1. Intra- and inter-operator variability in MRI-based manual segmentation of HCC lesions and its impact on dosimetry
- Author
-
Elise C. Covert, Kellen Fitzpatrick, Justin Mikell, Ravi K. Kaza, John D. Millet, Daniel Barkmeier, Joseph Gemmete, Jared Christensen, Matthew J. Schipper, and Yuni K. Dewaraja
- Subjects
Uncertainty analysis ,Dosimetry ,Segmentation ,Radioembolization ,Observer studies ,Radionuclide therapy ,Medical physics. Medical radiology. Nuclear medicine ,R895-920 - Abstract
Abstract Purpose The aim was to quantify inter- and intra-observer variability in manually delineated hepatocellular carcinoma (HCC) lesion contours and the resulting impact on radioembolization (RE) dosimetry. Methods Ten patients with HCC lesions treated with Y-90 RE and imaged with post-therapy Y-90 PET/CT were selected for retrospective analysis. Three radiologists contoured 20 lesions manually on baseline multiphase contrast-enhanced MRIs, and two of the radiologists re-contoured at two additional sessions. Contours were transferred to co-registered PET/CT-based Y-90 dose maps. Volume-dependent recovery coefficients were applied for partial volume correction (PVC) when reporting mean absorbed dose. To understand how uncertainty varies with tumor size, we fit power models regressing relative uncertainty in volume and in mean absorbed dose on contour volume. Finally, we determined effects of segmentation uncertainty on tumor control probability (TCP), as calculated using logistic models developed in a previous RE study. Results The average lesion volume ranged from 1.8 to 194.5 mL, and the mean absorbed dose ranged from 23.4 to 1629.0 Gy. The mean inter-observer Dice coefficient for lesion contours was significantly less than the mean intra-observer Dice coefficient (0.79 vs. 0.85, p
- Published
- 2022
- Full Text
- View/download PDF