (Centre national d’études spatiales, and DAR 4800001057).
- Subjects
[SDV]Life Sciences [q-bio] ,Pharmaceutical Science ,Review ,Analytical Chemistry ,Muscle hypertrophy ,0302 clinical medicine ,Ubiquitin ,MAFbx ,Drug Discovery ,0303 health sciences ,treatment ,biology ,anabolism ,catabolism ,MuRF1 ,Muscle atrophy ,3. Good health ,Ubiquitin ligase ,Cell biology ,Muscular Atrophy ,medicine.anatomical_structure ,E3 ubiquitin ligase ,Chemistry (miscellaneous) ,Molecular Medicine ,medicine.symptom ,Signal transduction ,hypertrophy ,signaling ,Signal Transduction ,Ubiquitin-Protein Ligases ,lcsh:QD241-441 ,03 medical and health sciences ,skeletal muscle atrophy ,Atrophy ,lcsh:Organic chemistry ,medicine ,Animals ,Humans ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Physical and Theoretical Chemistry ,030304 developmental biology ,therapy ,Organic Chemistry ,Skeletal muscle ,medicine.disease ,Proteasome ,Protein Biosynthesis ,biology.protein ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,030217 neurology & neurosurgery - Abstract
International audience; Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
- Published
- 2021
22. Docosahexaenoic acid-supplementation prior to fasting prevents muscle atrophy in mice
- Author
-
Cécile Polge, Frédéric Capel, Lydie Combaret, Brigitte Laillet, Didier Attaix, Daniel Taillandier, Daniel Béchet, and Christiane Deval
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Glycogen ,business.industry ,Autophagy ,AMPK ,medicine.disease ,Muscle atrophy ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,0302 clinical medicine ,Endocrinology ,chemistry ,Docosahexaenoic acid ,Physiology (medical) ,Internal medicine ,Diabetes mellitus ,medicine ,Perilipin ,Orthopedics and Sports Medicine ,medicine.symptom ,business ,Wasting ,030217 neurology & neurosurgery - Abstract
Background Muscle wasting prevails in numerous diseases (e.g. diabetes, cardiovascular and kidney diseases, COPD,…) and increases healthcare costs. A major clinical issue is to devise new strategies preventing muscle wasting. We hypothesized that 8-week docosahexaenoic acid (DHA) supplementation prior to fasting may preserve muscle mass in vivo. Methods Six-week-old C57BL/6 mice were fed a DHA-enriched or a control diet for 8 weeks and then fasted for 48 h. Results Feeding mice a DHA-enriched diet prior to fasting elevated muscle glycogen contents, reduced muscle wasting, blocked the 55% decrease in Akt phosphorylation, and reduced by 30–40% the activation of AMPK, ubiquitination, or autophagy. The DHA-enriched diet fully abolished the fasting induced-messenger RNA (mRNA) over-expression of the endocannabinoid receptor-1. Finally, DHA prevented or modulated the fasting-dependent increase in muscle mRNA levels for Rab18, PLD1, and perilipins, which determine the formation and fate of lipid droplets, in parallel with muscle sparing. Conclusions These data suggest that 8-week DHA supplementation increased energy stores that can be efficiently mobilized, and thus preserved muscle mass in response to fasting through the regulation of Akt- and AMPK-dependent signalling pathways for reducing proteolysis activation. Whether a nutritional strategy aiming at increasing energy status may shorten recovery periods in clinical settings remains to be tested.
- Published
- 2016
23. UBE2B is implicated in myofibrillar protein loss in catabolic C2C12 myotubes
- Author
-
Cécile Polge, Marianne Jarzaguet, Lydie Combaret, Daniel Béchet, Agnès Claustre, Anne-Elisabeth Heng, Didier Attaix, Roza Leulmi, and Daniel Taillandier
- Subjects
0301 basic medicine ,biology ,Catabolism ,Myogenesis ,Skeletal muscle ,Ubiquitin ligase ,03 medical and health sciences ,Protein catabolism ,030104 developmental biology ,medicine.anatomical_structure ,Proteasome ,Ubiquitin ,Biochemistry ,Physiology (medical) ,biology.protein ,medicine ,Orthopedics and Sports Medicine ,Myofibril - Abstract
Background Skeletal muscle protein loss is an adaptive response to various patho-physiological situations, and the ubiquitin proteasome system (UPS) is responsible for the degradation of the bulk of muscle proteins. The role of E2 ubiquitin-conjugating enzymes is still poorly understood in skeletal muscle. Methods We screened for E2s expression levels in C2C12 myotubes submitted to the catabolic glucocorticoid dexamethasone (Dex). Results One micromolar Dex induced an accumulation of proteasome substrates (polyUb conjugates) and an overexpression of the muscle-specific E3 ligase MuRF1 and of six E2 enzymes, UBE2A, UBE2B, UBE2D1, UBE2D2, UBE2G1, and UBE2J1. However, only MuRF1 and UBE2B were sensitive to mild catabolic conditions (0.16 μM Dex). UBE2B knockdown induced a sharp decrease of total (−18%) and K48 (−28%) Ub conjugates, that is, proteasome substrates, indicating an important role of UBE2B in the overall protein breakdown in catabolic myotubes. Conclusions Interestingly, these results indicate an important role of UBE2B on muscle protein homeostasis during catabolic conditions.
- Published
- 2015
24. The delayed recovery of the remobilized rat tibialis anterior muscle reflects a defect in proliferative and terminal differentiation that impairs early regenerative processes
- Author
-
Daniel Taillandier, Emilie Vazeille, Daniel Béchet, Bruno Meunier, Anne Listrat, Christiane Deval, Lamia Slimani, Cécile Polge, Didier Micol, Dominique Dardevet, Didier Attaix, and Lydie Combaret
- Subjects
0303 health sciences ,Pathology ,medicine.medical_specialty ,Protein turnover ,Biology ,MyoD ,Muscle atrophy ,Cell biology ,Extracellular matrix ,03 medical and health sciences ,0302 clinical medicine ,Tibialis anterior muscle ,Physiology (medical) ,medicine ,Orthopedics and Sports Medicine ,MYF5 ,medicine.symptom ,Protein kinase B ,030217 neurology & neurosurgery ,Myogenin ,030304 developmental biology - Abstract
Background The immobilization-induced tibialis anterior (TA) muscle atrophy worsens after cast removal and is associated with altered extracellular matrix (ECM) composition. The secreted protein acidic and rich in cysteine (Sparc) is an ECM component involved in Akt activation and in β-catenin stabilization, which controls protein turnover and induces muscle regulatory factors (MRFs), respectively. We hypothesized that ECM alterations may influence these intracellular signalling pathways controlling TA muscle mass. Methods Six-month-old Wistar rats were subjected to hindlimb cast immobilization for 8 days (I8) or not (I0) and allowed to recover for 1 to 10 days (R1–10). Results The TA atrophy during remobilization correlated with reduced fibre cross-sectional area and thickening of endomysium. mRNA levels for Sparc increased during remobilization until R10 and for integrin-α7 and -β1 at I8 and R1. Integrin-linked kinase protein levels increased during immobilization and remobilization until R10. This was inversely correlated with changes in Akt phosphorylation. β-Catenin protein levels increased in the remobilized TA at R1 and R10. mRNA levels of the proliferative MRFs (Myf5 and MyoD) increased at I8 and R1, respectively, without changes in Myf5 protein levels. In contrast, myogenin mRNA levels (a terminal differentiation MRF) decreased at R1, but only increased at R10 in remobilized muscles, as for protein levels. Conclusions Altogether, this suggests that the TA inefficiently attempted to preserve regeneration during immobilization by increasing transcription of proliferative MRFs, and that the TA could engage recovery during remobilization only when the terminal differentiation step of regeneration is enhanced.
- Published
- 2015
25. Abstracts of the 7th Cachexia Conference, Kobe/Osaka, Japan, December 9-11, 2013 (Part 2)
- Author
-
Cécile Polge, Didier Attaix, Huijuan Wang, Lydie Combaret, Anne Listrat, Daniel Taillandier, Cécile Coudy-Gandilhon, Kijoon Lee, Claire Lethias, Bruno Meunier, Daniel Béchet, Marine Gueugneau, and Kheng Lim Goh
- Subjects
0303 health sciences ,Stromal cell ,TUNEL assay ,Angiogenesis ,Chemistry ,Skeletal muscle ,030204 cardiovascular system & hematology ,musculoskeletal system ,medicine.disease ,Article ,Cell biology ,03 medical and health sciences ,Gastrocnemius muscle ,0302 clinical medicine ,Atrophy ,medicine.anatomical_structure ,Apoptosis ,Physiology (medical) ,Sarcopenia ,medicine ,Orthopedics and Sports Medicine ,030304 developmental biology - Abstract
Summary The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an importantroleinmuscleatrophy,andtheintentofthisstudywasto specify whether apoptosis is restricted to myofibre nuclei (myonuclei)oroccursinsatellitecellsorstromalcellsofextracellularmatrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2a, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected inmyofibres,butwasrestrictedtostromalcells.Moreover,theagerelated rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associatedapoptosisneverthelessoccurredinoldmuscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, buta large part (46%)of the Pax7 + satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levelsofkeyangiogenicregulators,perlecanandaperlecandomain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing.
- Published
- 2014
26. UBE2D2 is not involved in MuRF1-dependent muscle wasting during hindlimb suspension
- Author
-
Cécile Polge, Bernard Serrurier, Lydie Combaret, Didier Attaix, Xavier Bigard, Nathalie Koulmann, Daniel Béchet, Agnès Claustre, Marianne Jarzaguet, Daniel Taillandier, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, Département Environnements opérationnels, Institut de Recherche Biomédicale des Armées (IRBA), Agence Française de Lutte contre le Dopage (AFLD), INRA, AFM Telethon, and Institut de Recherche Biomédicale des Armées [Brétigny-sur-Orge] (IRBA)
- Subjects
0301 basic medicine ,Male ,Ubiquitin-Protein Ligases ,Muscle Proteins ,NEDD4 ,Biochemistry ,Tripartite Motif Proteins ,03 medical and health sciences ,0302 clinical medicine ,Ubiquitin ,Myosin ,medicine ,Animals ,Humans ,rat ,essai in vitro ,Muscle, Skeletal ,Actin ,chemistry.chemical_classification ,biology ,muscle wasting ,Cell Biology ,MuRF1 ,Muscle atrophy ,Ubiquitin ligase ,Rats ,atrophie musculaire ,enzyme ,030104 developmental biology ,Enzyme ,HEK293 Cells ,Proteasome ,chemistry ,Gene Expression Regulation ,Hindlimb Suspension ,UBE2D2 ,muscular atrophy ,030220 oncology & carcinogenesis ,Ubiquitin-Conjugating Enzymes ,biology.protein ,medicine.symptom ,ubiquitin-proteasome system ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,Protein Binding - Abstract
This work was supported by grants to D. T., C. P. and D. A. from the Institut National de la Recherche Agronomique and from the AFM Telethon; The Ubiquitin Proteasome System (UPS) is mainly responsible for the increased protein breakdown observed in muscle wasting. The E3 ligase MuRF1 is so far the only enzyme known to direct the main contractile proteins for degradation (i.e. troponin I, myosin heavy chains and actin). However, MuRF1 does not possess any catalytic activity and thus depends on the presence of a dedicated E2 for catalyzing the covalent binding of polyubiquitin (polyUb) chains on the substrates. The E2 enzymes belonging to the UBE2D family are commonly used for in vitro ubiquitination assays but no experimental data suggesting their physiological role as bona fide MuRF1-interacting E2 enzymes are available. In this work, we first found that the mRNA levels of critical E3 enzymes implicated in the atrophying program (MuRF1, MAFbx, Nedd4 and to a lesser extent Mdm2) are tightly and rapidly controlled during the atrophy (up regulation) and recovery (down regulation) phases in the soleus muscle from hindlimb suspended rats. By contrast, E3 ligases (Ozz, ASB2β and E4b) implicated in other processes (muscle development or regeneration) poorly responded to atrophy and recovery. UBE2B, an E2 enzyme systematically up regulated in various catabolic situations, was controlled at the mRNA levels like the E3 s implicated in the atrophying process. By contrast, UBE2D2 was progressively repressed during atrophy and recovery, which makes it a poor candidate for a role during muscle atrophy. In addition, UBE2D2 did not exhibit any affinity with MuRF1 using either yeast two-hybrid or Surface Plasmon Resonance (SPR) approaches. Finally, UBE2D2 was unable to promote the degradation of the MuRF1 substrate α-actin in HEK293 T cells, suggesting that no functional interaction exists between these enzymes within a cellular context. Altogether, our data strongly suggest that UBE2D2 is not the cognate ubiquitinating enzyme for MuRF1 and that peculiar properties of UBE2D enzymes may have biased in vitro ubiquitination assays
- Published
- 2016
27. Cellular Mechanisms of Protein Degradation Among Tissues
- Author
-
Daniel Taillandier, Lydie Combaret, Didier Attaix, Daniel Béchet, Cécile Polge, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, and Dominique Dardevet
- Subjects
proteolysis ,autophagy ,Proteolysis ,metabolism analysis ,Protein degradation ,Biology ,liver ,proteolyse ,03 medical and health sciences ,0302 clinical medicine ,Lysosome ,medicine ,skeletal muscle ,030304 developmental biology ,0303 health sciences ,medicine.diagnostic_test ,Myogenesis ,Protein turnover ,Skeletal muscle ,Calpain ,Cell biology ,medicine.anatomical_structure ,Biochemistry ,Proteasome ,biology.protein ,lysosome ,ubiquitin-proteasome system ,calpains ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery ,analyse du métabolisme - Abstract
Chapter 3 - Cellular Mechanisms of Protein Degradation Among Tissues; Very little is known on the tissue-specific features of proteolytic systems in the body, mainly because we are lacking appropriate techniques to study protein breakdown in different tissues and organs. Experimental evidence has been provided in only skeletal muscle and liver where proteolysis can be studied in incubated muscles or myotubes and hepatocytes, respectively. These data have demonstrated that proteolysis is mainly ubiquitin-proteasome-dependent in skeletal muscle and lysosomal in liver. This led to the assumption that such tissue-specific differences mainly reflect the very different rates of protein turnover in these tissues (ie, slow in muscle and rapid in the liver). Although there is a correlation between the two parameters, our current understanding of proteolysis now shows that the situation is much more complex. In particular, autophagy is not only responsible for proteolysis, but also for the breakdown of any macromolecule. For example, recent data have shown that the breakdown of lipids is tightly connected to energy metabolism in the liver. Several lines of evidence strongly suggest that this might be the case in other tissues and organs, and that our knowledge of the precise role of each proteolytic pathway is far to be understood. This review focuses on some tissue-specific and more general features of proteolysis that are currently contributing to a better understanding of metabolism
- Published
- 2016
28. Lower skeletal muscle capillarization in hypertensive elderly men
- Author
-
Frédéric Roche, Léonard Féasson, Bruno Meunier, Daniel Béchet, Daniel Taillandier, Cécile Coudy-Gandilhon, Marine Gueugneau, Lydie Combaret, Cécile Polge, Jean-Claude Barthélémy, Didier Attaix, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, Unité Mixte de Recherches sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA), Service de Physiologie Clinique et de l Exercice, CHU Nord, Faculté de Medecine Jacques Lisfranc, Université Jean Monnet (Saint-Etienne), Centre de Référence des Maladies Neuromusculaires Rares, Unité de Myologie, Centre Hospitalier Universitaire (CHU), Laboratoire de Physiologie de l'Exercice EA4338 (LPE), Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Institut de recherche Expérimentale et Clinique-Pôle d'Endocrinologie, Diabétologie, et Nutrition (EDIN), Université Catholique de Louvain (UCL), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM ), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Fondation Caisse d'Epargne Rhone-Alpes 30, European Union Collaborative Project MyoAge EC-Fp7 CT-223576, Region Auvergne, Fonds Europeens de Developpement Regional (FEDER) 23000422, Unité de Nutrition Humaine ( UNH ), Institut National de la Recherche Agronomique ( INRA ) -Université d'Auvergne - Clermont-Ferrand I ( UdA ) -Clermont Université, Unité Mixte de Recherches sur les Herbivores ( UMR 1213 Herbivores ), VetAgro Sup ( VAS ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique ( INRA ), Centre Hospitalier Universitaire ( CHU ), Laboratoire de Physiologie de l'Exercice, Université de Lyon, Université Catholique de Louvain ( UCL ), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de la Recherche Agronomique (INRA)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université Catholique de Louvain = Catholic University of Louvain (UCL), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Service de Physiologie Clinique et de l'Exercice [CHU de Saint-Etienne], Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E)-Université Jean Monnet - Saint-Étienne (UJM), Laboratoire de Physiologie de l'Exercice (LPE), Université Jean Monnet - Saint-Étienne (UJM), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
- Subjects
Male ,Biopsy ,[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition ,Muscle Fibers, Skeletal ,030204 cardiovascular system & hematology ,Biochemistry ,capillary ,Extracellular matrix ,0302 clinical medicine ,Endocrinology ,Fibrosis ,medicine.diagnostic_test ,[SDV.MHEP.GEG]Life Sciences [q-bio]/Human health and pathology/Geriatry and gerontology ,Age Factors ,muscle fiber ,Extracellular Matrix ,medicine.anatomical_structure ,Lower Extremity ,medicine.medical_specialty ,hypertension ,Neovascularization, Physiologic ,[ SDV.MHEP.GEG ] Life Sciences [q-bio]/Human health and pathology/Geriatry and gerontology ,metabolic syndrome ,Electron Transport Complex IV ,sarcopenia ,03 medical and health sciences ,Young Adult ,Sex Factors ,Internal medicine ,Genetics ,medicine ,Humans ,Risk factor ,Muscle, Skeletal ,Molecular Biology ,Aged ,business.industry ,aging ,Skeletal muscle ,Cell Biology ,medicine.disease ,Endomysium ,Capillaries ,Sarcopenia ,Metabolic syndrome ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery - Abstract
The authors wish to gratefully acknowledge Professor Philippe Courpron for his central role in initiating this work. The authors are grateful to the Fondation pour l'Université de Lyon for assistance with obtaining reagents; Aging strongly affects the skeletal muscle and is associated with microvascular dysfunctions. Age is also a primary risk factor for the metabolic syndrome, which is a cluster of metabolic and cardiovascular symptoms. Among the metabolic syndrome components, hypertension is the most prevalent in elderly subjects and has a central role in vascular alterations. Despite critical clinical outcomes, the effects of hypertension and metabolic syndrome on skeletal muscle capillarization have poorly been investigated during aging. In the present study, muscle biopsies from normotensive young (YO) and elderly (ELc) men, and elderly men with hypertension (EL-HT) or metabolic syndrome (EL-MS) were assessed for the number of capillaries around a fiber (CAF), capillary-to-fiber perimeter exchange (CFPE), length of contact to perimeter of fiber ratio (LC/PF), capillary tortuosity, and for extracellular matrix (ECM) embedding capillaries. As capillarization and muscle mitochondrial oxidative capacity may be associated, we also investigated cytochrome c oxidase (COX) content. Our findings indicate that capillarization and COX did not change between normotensive adult and old individuals. They further reveal that hypertension in elderly men is associated with reduced CAF (ELc: 5.2 +/- 0.4, EL-HT: 4.1 +/- 0.2, P < 0.02 for type I fibers; ELc: 4.1 +/- 0.2, EL-HT: 3.1 +/- 0.3, P < 0.03 for type IIA fibers), CFPE (ELc: 7.9 +/- 0.7, EL-HT: 6.4 +/- 0.4 capillaries/1000 mu m, P < 0.03 for type I fibers; ELc: 6.5 +/- 0.4, EL-HT: 5.2 +/- 0.4 capillaries/1000 mu m, P < 0.03 for type IIA fibers), LC/PF (ELc: 23.3 +/- 1.2, EL-HT: 17.8 +/- 0.6%, P < 0.01 for type I fibers; ELc: 19.8 +/- 1.1, EL-HT: 15.6 +/- 0.8%, P < 0.01 for type IIA fibers) and capillary tortuosity, and with ECM endomysium fibrosis. Capillary rarefaction also correlated with lower COX content in the old hypertensive muscle. No further modification occurred with metabolic syndrome in elderly men. Collectively, our results suggest that hypertension plays a central role in muscle capillarization during aging, and that the other components of metabolic syndrome do not make major additional changes in the aged skeletal muscle capillary network
- Published
- 2016
29. Upregulation of MuRF1 and MAFbx participates to muscle wasting upon gentamicin-induced acute kidney injury
- Author
-
Cécile Polge, Daniel Béchet, Didier Attaix, Daniel Taillandier, Julien Aniort, Lydie Combaret, Agnès Claustre, Anne-Elisabeth Heng, Unité de Nutrition Humaine (UNH), Clermont Université-Université d'Auvergne - Clermont-Ferrand I (UdA)-Institut National de la Recherche Agronomique (INRA), Service de Néphrologie Réanimation Médicale, Pôle Respiratoire, Endocrinologie-Diabétologie, Urologie, Néphrologie-Dialyse, Nutrition Clinique, Infectiologie, Réanimation Médicale, Hygiène Hospitalière (REUNNIRH), Centre Hospitalier Universitaire Gabriel Montpied, Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), CHU Gabriel Montpied [Clermont-Ferrand], CHU Clermont-Ferrand-CHU Clermont-Ferrand, and Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université
- Subjects
0301 basic medicine ,metabolic acidosis ,medicine.medical_specialty ,Ubiquitin-Protein Ligases ,[SDV]Life Sciences [q-bio] ,Muscle Proteins ,Biology ,Protein degradation ,urologic and male genital diseases ,Biochemistry ,acidose ,Tripartite Motif Proteins ,03 medical and health sciences ,MAFbxa ,Internal medicine ,medicine ,Animals ,Insulin ,rat ,Insulin-Like Growth Factor I ,Wasting ,Acidosis ,Soleus muscle ,SKP Cullin F-Box Protein Ligases ,TOR Serine-Threonine Kinases ,Acute kidney injury ,Metabolic acidosis ,muscle wasting ,Cell Biology ,medicine.disease ,MuRF1 ,female genital diseases and pregnancy complications ,Muscle atrophy ,Rats ,Up-Regulation ,atrophie musculaire ,régime protéique ,030104 developmental biology ,Endocrinology ,acute kidney injury ,muscular atrophy ,maladie rénale ,medicine.symptom ,Gentamicins ,ubiquitin-proteasome system ,Proto-Oncogene Proteins c-akt ,Kidney disease ,Signal Transduction - Abstract
The authors thank C. Deval for helpful technical assistance during the review process. This work was supported by grants to D. T., C. P. and D. A. from the Institut National de la Recherche Agronomique; Acute Kidney Injury (AKI) is frequently encountered in hospitalized patients where it is associated with increased mortality and morbidity notably affecting muscle wasting. Increased protein degradation has been shown to be the main actor of AKI-induced muscle atrophy, but the proteolytic pathways involved are poorly known. The Ubiquitin Proteasome System (UPS) is almost systematically activated in various catabolic situations, and the E3 ligases MuRF1 and MAFbx are generally up regulated in atrophying muscles. We hypothesized that the UPS may be one of the main actors in catabolic skeletal muscles from AKI animals. We used gentamicin-induced acute kidney disease (G-AKI) in rats fed a high protein diet to promote acidosis. We first addressed the impact of G-AKI in the development of mild catabolic conditions. We found that both muscle atrophy and UPS activation were induced with the développement of G-AKI. In addition, the phasic muscles were more sensitive to 7-days G-AKI (−11 to −17%, P < 0.05) than the antigravity soleus muscle (−11%, NS), indicating a differential impact of AKI in the musculature. We observed an increased expression of the muscle-specific E3 ligases MuRF1 and MAFbx in phasic muscles that was highly correlated to the G-AKI severity (R2 = 0.64, P < 0.01 and R2 = 0.71, P < 0.005 respectively). Conversely, we observed no variation in the expression of three other E3 ligases (Nedd4, Trim32 and Fbxo30/MUSA1). Altogether, our data indicate that MuRF1 and MAFbx are sensitive markers and potential targets to prevent muscle atrophy during G-AKI.Abbreviations : UPS, ubiquitin proteasome system; AKI, acute kidney injury; ATN, acute tubular necrosis; CKD, chronic kidney disease; MuRF1, muscle ring finger protein-1; MAFbx, muscle atrophy F-box protein; MUSA1, muscle ubiquitin ligase of the SCF complex in atrophy-1; Nedd4, neuronally expressed developmentally downregulated 4 protein; Trim32, tripartite motif-containing protein 32; Ub, ubiquitin; EDL, extensor digitorum longus; TGF, transforming growth factor
- Published
- 2016
30. mTOR inactivation in myocardium from infant mice rapidly leads to dilated cardiomyopathy due to translation defects and p53/JNK-mediated apoptosis
- Author
-
Geoffrey Teixeira, Emilie Delaune, Qing Zhang, Théophile Ohlmann, Daniel Taillandier, Laetitia Mazelin, Michel Ovize, Anne-Sophie Nicot, Baptiste Panthu, Yann-Gaël Gangloff, Geneviève Derumeaux, Lionel A. Tintignac, Laurent Schaeffer, Edwige Belotti, Dominique Baas, Valérie Risson, Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Contrôle traductionnel des ARNm eucaryotes et viraux – Translational control of Eukaryotic and Viral RNAs, Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Dynamique Musculaire et Métabolisme (DMEM), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM), Departments of Neurology and Biomedicine, Neuromuscular Research Center, Basel University Hospital, Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Service d'Anatomie et Cytologie Pathologiques, CHU Amiens-Picardie, Apoptose Cancer et Développement, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Aix Marseille Université (AMU), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM), CINTRA / SEEE Nanyang Technological University, Nanyang Technological University [Singapour], Laboratoire de Biologie Moléculaire de la Cellule (LBMC), Service de Cardiologie, Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpital Henri Mondor-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Virologie humaine, École normale supérieure - Lyon (ENS Lyon)-IFR128-Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 5310, U1217, Institut NeuroMyoGene, Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), University Hospital Basel [Basel], Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de la Recherche Agronomique (INRA), Unité de Nutrition Humaine (UNH), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Centre International de Recherche en Infectiologie (CIRI), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0301 basic medicine ,MST1 ,Biopsy ,[SDV]Life Sciences [q-bio] ,Muscle Proteins ,translation ,Apoptosis ,mTORC1 ,mTORC2 ,myocardial metabolism ,Mice ,0302 clinical medicine ,ComputingMilieux_MISCELLANEOUS ,Mice, Knockout ,Cardiopulmonary Bypass ,biology ,Myoglobin ,TOR Serine-Threonine Kinases ,Nuclear Proteins ,Cell biology ,Echocardiography ,030220 oncology & carcinogenesis ,Heart Function Tests ,mTOR ,Cardiology and Cardiovascular Medicine ,signal transduction ,Cardiomyopathy, Dilated ,medicine.medical_specialty ,ANKRD1 ,heart postnatal development ,03 medical and health sciences ,Internal medicine ,medicine ,Animals ,Molecular Biology ,Mechanistic target of rapamycin ,PI3K/AKT/mTOR pathway ,Cell growth ,Gene Expression Profiling ,RPTOR ,JNK Mitogen-Activated Protein Kinases ,cardiomyocyte apoptosis ,Repressor Proteins ,Disease Models, Animal ,030104 developmental biology ,Endocrinology ,Gene Expression Regulation ,Protein Biosynthesis ,Proteolysis ,biology.protein ,Tumor Suppressor Protein p53 ,Energy Metabolism ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,Biomarkers - Abstract
Mechanistic target of rapamycin (mTOR) is a central regulator of cell growth, proliferation, survival and metabolism, as part of mTOR complex 1 (mTORC1) and mTORC2. While partial inhibition of mTORC1 using rapamycin was shown to be cardioprotective, genetic studies in mouse models revealed that mTOR is essential for embryonic heart development and cardiac function in adults. However, the physiological role of mTOR during postnatal cardiac maturation is not fully elucidated. We have therefore generated a mouse model in which cardiac mTOR was inactivated at an early postnatal stage. Mutant mTORcmKO mice rapidly developed a dilated cardiomyopathy associated with cardiomyocyte growth defects, apoptosis and fibrosis, and died during their third week. Here, we show that reduced cardiomyocyte growth results from impaired protein translation efficiency through both 4E-BP1-dependent and -independent mechanisms. In addition, infant mTORcmKO hearts displayed markedly increased apoptosis linked to stretch-induced ANKRD1 (Ankyrin repeat-domain containing protein 1) up-regulation, JNK kinase activation and p53 accumulation. Pharmacological inhibition of p53 with pifithrin-α attenuated caspase-3 activation. Cardiomyocyte death did not result from activation of the MST1/Hippo pro-apoptotic pathway as reported in adult rictor/mTORC2 KO hearts. As well, mTORcmKO hearts showed a strong downregulation of myoglobin content, thereby leading to a hypoxic environment. Nevertheless, they lacked a HIF1α-mediated adaptive response, as mTOR is required for hypoxia-induced HIF-1α activation. Altogether, our results demonstrate that mTOR is critically required for cardiomyocyte growth, viability and oxygen supply in early postnatal myocardium and provide insight into the molecular mechanisms involved in apoptosis of mTOR-depleted cardiomyocytes.
- Published
- 2016
31. Pathologie musculaire au cours de l’urémie et du cancer bronchique chez l’homme : mise en jeu de mécanismes communs
- Author
-
O. Schiltz, Julien Aniort, Anne-Elisabeth Heng, Carole Philipponnet, Daniel Taillandier, A. Poyet, Alexandre Stella, Cécile Polge, Agnès Claustre, and Didier Attaix
- Subjects
Nephrology - Abstract
Introduction Une perte de masse musculaire complique de nombreuses situations pathologiques telles le cancer ou l’insuffisance renale. Elle contribue au syndrome de fragilite et est associee a un risque accru de deces. Les etudes conduites sur des modeles animaux ont revelees le role preponderant de l’activation des systemes de proteolyse musculaire et notamment du systeme ubiquitine proteasome (UPS). Cependant, les etudes conduites chez l’homme restent rares. L’objectif de ce travail etait donc d’identifier les mecanismes communs qui caracterisent les muscles en situation d’atrophie chez l’homme. Patients/materiels et methodes Des biopsies musculaires chirurgicales ont ete realisees au cours d’interventions programmees chez des patient ayant un cancer bronchique (LC, n = 7), hemodialyses chroniques (HD, n = 7) ou indemnes de pathologies (CT, n = 7). Une quantification de l’expression de genes des systemes proteolytiques ubiquitine proteasome, de l’autophagie et de l’apoptose a ete realisee par qRT-PCR. Une analyse globale du proteome musculaire soluble a ete conduite par Shot-Gun en spectrometrie de masse. Resultats Nous avons retrouve une augmentation de l’expression de plusieurs acteurs de l’UPS et de l’autophagie chez les patients LC et HD, et de marqueurs d’apoptose chez les patients HD. La spectrometrie de masse nous a permis d’identifier plus de 1700 proteines. Une ACP a revele 3 profils proteomiques differents correspondant aux trois groupes de patients. Une O-PLS-DA a ete utilisee pour creer un modele permettant de distinguer les muscles des patients malades de ceux des patients sains. Les proteines qui contribuaient le plus au modele ont ete retenues. Une analyse fonctionnelle a permis de determiner que ces proteines etaient impliquees dans la proteolyse, le metabolisme des acides amines, la glycolyse, la phosphorylation oxydative, la defense contre le stress oxydant, la contraction musculaire, la matrice extracellulaire et l’organisation du cytosquelette musculaire. Une analyse de reseau de co-expression a retrouve des resultats concordant. Enfin, une etude de reseau d’interaction est en faveur d’une activation de la voie Wnt-betacatenine. Discussion Cette etude demontre chez l’homme, l’execution d’un programme d’atrophie musculaire commun independamment de la pathologie causale. Il existe une activation de l’UPS mais aussi de l’autophagie. Elle s’accompagne de modification metaboliques caracterisee par une augmentation de la glycolyse et une dysfonction mitochondriale. Une augmentation du stress oxydant participerait a l’induction de ces changements. L’activation continue de la voie Wnt serait a l’origine de fibrose musculaire. Conclusion Les mecanismes en jeu sont autant de pistes pour la mise au point de traitements de l’atrophie musculaire.
- Published
- 2018
32. 0452 : MTOR inactivation during early postnatal development of mice myocardium leads to severe dilated cardiomyopathy due to altered translational efficiency and hypoxia-induced apoptosis
- Author
-
Daniel Taillandier, Geneviève Derumeaux, Anne Sophie Nicot, Théophile Ohlmann, Dominique Baas, Geoffrey Texeira, Emilie Delaune, Lionel A. Tintignac, Laetitia Mazelin Bowyer, Baptiste Panthu, Edwige Belotti, Yann-Gaël Gangloff, Michel Ovize, Ging Zhang, Valerie Risson, Laurent Schaeffer, Oncovirology and Biotherapies, Lyon University, Contrôle traductionnel des ARNm eucaryotes et viraux – Translational control of Eukaryotic and Viral RNAs, Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), University of Basel (Unibas), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National de la Recherche Agronomique (INRA), and Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA)
- Subjects
medicine.medical_specialty ,[SDV]Life Sciences [q-bio] ,mTORC1 ,030204 cardiovascular system & hematology ,mTORC2 ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,medicine ,030212 general & internal medicine ,Mechanistic target of rapamycin ,PI3K/AKT/mTOR pathway ,ComputingMilieux_MISCELLANEOUS ,biology ,Cell growth ,business.industry ,RPTOR ,Hypoxia (medical) ,3. Good health ,Cell biology ,Endocrinology ,Knockout mouse ,biology.protein ,medicine.symptom ,business ,Cardiology and Cardiovascular Medicine - Abstract
Mechanistic target of rapamycin (mTOR) is a central regulator of cell growth, proliferation, survival and metabolism. mTOR inhibition is increasingly used in antitumoral therapies and mTOR inhibition with rapamycin was shown to be cardioprotective during aging and cardiac stress. Studies in genetic mice models have shown that mTOR is essential for heart development and cardiac function in adult. However, mTOR functions during postnatal cardiac development are not fully elucidated. We have therefore generated a cardiac-specific mTOR knockout mouse using α-MHC-Cre mice leading to mTOR inactivation in early postnatal mouse myocardium. The mutant mice develop a severe lethal dilated cardiomyopathy due to defects in cardiomyocyte growth, survival and subsequent fibrosis. In contrast to adult myocardium, both mTORC1 and mTORC2 activities are impaired in juvenile heart, as shown by hypophosphorylation of the translation inhibitor 4E-BP1 and loss of the cardioprotective AKTS473 phosphorylation. We find that translation initiation defects and altered ribosome biogenesis both contribute to impaired cardiomyocyte growth. In addition, we show that increased apoptosis is associated with activation of JNK kinase and p53 accumulation. Moreover mTORcmKO hearts display a strong decreased expression of the primary oxygen carrier, myoglobin, and HIF1α accumulation suggesting hypoxia. However, mTORcmKO hearts do not display HIF1 hypoxic response consistently with mTOR being essential for HIF1-dependant trancriptionnal activity. These observations indicate that hypoxia-induced apoptosis likely contribute to DCM in mTORcmKO mice. Altogether, our results demonstrate that mTOR is a key regulator of cardiomyocyte growth, viability and oxygen supply in early postnatal myocardium. Our findings highlight potential cardiotoxicity of new mTOR inhibitors and the importance to set up optimal treatments in cardiology to both target mTOR hypertrophic functions and maintain adequate oxygen supply.
- Published
- 2015
33. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy
- Author
-
Daniel Taillandier, Cécile Polge, Didier Attaix, Unité de Nutrition Humaine (UNH), and Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université
- Subjects
Physiology ,Review Article ,Protein degradation ,lcsh:Physiology ,03 medical and health sciences ,0302 clinical medicine ,Ubiquitin ,atrophy ,Physiology (medical) ,ubiquitin ,medicine ,Food and Nutrition ,skeletal muscle ,proteasome ,E2 ubiquitin conjugating enzyme ,E3 ubiquitin ,ligase ,030304 developmental biology ,chemistry.chemical_classification ,ubiquitine ,0303 health sciences ,biology ,lcsh:QP1-981 ,Skeletal muscle ,muscle squelettique ,atrophie musculaire ,Ubiquitin ligase ,medicine.anatomical_structure ,Enzyme ,Proteasome ,Biochemistry ,chemistry ,E3 ubiquitin ligase ,Alimentation et Nutrition ,biology.protein ,Signal transduction ,Myofibril ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery - Abstract
ISI Document Delivery No.: CG0CW; International audience; The Ubiquitin Proteasome System (UPS) is a major actor of muscle wasting during various physio-pathological situations. In the past 15 years, increasing amounts of data have depicted a picture, although incomplete, of the mechanisms implicated in myofibrillar protein degradation, from the discovery of muscle-specific E3 ligases to the identification of the signaling pathways involved. The targeting specificity of the UPS relies on the capacity of the system to first recognize and then label the proteins to be degraded with a poly-ubiquitin (Ub) chain. It is fairly assumed that the recognition of the substrate is accomplished by the numerous E3 ligases present in mammalian cells. However, most E3s do not possess any catalytic activity and E2 enzymes may be more than simple Ub-providers for E3s since they are probably important actors in the ubiquitination machinery. Surprisingly, most authors have tried to characterize E3 substrates, but the exact role of E2s in muscle protein degradation is largely unknown. A very limited number of the 35 E2s described in humans have been studied in muscle protein breakdown experiments and the vast majority of studies were only descriptive. We review here the role of E2 enzymes in skeletal muscle and the difficulties linked to their study and provide future directions for the identification of muscle E2s responsible for the ubiquitination of contractile proteins.
- Published
- 2015
34. Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome
- Author
-
Cécile Polge, Daniel Béchet, Léonard Féasson, Daniel Taillandier, Frédéric Roche, Bruno Meunier, Brigitte Picard, Lydie Combaret, Didier Attaix, Cécile Coudy-Gandilhon, Jean-Claude Barthélémy, Christiane Barboiron, Julien Verney, Laetitia Théron, Marine Gueugneau, Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Centre de Recherche en Nutrition Humaine, Unité Mixte de Recherches sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Centre Référent Maladies Neuromusculaires Rares Rhône-Alpes, Unité de Myologie, Centre Hospitalier Universitaire de Saint-Etienne (CHU de Saint-Etienne), Laboratoire de Physiologie de l'Exercice EA4338 (LPE), Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Université de Lyon, Hôpital Nord - Faculté de MédecineJacques Lisfranc, Service de Physiologie Clinique et de l'Exercice, PRES Université de Lyon, Université Jean Monnet (Saint-Etienne), Hôpital Nord - Faculté de Médecine Jacques Lisfranc, Service de Physiologie Clinique et de l'Exercice, Unité de Nutrition Humaine (UNH), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de la Recherche Agronomique (INRA)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Unité de Nutrition Humaine - Clermont Auvergne ( UNH ), Université Clermont Auvergne ( UCA ) -Institut national de la recherche agronomique [Auvergne/Rhône-Alpes] ( INRA Auvergne/Rhône-Alpes ), Unité Mixte de Recherches sur les Herbivores ( UMR 1213 Herbivores ), VetAgro Sup ( VAS ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique ( INRA ), Institut d'Enseignement Supérieur et de Recherche en Alimentation, Santé Animale, Sciences Agronomiques et de l'Environnement, Centre Hospitalier Universitaire de Saint-Etienne ( CHU de Saint-Etienne ), Laboratoire de Physiologie de l'Exercice EA4338, Université de Lyon (COMUE), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E), Laboratoire de Physiologie de l'Exercice (LPE), Université Jean Monnet - Saint-Étienne (UJM), Service de Physiologie Clinique et de l'Exercice [CHU de Saint-Etienne], and Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E)-Université Jean Monnet - Saint-Étienne (UJM)
- Subjects
Male ,Sarcopenia ,medicine.medical_specialty ,masse musculaire ,[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition ,Biopsy ,lipid droplets ,Muscle Fibers, Skeletal ,metabolic syndrome ,Electron Transport Complex IV ,Young Adult ,Absorptiometry, Photon ,Atrophy ,Internal medicine ,Lipid droplet ,Humans ,Medicine ,Cytochrome c oxidase ,Muscle Strength ,Intramyocellular lipids ,skeletal muscle ,Aged ,syndrome métabolique ,biology ,business.industry ,aging ,fiber types ,Skeletal muscle ,metabolic x syndrome ,vieillissement ,Lipid Metabolism ,medicine.disease ,Endocrinology ,medicine.anatomical_structure ,muscle mass ,Ageing ,ageing ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,Body Composition ,biology.protein ,teneur en lipides ,oil content ,Geriatrics and Gerontology ,Metabolic syndrome ,Energy Metabolism ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition - Abstract
One of the most noticeable effects of aging is the reduction in skeletal muscle mass and strength (sarcopenia). The metabolic syndrome (MS) is also prevalent in old subjects, but its relevance to skeletal muscle characteristics has poorly been investigated. Immunohistochemical studies were performed with muscle biopsies from young (22 years) and old (73 years) men with and without MS to reveal age-dependent and MS-associated modifications of fiber-type characteristics. Atrophy of type II fibers and altered fiber shape characterized muscle aging in lean healthy men. In contrast, increased cross-sectional area of the most abundant type I and type IIA fibers, and reduced cytochrome c oxidase content in all fiber types, characterized MS. Aging and particularly MS were associated with accumulation of intramyocellular lipid droplets. Although lipids mostly accumulated in type I fibers, matrix-assisted laser desorption/ionization–mass spectrometry imaging of intramyocellular lipids did not distinguish fiber types, but clearly separated young, old, and MS subjects. In conclusion, our study suggests that MS in the elderly persons is associated with alterations in skeletal muscle at a fiber-type specific level. Overall, these fiber type-specific modifications may be important both for the age-related loss of muscle mass and strength and for the increased prevalence of MS in elderly subjects.
- Published
- 2015
35. Proteomics of muscle chronological ageing in post-menopausal women
- Author
-
Cécile Polge, Gillian Butler-Browne, Lydie Combaret, Christophe Chambon, Cécile Coudy-Gandilhon, Daniel Taillandier, Marine Gueugneau, Daniel Béchet, Ophélie Gourbeyre, Andrea B. Maier, Didier Attaix, Bertrand Friguet, Vieillissement Cellulaire Intégré et Inflammation (VCII), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), European Union Collaborative Project MyoAge [EC Fp7 CT-223576], Fondation Caisse d'Epargne Rhone-Alpes (CERA Sarcopenie) [30], Region Auvergne, Fonds Europeens de Developpement Regional (FEDER) [23000422], FEDER [35380 T2a 2011 Prenusa], European Project: 223576,EC:FP7:HEALTH,FP7-HEALTH-2007-B,MYOAGE(2009), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Béchet, Daniel, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Internal medicine, MOVE Research Institute, and UCL - SSS/IREC/EDIN - Pôle d'endocrinologie, diabète et nutrition
- Subjects
Proteomics ,Sarcopenia ,Aging ,Cytoplasm ,Skeletal muscle ,Sarcomere ,Myosin ,protéome ,Cytotoxins ,Muscles ,muscle squelettique ,Blood Proteins ,Middle Aged ,Muscle atrophy ,atrophie musculaire ,Cell biology ,Mitochondria ,Postmenopause ,medicine.anatomical_structure ,Alimentation et Nutrition ,femme menopausée ,Female ,medicine.symptom ,biomarqueur ,Biotechnology ,Muscle contraction ,Research Article ,Human ,Signal Transduction ,Sarcomeres ,Ageing ,Biomarkers ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,sarcopenie ,Genetics ,medicine ,Food and Nutrition ,Humans ,Muscle, Skeletal ,Aged ,Lipid Metabolism ,Electrophoreses ,Cytoskeletal Proteins ,Oxidative Stress ,Proteostasis ,Proteolysis ,Myofibril ,Energy Metabolism ,Transcriptome - Abstract
International audience; Background: Muscle ageing contributes to both loss of functional autonomy and increased morbidity. Muscle atrophy accelerates after 50 years of age, but the mechanisms involved are complex and likely result from the alteration of a variety of interrelated functions. In order to better understand the molecular mechanisms underlying muscle chronological ageing in human, we have undertaken a top-down differential proteomic approach to identify novel biomarkers after the fifth decade of age. Results: Muscle samples were compared between adult (56 years) and old (78 years) post-menopausal women. In addition to total muscle extracts, low-ionic strength extracts were investigated to remove high abundance myofibrillar proteins and improve the detection of low abundance proteins. Two-dimensional gel electrophoreses with overlapping IPGs were used to improve the separation of muscle proteins. Overall, 1919 protein spots were matched between all individuals, 95 were differentially expressed and identified by mass spectrometry, and they corresponded to 67 different proteins. Our results suggested important modifications in cytosolic, mitochondrial and lipid energy metabolism, which may relate to dysfunctions in old muscle force generation. A fraction of the differentially expressed proteins were linked to the sarcomere and cytoskeleton (myosin light-chains, troponin T, ankyrin repeat domain-containing protein-2, vinculin, four and a half LIM domain protein-3), which may account for alterations in contractile properties. In line with muscle contraction, we also identified proteins related to calcium signal transduction (calsequestrin-1, sarcalumenin, myozenin-1, annexins). Muscle ageing was further characterized by the differential regulation of several proteins implicated in cytoprotection (catalase, peroxiredoxins), ion homeostasis (carbonic anhydrases, selenium-binding protein 1) and detoxification (aldo-keto reductases, aldehyde dehydrogenases). Notably, many of the differentially expressed proteins were central for proteostasis, including heat shock proteins and proteins involved in proteolysis (valosin-containing protein, proteasome subunit beta type-4, mitochondrial elongation factor-Tu). Conclusions: This study describes the most extensive proteomic analysis of muscle ageing in humans, and identified 34 new potential biomarkers. None of them were previously recognized as differentially expressed in old muscles, and each may represent a novel starting point to elucidate the mechanisms of muscle chronological ageing in humans.
- Published
- 2014
36. A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle
- Author
-
Dominique Dardevet, Lydie Combaret, Daniel Taillandier, Marie-Noëlle Pouch, Daniel Béchet, Jean Grizard, Didier Attaix, and Isabelle Rieu
- Subjects
2. Zero hunger ,0303 health sciences ,medicine.medical_specialty ,medicine.diagnostic_test ,030309 nutrition & dietetics ,Physiology ,Proteolysis ,Skeletal muscle ,Biology ,03 medical and health sciences ,Postprandial ,Endocrinology ,medicine.anatomical_structure ,Proteasome ,Ubiquitin ,In vivo ,Internal medicine ,medicine ,biology.protein ,Ingestion ,Leucine ,030304 developmental biology - Abstract
We tested the hypothesis that skeletal muscle ubiquitin–proteasome-dependent proteolysis is dysregulated in ageing in response to feeding. In Experiment 1 we measured rates of proteasome-dependent proteolysis in incubated muscles from 8- and 22-month-old rats, proteasome activities, and rates of ubiquitination, in the postprandial and postabsorptive states. Peptidase activities of the proteasome decreased in the postabsorptive state in 22-month-old rats compared with 8-month-old animals, while the rate of ubiquitination was not altered. Furthermore, the down-regulation of in vitro proteasome-dependent proteolysis that prevailed in the postprandial state in 8-month-old rats was defective in 22-month-old rats. Next, we tested the hypothesis that the ingestion of a 5% leucine-supplemented diet may correct this defect. Leucine supplementation restored the postprandial inhibition of in vitro proteasome-dependent proteolysis in 22-month-old animals, by down-regulating both rates of ubiquitination and proteasome activities. In Experiment 2, we verified that dietary leucine supplementation had long-lasting effects by comparing 8- and 22-month-old rats that were fed either a leucine-supplemented diet or an alanine-supplemented diet for 10 days. The inhibited in vitro proteolysis was maintained in the postprandial state in the 22-month-old rats fed the leucine-supplemented diet. Moreover, elevated mRNA levels for ubiquitin, 14-kDa ubiquitin-conjugating enzyme E2, and C2 and X subunits of the 20S proteasome that were characteristic of aged muscle were totally suppressed in 22-month-old animals chronically fed the leucine-supplemented diet, demonstrating an in vivo effect. Thus the defective postprandial down-regulation of in vitro proteasome-dependent proteolysis in 22-month-old rats was restored in animals chronically fed a leucine-supplemented diet.
- Published
- 2005
37. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles
- Author
-
Daniel Taillandier, Agnès Claustre, Lydie Combaret, Daniel Béchet, Cécile Rallière, Didier Attaix, Dominique Dardevet, Jean Grizard, ProdInra, Migration, Unité de nutrition et métabolisme protéique, and Institut National de la Recherche Agronomique (INRA)
- Subjects
Male ,Leupeptins ,ATPase ,Muscle Proteins ,Biochemistry ,Dexamethasone ,0302 clinical medicine ,Ubiquitin ,Gene expression ,Chymotrypsin ,ComputingMilieux_MISCELLANEOUS ,Adenosine Triphosphatases ,Regulation of gene expression ,0303 health sciences ,medicine.diagnostic_test ,Cysteine Endopeptidases ,Muscular Atrophy ,Muscle Fibers, Fast-Twitch ,Glucocorticoid ,Research Article ,medicine.drug ,Proteasome Endopeptidase Complex ,medicine.medical_specialty ,Protein subunit ,Proteolysis ,Cysteine Proteinase Inhibitors ,Biology ,03 medical and health sciences ,Multienzyme Complexes ,Culture Techniques ,Internal medicine ,Endopeptidases ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,medicine ,Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,RNA, Messenger ,Rats, Wistar ,Muscle, Skeletal ,Glucocorticoids ,Ubiquitins ,Molecular Biology ,030304 developmental biology ,Cell Biology ,Rats ,Protein Subunits ,Endocrinology ,Gene Expression Regulation ,Proteasome ,biology.protein ,030217 neurology & neurosurgery ,Peptide Hydrolases - Abstract
Circulating levels of glucocorticoids are increased in many traumatic and muscle-wasting conditions that include insulin-dependent diabetes, acidosis, infection, and starvation. On the basis of indirect findings, it appeared that these catabolic hormones are required to stimulate Ub (ubiquitin)–proteasome-dependent proteolysis in skeletal muscles in such conditions. The present studies were performed to provide conclusive evidence for an activation of Ub-proteasome-dependent proteolysis after glucocorticoid treatment. In atrophying fast-twitch muscles from rats treated with dexamethasone for 6 days, compared with pair-fed controls, we found (i) increased MG132-inhibitable proteasome-dependent proteolysis, (ii) an enhanced rate of substrate ubiquitination, (iii) increased chymotrypsin-like proteasomal activity of the proteasome, and (iv) a co-ordinate increase in the mRNA expression of several ATPase (S4, S6, S7 and S8) and non-ATPase (S1, S5a and S14) subunits of the 19 S regulatory complex, which regulates the peptidase and the proteolytic activities of the 26 S proteasome. These studies provide conclusive evidence that glucocorticoids activate Ub-proteasome-dependent proteolysis and the first in vivo evidence for a hormonal regulation of the expression of subunits of the 19 S complex. The results suggest that adaptations in gene expression of regulatory subunits of the 19 S complex by glucocorticoids are crucial in the regulation of the 26 S muscle proteasome.
- Published
- 2004
38. Rôle de la vitamine D sur l'inhibition de la synthèse musculaire par le palmitate : recherche des mécanismes mis en jeu
- Author
-
Jérôme Salles, Agnes Claustre, Christophe Giraudet, Daniel Taillandier, Stephane Walrand, Unité de Nutrition Humaine (UNH), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), aides du type ANSSD, Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), and Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université
- Subjects
[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition - Abstract
Les diaporamas des interventions et les posters présentés lors de ces assises peuvent être consultés. Les données contenues dans les présentations sont confidentielles et leur consultation est strictement réservée à un usage interne.Les diaporamas des interventions et les posters présentés lors de ces assises peuvent être consultés. Les données contenues dans les présentations sont confidentielles et leur consultation est strictement réservée à un usage interne.; absent
- Published
- 2014
39. La protéolyse ubiquitine-protéasome-dépendante : une machinerie complexe spécialisée dans la destruction sélective et hautement régulée des protéines
- Author
-
Didier Attaix, Bertrand Souweine, Lydie Combaret, and Daniel Taillandier
- Subjects
Nutrition and Dietetics ,Multicatalytic endopeptidase complex ,Chemistry ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,Molecular biology - Abstract
Resume La proteolyse etait il y a encore quelques annees consideree comme un processus metabolique global, tres peu specifique et non regule, principalement responsable de fonctions de «menage cellulaire». Ce domaine de recherche a connu dans la derniere decennie une veritable explosion, notamment en ce qui concerne la caracterisation du systeme proteolytique ubiquitine-proteasome-dependant. Il apparait maintenant a l'evidence que ce processus est hautement specifique et regule des fonctions biologiques particulieres. Nous resumons dans cette revue bibliographique les mecanismes impliques dans le marquage selectif des proteines destinees a etre degradees par les chaines de polyubiquitine, dans leur reconnaissance, puis dans leur degradation par la machinerie proteolytique proprement dite.
- Published
- 2001
40. Apoptosis in capillary endothelial cells in ageing skeletal muscle
- Author
-
Claire Lethias, Cécile Coudy-Gandilhon, Daniel Béchet, Kijoon Lee, Lydie Combaret, Anne Listrat, Didier Attaix, Huijuan Wang, Bruno Meunier, Cécile Polge, Marine Gueugneau, Kheng Lim Goh, Daniel Taillandier, Unité de Nutrition Humaine (UNH), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique UMR 5305 (LBTI), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), School of Chemical and Biomedical Engineering, Nanyang Technological University [Singapour], School of Mechanical and Systems Engineering, Newcastle University International Singapore (NUIS), NTU Academic Research Fund (AcRF) Tier 1 [RG37/07], Egide Merlion [5.03.07], European Commission MyoAge [EC Fp7 CT-223756], Fondation Caisse d'Epargne Rhone Alpes (CERA), Fondation Rhone Alpes Futur, NTU, Conseil Regional Auvergne, Fonds Europeens de Developpement Regional (FEDER), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de la Recherche Agronomique (INRA)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Unité Mixte de Recherches sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Unité de Nutrition Humaine ( UNH ), Clermont Université-Université d'Auvergne - Clermont-Ferrand I ( UdA ) -Institut National de la Recherche Agronomique ( INRA ), Unité Mixte de Recherches sur les Herbivores ( UMR 1213 Herbivores ), VetAgro Sup ( VAS ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique ( INRA ), Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique UMR 5305 ( LBTI ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), Newcastle University International Singapore ( NUIS ), and Béchet, Daniel
- Subjects
Male ,Pathology ,Aging ,satellite stem cell ,Angiogenesis ,Muscle Fibers, Skeletal ,souris ,[ SDV.BA ] Life Sciences [q-bio]/Animal biology ,angiogenesis ,0302 clinical medicine ,Animal biology ,0303 health sciences ,TUNEL assay ,[SDV.BA]Life Sciences [q-bio]/Animal biology ,digestive, oral, and skin physiology ,apoptosis ,Tenascin ,vieillissement ,musculoskeletal system ,Cell biology ,atrophie musculaire ,medicine.anatomical_structure ,muscle mass ,muscular atrophy ,dystrophine ,hormones, hormone substitutes, and hormone antagonists ,medicine.medical_specialty ,Stromal cell ,mice ,Satellite Cells, Skeletal Muscle ,myofibre ,masse musculaire ,activité anti apoptotique ,matrice extracellulaire ,Médecine humaine et pathologie ,Biology ,sarcopenia ,03 medical and health sciences ,Gastrocnemius muscle ,Atrophy ,sarcopenie ,cellule satellite ,[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathology ,Biologie animale ,fonctionnement ,medicine ,Animals ,Muscle, Skeletal ,030304 developmental biology ,Cell Nucleus ,cellule stromale ,Engineering::Bioengineering [DRNTU] ,Skeletal muscle ,Endothelial Cells ,Cell Biology ,Original Articles ,medicine.disease ,Mice, Inbred C57BL ,Apoptosis ,ageing ,Sarcopenia ,Human health and pathology ,Stromal Cells ,Extracellular Space ,cellule endotheliale ,030217 neurology & neurosurgery ,Heparan Sulfate Proteoglycans ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,squelette - Abstract
International audience; The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7(+) satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing.
- Published
- 2013
41. Mapping Subunit Contacts in the Regulatory Complex of the 26 S Proteasome
- Author
-
Daniel Taillandier, Carlos Gorbea, and Martin Rechsteiner
- Subjects
Gel electrophoresis ,0303 health sciences ,biology ,ATPase ,Protein subunit ,030302 biochemistry & molecular biology ,Cell Biology ,Biochemistry ,Cell-free system ,03 medical and health sciences ,Protein structure ,Tetramer ,biology.protein ,Molecular Biology ,Polyacrylamide gel electrophoresis ,Ternary complex ,030304 developmental biology - Abstract
The 19 S regulatory complex (RC) of the 26 S proteasome is composed of at least 18 different subunits, including six ATPases that form specific pairs S4-S7, S6-S8, and S6'-S10b in vitro. One of the largest regulatory complex subunits, S2, was translated in reticulocyte lysate containing [(35)S]methionine and used to probe membranes containing SDS-polyacrylamide gel electrophoresis separated RC subunits. S2 bound to two ATPases, S4 and S7. Association of S2 with regulatory complex subunits was also assayed by co-translation and sedimentation. S2 formed an immunoprecipitable heterotrimer upon co-translation with S4 and S7. The non-ATPase S5b also formed a ternary complex with S4 and S7 and the three proteins assembled into a tetramer with S2. Neither S2 nor S5b formed complexes with S6'-S10b dimers or with S6-S8 oligomers. The use of chimeric ATPases demonstrated that S2 binds the NH(2)-terminal region of S4 and the COOH-terminal two-thirds of S7. Conversely, S5b binds the COOH-terminal two-thirds of S4 and to S7's NH(2)-terminal region. The demonstrated association of S2 with ATPases in the mammalian 19 S regulatory complex is consistent with and extends the recent finding that the yeast RC is composed of two subcomplexes, the lid and the base (Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cejka, Z., Baumeister, W., Fried, V. A., and Finley, D. (1998) Cell 94, 615-623).
- Published
- 2000
42. [Untitled]
- Author
-
Carlos Gorbea, Martin Rechsteiner, and Daniel Taillandier
- Subjects
Subfamily ,biology ,Molecular mass ,ATPase ,General Medicine ,Protein degradation ,Budding yeast ,Cell biology ,Proteasome ,Biochemistry ,Ubiquitin ,Genetics ,biology.protein ,Molecular Biology ,Function (biology) - Abstract
The 19S regulatory complex (RC) of 26S proteasomes is a 900–1000 kDa particle composed of 18 distinct subunits (S1–S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro[1]. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. These studies have allowed us to build a model for the specific arrangement of 9 subunits within the human regulatory complex. This model agrees with recent findings by Glickman et al. [2] who have reported that two subcomplexes, termed the base and the lid, form the RC of budding yeast 26S proteasomes.
- Published
- 1999
43. [Untitled]
- Author
-
Lydie Combaret, Didier Attaix, Thomas Tilignac, and Daniel Taillandier
- Subjects
medicine.diagnostic_test ,Proteolysis ,Cancer ,Skeletal muscle ,General Medicine ,Anorexia ,Biology ,medicine.disease ,Cachexia ,Cell biology ,Protein catabolism ,medicine.anatomical_structure ,Biochemistry ,Proteasome ,Genetics ,medicine ,medicine.symptom ,Molecular Biology ,Hormone - Abstract
The ubiquitin-proteasome proteolytic pathway is of major importance in the breakdown of skeletal muscle proteins. The first step in this pathway is the covalent attachment of polyubiquitin chains to the targeted protein. Polyubiquitinylated proteins are then recognized and degraded by the 26S proteasome complex. In this review, we critically analyze recent findings in the regulation of ubiquitinylation of protein substrates and of their subsequent proteasome-dependent degradation in animal models of cancer cachexia. In particular, we discuss the influence of various mediators (anorexia, hormones, prostaglandins, cytokines, and proteolysis-inducing factor) in signaling the activation of ubiquitin-proteasome proteolysis in skeletal muscle. These findings have lead to new concepts that are starting to be used for preventing cachexia in cancer and other wasting diseases.
- Published
- 1999
44. [Untitled]
- Author
-
Daniel Taillandier, Lydie Combaret, Didier Attaix, Cécile Rallière, and Keiji Tanaka
- Subjects
medicine.medical_specialty ,Skeletal muscle ,General Medicine ,Biology ,Pharmacology ,medicine.disease ,Muscle atrophy ,Pentoxifylline ,Cachexia ,medicine.anatomical_structure ,Endocrinology ,Proteasome ,Ubiquitin ,Tumor necrosis factor production ,Internal medicine ,Genetics ,medicine ,biology.protein ,Tumor necrosis factor alpha ,medicine.symptom ,Molecular Biology ,medicine.drug - Abstract
The development of pharmacological approaches for preventing the loss of muscle proteins would be extremely valuable for cachectic patients. For example, severe wasting in cancer patients correlates with a reduced efficacy of chemotherapy and radiotherapy. Pentoxifylline (PTX) is a very inexpensive xanthine derivative, which is widely used in humans as a haemorheological agent, and inhibits tumor necrosis factor transcription. We have shown here that a daily administration of PTX prevents muscle atrophy and suppresses increased protein breakdown in Yoshida sarcoma-bearing rats by inhibiting the activation of a nonlysosomal, Ca2+-independent proteolytic pathway. PTX blocked the ubiquitin pathway, apparently by suppressing the enhanced expression of ubiquitin, the 14-kDa ubiquitin conjugating enzyme E2, and the C2 20S proteasome subunit in muscle from cancer rats. The 19S complex and 11S regulator associate with the 20S proteasome and regulate its peptidase activities. The mRNA levels for the ATPase subunit MSS1 of the 19S complex increased in cancer cachexia, in contrast with mRNAs of other regulatory subunits. This adaptation was suppressed by PTX, suggesting that the drug inhibited the activation of the 26S proteasome. This is the first demonstration of a pharmacological manipulation of the ubiquitin-proteasome pathway in cachexia with a drug which is well tolerated in humans. Overall, the data suggest that PTX can prevent muscle wasting in situations where tumor necrosis factor production rises, including cancer, sepsis, AIDS and trauma.
- Published
- 1999
45. Glucocorticoids Do Not Regulate the Expression of Proteolytic Genes in Skeletal Muscle from Cushing's Syndrome Patients
- Author
-
Cécile Rallière, Igor Tauveron, Didier Attaix, Jean-Paul Boiteux, Daniel Taillandier, Bernard Giraud, Laurent Guy, Philippe Thieblot, Unité de nutrition et métabolisme protéique, Institut National de la Recherche Agronomique (INRA), and CHU Clermont-Ferrand
- Subjects
Adult ,Male ,Proteasome Endopeptidase Complex ,medicine.medical_specialty ,[SDV]Life Sciences [q-bio] ,Endocrinology, Diabetes and Metabolism ,Clinical Biochemistry ,Cathepsin D ,030209 endocrinology & metabolism ,Biology ,030226 pharmacology & pharmacy ,Biochemistry ,Cushing syndrome ,03 medical and health sciences ,0302 clinical medicine ,Endocrinology ,Ubiquitin ,Multienzyme Complexes ,Internal medicine ,Gene expression ,medicine ,Humans ,RNA, Messenger ,Muscle, Skeletal ,Cushing Syndrome ,Glucocorticoids ,Ubiquitins ,030304 developmental biology ,0303 health sciences ,Calpain ,Myogenesis ,Biochemistry (medical) ,Skeletal muscle ,Middle Aged ,medicine.disease ,Muscle atrophy ,Cysteine Endopeptidases ,medicine.anatomical_structure ,Gene Expression Regulation ,Proteasome ,030220 oncology & carcinogenesis ,biology.protein ,Female ,medicine.symptom ,Peptide Hydrolases - Abstract
International audience; Glucocorticoids signal enhanced proteolysis in various instances of muscle atrophy and increased gene expression of components of the lysosomal, Ca2+-dependent, and/or ubiquitin-proteasome proteolytic pathways in both rat skeletal muscle and myotubes. Cushing's syndrome is characterized by chronic excessive glucocorticoid production, which results in muscle wasting. We report here no change in messenger RNA levels for cathepsin D (a lysosomal proteinase), m-calpain (a Ca2+-activated proteinase), ubiquitin, 14-kDa ubiquitin-activating enzyme E2, and 20S proteasome subunits (i.e. critical components of the ubiquitin-proteasome proteolytic process) in skeletal muscle from such patients. Thus, in striking contrast with animal studies, glucocorticoids did not regulate the expression of muscle proteolytic genes in Cushing's syndrome. In humans, messenger RNA levels, for at least ubiquitin and proteasome subunits, are elevated in acute situations of muscle wasting, such as head trauma or sepsis. Because Cushing's syndrome is a chronic catabolic condition, we suggest that the lack of regulation of proteolytic genes in such patients may represent an adaptive regulatory mechanism, preventing sustained increased protein breakdown and avoiding rapid muscle wasting.
- Published
- 1997
46. [Untitled]
- Author
-
Cécile Rallière, E. Aurousseau, Daniel Larbaud, Lydie Combaret, Daniel Taillandier, Keiji Tanaka, and Didier Attaix
- Subjects
0303 health sciences ,Messenger RNA ,medicine.diagnostic_test ,Proteolysis ,Protein subunit ,Skeletal muscle ,General Medicine ,Biology ,03 medical and health sciences ,0302 clinical medicine ,medicine.anatomical_structure ,Biochemistry ,Proteasome ,Tumor necrosis factor production ,030220 oncology & carcinogenesis ,Polysome ,Gene expression ,Genetics ,medicine ,Molecular Biology ,030304 developmental biology - Abstract
A precise knowledge of the role of subunits of the 19S complex and the PA28 regulator, which associate with the 20S proteasome and regulate its peptidase activities, may contribute to design new therapeutic approaches for preventing muscle wasting in human diseases. The proteasome is mainly responsible for the muscle wasting of tumor-bearing and unweighted rats. The expression of some ATPase (MSS1, P45) and non ATPase (P112-L, P31) subunits of the 19S complex, and of the two subunits of the PA28 regulator, was studied in such atrophying muscles. The mRNA levels for all studied subunits increased in unweighted rats, and analysis of MSS1 mRNA distribution profile in polyribosomes showed that this subunit entered active translation. By contrast, only the mRNA levels for MSS1 increased in the muscles from cancer rats. Thus, gene expression of the proteasome regulatory subunits depends on a given catabolic state. Torbafylline, a xanthine derivative which inhibits tumor necrosis factor production, prevented the activation of protein breakdown and the increased expression of 20S proteasome subunits in cancer rats, without reducing the elevated MSS1 mRNA levels. Thus, the increased expression of MSS1 is regulated independently of 20S proteasome subunits, and did not result in accelerated proteolysis.
- Published
- 1997
47. Deciphering the ubiquitin proteome: Limits and advantages of high throughput global affinity purification-mass spectrometry approaches
- Author
-
Didier Attaix, Roza Leulmi, Odile Burlet-Schiltz, Anne-Elisabeth Heng, Sandrine Uttenweiler-Joseph, Cécile Polge, Daniel Taillandier, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, Institut de pharmacologie et de biologie structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), néphrologie, CHU Gabriel Montpied [Clermont-Ferrand], CHU Clermont-Ferrand-CHU Clermont-Ferrand, AFM Telethon, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Region Midi-Pyrenees, Fondation pour la Recherche Medicale (FRM), European funding (FEDER), Groupement d'Interet Scientifique IBiSA (Infrastructures en Biologie Sante et Agronomie), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), and Centre Hospitalier Universitaire Gabriel Montpied
- Subjects
Ubiquitin proteasome system ,Resolution (mass spectrometry) ,Proteome ,Ubiquitin-activating enzyme ,Ubiquitin-conjugating enzyme ,Mass spectrometry ,Biochemistry ,03 medical and health sciences ,Ubiquitin ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Ubiquitin chain linkage ,030304 developmental biology ,0303 health sciences ,biology ,Chemistry ,030302 biochemistry & molecular biology ,Ubiquitination ,Cell Biology ,Ubiquitin Binding Domain ,Ubiquitin ligase ,Proteasome ,biology.protein ,Protein Processing, Post-Translational - Abstract
International audience; Ubiquitination is a posttranslational modification of proteins that involves the covalent attachment of ubiquitin, either as a single moiety or as polymers. This process controls almost every cellular metabolic pathway through a variety of combinations of linkages. Mass spectrometry now allows high throughput approaches for the identification of the thousands of ubiquitinated proteins and of their ubiquitination sites. Despite major technological improvements in mass spectrometry in terms of sensitivity, resolution and acquisition speed, the use of efficient purification methods of ubiquitinated proteins prior to mass spectrometry analysis is critical to achieve an efficient characterization of the ubiquitome. This critical step is achieved using different approaches that possess advantages and pitfalls. Here, we discuss the limits that can be encountered when deciphering the ubiquitome.This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
- Published
- 2013
48. Recent progress in elucidating signalling proteolytic pathways in muscle wasting: Potential clinical implications
- Author
-
Cécile Polge, Lydie Combaret, Daniel Béchet, Daniel Taillandier, Anne-Elisabeth Heng, Didier Attaix, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, Service de Néphrologie Réanimation Médicale, Pôle Respiratoire, Endocrinologie-Diabétologie, Urologie, Néphrologie-Dialyse, Nutrition Clinique, Infectiologie, Réanimation Médicale,Hygiène Hospitalière, CHU Clermont-Ferrand, Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), Clermont Université-Université d'Auvergne - Clermont-Ferrand I (UdA)-Institut National de la Recherche Agronomique (INRA), and Centre Hospitalier Universitaire de Clermont-Ferrand
- Subjects
medicine.medical_specialty ,Proteasome Endopeptidase Complex ,Protein turnover ,Anabolism ,Endocrinology, Diabetes and Metabolism ,Medicine (miscellaneous) ,Muscle Proteins ,MAFbx/Atrogin-1 ,Biology ,Bioinformatics ,Muscle wasting ,Sepsis ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,medicine ,Autophagy ,Humans ,Signalling pathway ,Muscle, Skeletal ,Wasting ,030304 developmental biology ,0303 health sciences ,Nutrition and Dietetics ,Ubiquitin ,medicine.disease ,MuRF1 ,Muscle atrophy ,3. Good health ,Crosstalk (biology) ,Muscular Atrophy ,Endocrinology ,Proteasome ,Ubiquitin–proteasome system ,medicine.symptom ,Cardiology and Cardiovascular Medicine ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery ,Bed Rest ,Signal Transduction - Abstract
Review issu de l'abstract présenté aux 8th International Symposium on Amino Acid and Protein Metabolism in Health and Disease; Aims Muscle wasting prevails with disuse (bedrest and immobilisation) and is associated with many diseases (cancer, sepsis, diabetes, kidney failure, trauma, etc.). This results first in prolonged hospitalisation with associated high health-care costs and second and ultimately in increased morbidity and mortality. The precise characterisation of the signalling pathways leading to muscle atrophy is therefore particularly relevant in clinical settings. Data synthesis Recent major papers have identified highly complex intricate pathways of signalling molecules, which induce the transcription of the muscle-specific ubiquitin protein ligases MAFbx/Atrogin-1 and MuRF1 that are overexpressed in nearly all muscle wasting diseases. These signalling pathways have been targeted with success in animal models of muscle wasting. In particular, these findings have revealed a finely tuned crosstalk between both anabolic and catabolic processes. Conclusions Whether or not such strategies may be useful for blocking or at least limiting muscle wasting in weight losing and cachectic patients is becoming nowadays a very exciting clinical challenge.
- Published
- 2013
49. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients
- Author
-
Yves Boirie, Bernard Beaufrère, E. Aurousseau, Odile Mansoor, Cécile Rallière, Maurice Arnal, Didier Attaix, Daniel Taillandier, Pierre Schoeffler, Service de Réanimation, Hôpital Robert Debré, Centre de Recherche en Nutrition Humaine, Laboratoire de Nutrition Humaine, Centre de Recherche en Nutrition Humaine, Université d'Auvergne - Clermont-Ferrand I (UdA), UR 0551 Laboratoire d'étude du Métabolisme azoté, Institut National de la Recherche Agronomique (INRA), UR 0551 CL THEIX METAB AZO Laboratoire d'étude du Métabolisme azoté, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, and Université d'Auvergne (Clermont Ferrand 1) (UdA)
- Subjects
Male ,muscle ,[SDV]Life Sciences [q-bio] ,protéine myofibrillaire ,Gene Expression ,Cathepsin D ,0302 clinical medicine ,Ubiquitin ,Reference Values ,Craniocerebral Trauma ,adaptation métabolique ,0303 health sciences ,Multidisciplinary ,biology ,protein breakdown ,Glyceraldehyde-3-Phosphate Dehydrogenases ,Interleukin ,muscle squelettique ,Calpain ,homme ,Cysteine Endopeptidases ,Protein catabolism ,medicine.anatomical_structure ,activité protéolytique ,030220 oncology & carcinogenesis ,Female ,calpain ,Research Article ,Adult ,Proteasome Endopeptidase Complex ,medicine.medical_specialty ,03 medical and health sciences ,Multienzyme Complexes ,Internal medicine ,medicine ,Humans ,cathepsin ,RNA, Messenger ,human ,Muscle, Skeletal ,Ubiquitins ,030304 developmental biology ,Interleukin-6 ,Tumor Necrosis Factor-alpha ,Skeletal muscle ,Blotting, Northern ,proteasome ,voluntary muscle ,Endocrinology ,Proteasome ,biology.protein ,Calcium ,Lysosomes ,Myofibril ,Interleukin-1 - Abstract
The cellular mechanisms responsible for enhanced muscle protein breakdown in hospitalized patients, which frequently results in lean body wasting, are unknown. To determine whether the lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways are activated, we measured mRNA levels for components of these processes in muscle biopsies from severe head trauma patients. These patients exhibited negative nitrogen balance and increased rates of whole-body protein breakdown (assessed by [13C]leucine infusion) and of myofibrillar protein breakdown (assessed by 3-methylhistidine urinary excretion). Increased muscle mRNA levels for cathepsin D, m-calpain, and critical components of the ubiquitin proteolytic pathway (i.e., ubiquitin, the 14-kDa ubiquitin-conjugating enzyme E2, and proteasome subunits) paralleled these metabolic adaptations. The data clearly support a role for multiple proteolytic processes in increased muscle proteolysis. The ubiquitin proteolytic pathway could be activated by altered glucocorticoid production and/or increased circulating levels of interleukin 1beta and interleukin 6 observed in head trauma patients and account for the breakdown of myofibrillar proteins, as was recently reported in animal studies.
- Published
- 1996
50. The manipulation of the intestinal lysosomal pathway strongly affects muscle mass and recovery in wasting diseases
- Author
-
Lydie Combaret, Audrey Codran, Christiane Deval, Emilie Vazeille, Pierre Lapaquette, Bechet, Daniel D., Daniel Taillandier, Cécile Polge, Anne-Elisabeth Heng, Irène Corthésy-Theulaz, Arlette Darfeuille Michaud, Henri Bernardi, Serge Leibovitch, Didier Attaix, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, Nestlé S.A., Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA), Université d'Auvergne - Clermont-Ferrand I (UdA), Nestlé France, Institut National de la Santé et de la Recherche Médicale (INSERM), Société Française de Biochimie et Biologie Moléculaire (SFBBM). FRA., Nestlé, and Institut National de la Recherche Agronomique (INRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre de Recherche en Nutrition Humaine d'Auvergne (CRNH d'Auvergne)
- Subjects
[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.