Dioxins are lipophilic chemicals that resist biological and environmental degradation, making them persistent in the environment. Seventy-five dioxin congeners and 135 furan congeners comprise the complex mixture of dioxins, of which 7 and 10 congeners, respectively, are capable of binding to and activating the aryl hydrocarbon receptor (AhR) (Van den Berg et al. 2006). Of the 209 polychlorinated biphenyl (PCB) congeners, 12 have the potential to activate the AhR (Van den Berg et al. 2006). Among these, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic environmental contaminant in animal studies (Denison and Nagy 2003) and thus is significant for human health (Birnbaum 1994; Larsen 2006; Schecter et al. 2006). Dioxins are by-products of industrial processes such as chlorine bleaching of pulp and paper, the manufacture of certain pesticides, and incineration of medical waste and plastics (Anderson and Fisher 2002; Hewitt et al. 2006; Lin et al. 2006; Thornton et al. 1996). Resistance to degradation leads to bioaccumulation and biomagnification of dioxins in the food chain. Inclusion of animal fat in animal feed is another route of dioxin entry to the food supply and a source of exposure (Hoogenboom et al. 2007). Human exposure is primarily through consumption of contaminated food, especially high-fat foods such as milk, cheese, meat, some fish, fast foods, and breast milk (Schecter and Li 1997; Schecter et al. 1997, 1998a, 1998b, 2001). Residue levels have been measured in the serum of pregnant Canadian women with a mean ± SE of 0.34 ± 0.01 pg TCDD/g lipid (Foster et al. 2005), lower than the serum concentrations measured in pregnant German women (range, 4.34–97.3 pg TCDD/g lipid; Wittsiepe et al. 2007) and women from central Taiwan (mean, 6.7 pg TCDD/g lipid; Wang et al. 2004). The different concentrations in these studies reflect differences in measurement techniques; a gene reporter assay [chemical-activated luciferase gene expression (CALUX) assay] and high- resolution mass spectrometry have been used to quantify World Health Organization (WHO) toxic equivalence quotient concentrations or dioxin-like activity. Regardless, these studies demonstrate that the fetus is exposed to dioxin-like chemicals during a critical window of development. The half-life of dioxin ranges from 5.8 to 14.1 years in humans and is influenced by body composition, with higher body fat associated with a longer half-life (Michalek et al. 1992, 1996, 2002). By comparison, the half-life ranges from 10 to 15 days in mice (Grassman et al. 1998) and is approximately 3 weeks in rats (Rose et al. 1976). Given the documented adverse effects on the adult rat reproductive tract after a single in utero exposure to TCDD, developmental exposure and differences in the half-life of TCDD could have important consequences for the relevance of results from animal studies for human health. Experimental evidence demonstrates that most toxic actions of TCDD are mediated through the AhR, which is a ligand-activated transcription factor (Robles et al. 2000) ubiquitously expressed in many human tissues and cell lines (Dolwick et al. 1993; Harper et al. 1991; Li et al. 1998). AhR is inactive and unbound in the cytoplasm. Upon ligand binding, the AhR binds to the aryl hydrocarbon nuclear translocator (ARNT) protein, resulting in translocation to the nucleus, where the ligand–AhR–ARNT complex binds to response elements in the promoter of AhR-regulated genes (dioxin response element). In humans, exposure to dioxins has been linked to a variety of adverse effects, including chloracne (Baccarelli et al. 2005a, 2005b), immune suppression (Weisglas-Kuperus et al. 2000), thyroid dysfunction (Koopman-Esseboom et al. 1994; Pavuk et al. 2003), increased risk for diabetes (Longnecker and Michalek 2000) and endometriosis (Eskenazi et al. 2000; Heilier et al. 2007), impaired neurodevelopment (Koopman-Esseboom et al. 1996; Vreugdenhil et al. 2002), and reproductive/developmental abnormalities (Dimich-Ward et al. 1996; Halldorsson et al. 2009; Leijs et al. 2008; Mocarelli et al. 1996, 2000, 2008). A number of studies attribute background dioxin exposure to adverse effects on development or pathophysiology in multiple organ systems. However, the results of these studies are controversial, and it is not possible to establish causal associations; thus, animal studies are essential. In animal studies, dioxin exposure has been shown to cause thymic atrophy (Chahoud et al. 1989), immune suppression (Hogaboam et al. 2008), hepatotoxicity (Chahoud et al. 1989), and impaired thyroid function (Fan and Rozman 1995; Henry and Gasiewicz 1987; Kohn 2000). Of these, TCDD effects on the reproductive tract are the most notable, owing to the sensitivity of this system. Developmental exposure to TCDD induces placental dysfunction (Ishimura et al. 2006; Kawakami et al. 2006); decreased offspring survival (Bell et al. 2007a, 2007b; Bjerke and Peterson 1994; Flaws et al. 1997; Gray and Ostby 1995; Gray et al. 1995, 1997b; Roman et al. 1995; Sommer et al. 1996); developmental defects of the palate, heart, and kidney (Aragon et al. 2008; Birnbaum et al. 1989; Theobald and Peterson 1997) and reproductive tract of males (Gray et al. 1997a; Vezina et al. 2008) and females (Flaws et al. 1997; Gray and Ostby 1995; Gray et al. 1997b; Heimler et al. 1998; Wolf et al. 1999); decreased weights of reproductive organs (Bjerke and Peterson 1994; Gray and Ostby 1995; Gray et al. 1995, 1997a; Loeffler and Peterson 1999; Mably et al. 1992a, 1992c; Moore et al. 1985; Ohsako et al. 2001, 2002; Wolf et al. 1999); delayed onset of sexual maturation (Bjerke et al. 1994; Faqi and Chahoud 1998; Flaws et al. 1997; Gray et al. 1997a, 1997b); feminization of males (Bjerke et al. 1994; Mably et al. 1992b); and decreased sperm counts (Faqi et al. 1998; Gray et al. 1995, 1997a; Mably et al. 1992a; Sommer et al. 1996). Of the reproductive/developmental effects of TCDD, decreased sperm counts are considered as the most sensitive outcome. Mably et al. (1992a) reported that epididymal sperm counts were significantly decreased in rats after a single exposure to 0.064 μg TCDD/kg on gestational day (GD) 15. Similarities in spermatogenesis between rats and humans, together with the marked apparent sensitivity of sperm production to the adverse effects of TCDD exposure, has yielded the establishment of a tolerable daily intake of approximately 2 pg/kg/day for TCDD and related compounds by the WHO [Joint FAO/WHO (Food and Agriculture Organization/WHO) Expert Committee on Food Additives 2001]. However, results of recent studies have been unable to reproduce the effect of in utero TCDD exposure on epididymal sperm counts (Bell et al. 2007a, 2007c; Ohsako et al. 2001; Yonemoto et al. 2005), although one study did report a decrease in epididymal sperm counts with a TCDD concentration of 1 μg/kg (Ohsako et al. 2001). Reasons for the divergent results are unclear, but differences in methodology used to quantify sperm count could account for the observed differences. In addition, disparities in dioxin toxicokinetics and species sensitivity to dioxins raise important questions concerning the use of animal models to estimate human risk (Adler 1996; Aylward et al. 2005; Simanainen et al. 2004a, 2004b). Therefore, the objective of this review is to evaluate the effects of TCDD exposure on spermatogenesis. We undertook a systematic review of the literature and performed a PubMed (National Center for Biotechnology Information 2009) search using the following search terms: dioxin, TCDD, reproductive, developmental, testis, spermatogenesis, sperm, semen quality, fertility, and fecundity. The search yielded 4,224 titles; duplicate papers, review articles, letters to the editor, and articles describing tissue culture or nonmammalian studies were excluded from further analysis. The abstracts of all remaining articles were read by two independent investigators and were included for further analysis if they fit the following criteria: a) the paper was published in English, b) the abstract described an epidemiologic or animal study in which TCDD or dioxin-like chemicals were either measured in human tissues or administered to experimental animals; and c) effects on reproductive organs, sperm count, and sperm characteristics were assessed. From the original data set, 33 articles described the reproductive toxicity of TCDD; of these, 9 specifically examined the effect of a single in utero TCDD exposure on spermatogenesis. For each paper, we extracted details of the experimental methods and the resulting data for further study.