34 results on '"Daniel Alves Dalla Corte"'
Search Results
2. First Example of Protonation of Ruddlesden–Popper Sr2IrO4: A Route to Enhanced Water Oxidation Catalysts
- Author
-
Alexis Grimaud, Paul E. Pearce, Daniel Alves Dalla Corte, Domitille Giaume, Ronghuang Zhang, Gwenaëlle Rousse, Heifang Li, Artem M. Abakumov, Michaël Deschamps, Vanessa Pimenta, Jordi Cabana, Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Université d'Orléans (UO), Chimie du solide et de l'énergie (CSE), and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemical transformation ,Materials science ,Hydrogen ,Electrolysis of water ,business.industry ,General Chemical Engineering ,Inorganic chemistry ,chemistry.chemical_element ,Protonation ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Catalysis ,Renewable energy ,chemistry ,Value (economics) ,Materials Chemistry ,0210 nano-technology ,business - Abstract
International audience; Water electrolysis is considered as a promising way to store and convert excess renewable energies into hydrogen, which is of high value for many chemical transformation processes such as the Haber-Bosch process. However, to allow for the widespread of the polymer electrolyte membrane water electrolysis (PEMWE) technology, the main challenge lies in the design of robust catalysts for oxygen evolution reaction (OER) under acidic conditions since most of transition metal-based oxides undergo structural degradation under these harsh acidic conditions. To broaden the variety of candidate materials as OER catalysts, a cation-exchange synthetic route was recently explored to reach crystalline pronated iridates with unique structural properties and stability. In this work, a new protonated phase H 3.6 IrO 4 •3.7H 2 O, prepared via Sr 2+ /H + cation exchange at room temperature starting from the parent Ruddlesden-Popper Sr 2 IrO 4 phase, is described. This is the first discovery of crystalline protonated iridate forming from a perovskite-like phase, adopting a layered structure with apex-linked IrO 6 octahedra. Furthermore, H 3.6 IrO 4 •3.7H 2 O is found to possess not only an enhanced specific catalytic activity, superior to that of other perovskite-based iridates, but also a mass activity comparable to that of nanosized IrO x particles, while showing an improved catalytic stability owing to its ability to reversibly exchange protons in acid.
- Published
- 2020
- Full Text
- View/download PDF
3. A Dissolution/Precipitation Equilibrium on the Surface of Iridium‐Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media
- Author
-
Moulay Tahar Sougrati, Alexis Grimaud, Wei Yin, Manel Ben Osman, Ronghuan Zhang, Nicolas Dubouis, Daniel Alves Dalla Corte, Domitille Giaume, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut de Recherche de Chimie Paris (IRCP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ministère de la Culture (MC), ANR-17-CE05-0008,MIDWAY,Contrôle des Interfaces Electrochimiques pour de meilleurs electrocatalyseurs pour l'oxydation de l'eau(2017), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)
- Subjects
iridium dissolution ,Materials science ,oxygene volution reaction ,010405 organic chemistry ,Precipitation (chemistry) ,Inorganic chemistry ,perovskites ,Oxygen evolution ,chemistry.chemical_element ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Medicine ,General Chemistry ,Pourbaix diagram ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Catalysis ,0104 chemical sciences ,chemistry ,Pourbaix diagrams ,Iridium ,Deposition (chemistry) ,Dissolution - Abstract
International audience; Recently, Ir (V)-based perovskite-like materials were proposed as oxygen evolution reaction (OER) catalysts in acidic media with promising performance. However, iridium dissolution and surface reconstruction were observed, questioning the real active sites on the surface of these catalysts. In this work, Sr2MIr (V) O6 (M = Fe, Co) and Sr2Fe0.5Ir0.5 (V) O4 were explored as OER catalysts in acidic media. Their activities were observed to be roughly equal to that previously reported for La2LiIrO6 or Ba2PrIrO6. Coupling electrochemical measurements with iridium dissolution studies under chemical or electrochemical conditions, we show that the deposition of an IrOx layer on the surface of these perovskites is responsible for their OER activity. Furthermore, we experimentally reconstruct the iridium Pourbaix diagram which will help guide future research in controlling the dissolution/precipitation equilibrium of iridium species for the design of better Ir-based OER catalysts.
- Published
- 2019
- Full Text
- View/download PDF
4. Making Advanced Electrogravimetry as an Affordable Analytical Tool for Battery Interface Characterization
- Author
-
Pierre Lemaire, Daniel Alves Dalla Corte, Jean-Marie Tarascon, Thomas Dargon, Hubert Perrot, Ozlem Sel, Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interfaces et Systèmes Electrochimiques (LISE), and Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Battery (electricity) ,Interface characterization ,Chemistry ,Interface (computing) ,Flatness (systems theory) ,010401 analytical chemistry ,Battery ,Nanotechnology ,Quartz crystal microbalance ,Electrolyte ,010402 general chemistry ,01 natural sciences ,EQCM ,0104 chemical sciences ,Analytical Chemistry ,Characterization (materials science) ,Solvation shell ,Electrode-Electrolyte Interface ,LiFePO4 ,Electrogravimetry ,LiFePO 4 ,[CHIM]Chemical Sciences ,Cell development - Abstract
Numerous sophisticated diagnostic techniques have been designed to monitor electrode-electrolyte interfaces that mainly govern the lifetime and reliability of batteries. Among them is the electrochemical quartz crystal microbalance (EQCM) that offers valuable insights of the interfaces once the required conditions of the deposited film in terms of viscoelastic and hydrodynamic properties are fulfilled. Herein, we propose a friendly protocol that includes the elaboration of a homogeneous deposit by spray coating followed by QCM measurements at multiharmonic frequencies to ensure the film flatness and rigidity for collecting meaningful data. Moreover, for easiness of the measurements, we report the design of a versatile and airtight EQCM cell setup that can be used either with aqueous or non-aqueous electrolytes. We also present, using a model battery material, LiFePO4, how dual frequency and motional resistance monitoring during electrochemical cycling can be used as a well-suitable indicator for achieving reliable and reproducible electrogravimetric measurements. We demonstrate through this study the essential role of the solvent assisting lithium-ion insertion at the LiFePO4 interface with a major outcome of solvent-dependent interfacial behavior. Namely, in aqueous media, we prove a near-surface desolvation of lithium ions from their water solvation shell as compared with organic molecules. This spatial dissimilarity leads to a smoother Li-ion transport across the LFP-H2O interface, hence accounting for the difference in rate capability of LFP in the respective electrolytes. Overall, we hope our analytical insights on interfacial mechanisms will help in gaining a wider acceptance of EQCM-based methods from the battery community.
- Published
- 2020
- Full Text
- View/download PDF
5. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors
- Author
-
Steven T. Boles, Hwa Yaw Tam, Jiaqiang Huang, Betar M. Gallant, E. R. Logan, Julien Bonefacino, Charles Delacourt, Laura Albero Blanquer, Daniel Alves Dalla Corte, Jean-Marie Tarascon, J. R. Dahn, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Isothermal microcalorimetry ,Battery (electricity) ,Optical fiber ,Materials science ,Energy Engineering and Power Technology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Heat capacity ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Reliability (semiconductor) ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,Fiber Bragg grating ,law ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Thermal ,ComputingMilieux_MISCELLANEOUS ,Renewable Energy, Sustainability and the Environment ,business.industry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Fuel Technology ,Optoelectronics ,0210 nano-technology ,business - Abstract
Monitoring the dynamic chemical and thermal state of a cell during operation is crucial to making meaningful advancements in battery technology as safety and reliability cannot be compromised. Here we demonstrate the feasibility of incorporating optical fibre Bragg grating sensors into commercial 18650 cells. By adjusting fibre morphologies, wavelength changes associated with both temperature and pressure are decoupled with high accuracy, which allows tracking of chemical events such as solid electrolyte interphase formation and structural evolution. We also demonstrate how multiple sensors are used to determine the heat generated by the cell without resorting to microcalorimetry. Unlike with conventional isothermal calorimetry, the cell’s heat capacity contribution is readily assessed, allowing for full parametrization of the thermal model. Collectively, these findings offer a scalable solution for screening electrolyte additives, rapidly identifying the best formation processes of commercial cells and designing battery thermal management systems with enhanced safety. Tracking a battery’s chemical and thermal states during operation offers important information on its reliability and lifetime. Here the authors develop optical fibre sensors and decouple temperature and pressure variations in the measurements inside of batteries, allowing chemical and thermal events to be monitored with high accuracy.
- Published
- 2020
- Full Text
- View/download PDF
6. Revealing the Impact of Electrolyte Composition for Co-Based Water Oxidation Catalysts by the Study of Reaction Kinetics Parameters
- Author
-
Zhichuan J. Xu, Alexis Grimaud, Yan Duan, Daniel Alves Dalla Corte, Jiaqiang Huang, Nicolas Dubouis, Vanessa Pimenta, Chimie du solide et de l'énergie (CSE), and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010405 organic chemistry ,Chemistry ,Kinetics ,Oxygen evolution ,Pre-exponential factor ,General Chemistry ,Activation energy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Chemical kinetics ,Chemical engineering ,Electrolyte composition ,ComputingMilieux_MISCELLANEOUS - Abstract
Recent studies have revealed the critical role played by the electrolyte composition on the oxygen evolution reaction (OER) kinetics on the surface of highly active catalysts. While numerous works ...
- Published
- 2020
- Full Text
- View/download PDF
7. Impact of Structural Polymorphism on Ionic Conductivity in Lithium Copper Pyroborate Li6CuB4O10
- Author
-
Jean-Marie Tarascon, Daniel Alves Dalla Corte, Florian Strauss, Gwenaëlle Rousse, Carlotta Giacobbe, Robert Dominko, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), European Synchrotron Radiation Facility (ESRF), Laboratory for Materials Electrochemistry, and National Institute of Chemistry
- Subjects
Chemistry ,Analytical chemistry ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Crystal structure ,Conductivity ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Copper ,0104 chemical sciences ,Dielectric spectroscopy ,Inorganic Chemistry ,Polymorphism (materials science) ,visual_art ,visual_art.visual_art_medium ,Ionic conductivity ,Ceramic ,Physical and Theoretical Chemistry ,0210 nano-technology ,Boron - Abstract
The search for high Li-ion conducting ceramics has regained tremendous interest triggered by the renaissance of the all-solid-state battery. Within this context we herein reveal the impact of structural polymorphism of lithium copper pyroborate Li6CuB4O10 on its ionic conductivity. Using combined in situ synchrotron X-ray and neutron powder diffraction, a structural and synthetic relationship between α- and β-Li6CuB4O10 could be established and its impact on ionic conductivity evolution was followed using electrochemical impedance spectroscopy. We show that the high temperature form of Li6CuB4O10 exhibits a high Li-ion conductivity (2.7 mS cm–1 at 350 °C) and solve its crystal structure for the first time. Our results emphasize the significant impact of structural phase transitions on ionic conductivity and show possible high Li-ion mobility within borate based compounds.
- Published
- 2018
- Full Text
- View/download PDF
8. Polymorphism in Li4Zn(PO4)2 and Stabilization of its Structural Disorder to Improve Ionic Conductivity
- Author
-
Jean-Marie Tarascon, Gwenaëlle Rousse, Sujoy Saha, Daniel Alves Dalla Corte, Matthieu Courty, Ignacio Blazquez Alcover, Université Pierre et Marie Curie - Paris 6 (UPMC), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Collège de France - Chaire Chimie du solide et énergie, Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), and Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Crystal chemistry ,General Chemical Engineering ,02 engineering and technology ,General Chemistry ,Crystal structure ,Conductivity ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Crystallography ,Polymorphism (materials science) ,Materials Chemistry ,Fast ion conductor ,[CHIM]Chemical Sciences ,Ionic conductivity ,Orthorhombic crystal system ,0210 nano-technology ,Monoclinic crystal system - Abstract
International audience; Realization of the vulnerability of current rechargeable battery systems drives the research of solid electrolytes. In the search for a new Li ion conductor, we explore the rich crystal chemistry of Li 4 Zn(PO 4) 2 which presents a low temperature monoclinic (α-) and a high temperature orthorhombic (β-) polymorph. We solved the crystal structure of the β-phase and found that it has a disordered Li/Zn-sublattice while showing the largest conductivity; however it could not be stabilized at room temperature by quenching. We discovered that the partial substitution of Zn 2+ with Ga 3+ in Li 4-x Zn 1-x Ga x (PO 4) 2 first leads to an intermediate β' phase. Increasing the Ga content to 0.5 mol pfu. enables to stabilize the pure β-phase at room temperature, which exhibits a conductivity by several orders of magnitudes higher than the pristine sample. The crystal structures of the new β'/β-phases have been solved to elucidate the conduction mechanism, which confirms the high sensitivity of ionic conductivity on disorder.
- Published
- 2018
- Full Text
- View/download PDF
9. Elucidating the Origin of the Electrochemical Capacity in a Proton-Based Battery H x IrO 4 via Advanced Electrogravimetry
- Author
-
Antonella Iadecola, Jean-Marie Tarascon, Pierre Lemaire, Hubert Perrot, Daniel Alves Dalla Corte, Ozlem Sel, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Centre for Social Evolution (CSE), Department of Plant and Environmental Sciences [Copenhagen], Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Department of Biology [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Laboratoire Interfaces et Systèmes Electrochimiques (LISE), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU)-Department of Biology [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), and Chaire Chimie du solide et énergie
- Subjects
Battery (electricity) ,aqueous battery ,Materials science ,Proton ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Nanotechnology ,02 engineering and technology ,proton insertion ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,EQCM ,0104 chemical sciences ,protonic phase H x IrO 4 ,[SPI]Engineering Sciences [physics] ,Electrogravimetry ,electrode-electrolyte interface ,[CHIM]Chemical Sciences ,General Materials Science ,0210 nano-technology - Abstract
International audience; Recently, because of sustainability issues dictated by societal demands, more importance has been given to aqueous systems and especially to proton-based battery. However, the mechanisms behind the processes leading to energy storage in such systems are still not elucidated. Under this scope, our study is structured on the selection of a model electrode material, the protonic phase H x IrO 4 and the scrutiny of the interfacial processes through suitable analytical tools. Herein, we employed operando Electrochemical Quartz Crystal Microbalance (EQCM) combined with Electrochemical Impedance Spectroscopy (EIS) to provide new insights into the mechanism intervening at the Electrode-Electrolyte Interface. Firstly, we demonstrated that not only the surface or near surface but the whole particle participates in the cationic redox process. Secondly, we proved the contribution of the proton on the overall potential window together with the incorporation of water at low potentials solely. This is explained by the fact that water molecules permit a further insertion of protons in the material by shielding the proton charge but at the expense of the proton kinetic properties. These findings shed new light on the importance of water molecules in the ion-insertion mechanisms taking place at the Electrode-Electrolyte Interface of aqueous proton-based batteries. Overall, the present results further highlight the richness of the EQCM based methods for the battery field in offering mechanistic insights that are crucial for the understanding of interfaces and charge storage in insertion compounds.
- Published
- 2020
- Full Text
- View/download PDF
10. Li-Rich Layered Sulfide as Cathode Active Materials in All-Solid-State Li–Metal Batteries
- Author
-
Daniel Alves Dalla Corte, Sujoy Saha, Florencia Marchini, Jean-Marie Tarascon, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), and Collège de France - Chaire Chimie du solide et énergie
- Subjects
Materials science ,Sulfide ,Oxide ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,law.invention ,Metal ,chemistry.chemical_compound ,law ,General Materials Science ,Polarization (electrochemistry) ,chemistry.chemical_classification ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Cathode ,0104 chemical sciences ,Anode ,chemistry ,Chemical engineering ,visual_art ,Electrode ,visual_art.visual_art_medium ,0210 nano-technology ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
International audience; Great hopes are placed on all-solid state Li-metal batteries (ASSB's) to boost the energy density of the current Li-ion technology. Though, these devices still present a number of unresolved issues that keep them far from commercialization such as interfacial instability, lithium dendrite formation and lack of mechanical integrity during cycling. To mitigate these limiting aspects, the most advanced ASSB systems presently combine a sulfide or oxide-based solid electrolyte (SE) with a coated Li-based oxide as positive electrode and a lithium anode. Through this work we propose a different twist by switching from layered oxides to layered sulfides as active cathode materials. Herein we present the performance of a Li-rich layered sulfide of formula Li 1.13 Ti 0.57 Fe 0.3 S 2 (LTFS) in room temperature operating all-solid state batteries, using β-Li 3 PS 4 as a solid electrolyte and both InLi and Li anode materials. These batteries exhibit good cyclability, small polarization and, in the case of Li anode, no irreversible capacity. Taking advantage of the stable LTFS/β-Li 3 PS 4 interface, we also propose the use of LTFS mixed with an 2 oxide-based cathode material in the positive electrode of an ASSB. Our proof of concept using LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) showed that the addition of a small amount of LTFS had a direct positive impact in the battery performance, ascribed to the improvement of the oxide cathode/sulfide SE interface.
- Published
- 2020
- Full Text
- View/download PDF
11. Elucidating the Origin of the Electrochemical Capacity in a Proton-Based Battery H
- Author
-
Pierre, Lemaire, Ozlem, Sel, Daniel, Alves Dalla Corte, Antonella, Iadecola, Hubert, Perrot, and Jean-Marie, Tarascon
- Abstract
Recently, because of sustainability issues dictated by societal demands, more importance has been given to aqueous systems and especially to proton-based batteries. However, the mechanisms behind the processes leading to energy storage in such systems are still not elucidated. Under this scope, our study is structured on the selection of a model electrode material, the protonic phase H
- Published
- 2019
12. Low-cost high-efficiency system for solar-driven conversion of CO
- Author
-
Tran Ngoc, Huan, Daniel Alves, Dalla Corte, Sarah, Lamaison, Dilan, Karapinar, Lukas, Lutz, Nicolas, Menguy, Martin, Foldyna, Silver-Hamill, Turren-Cruz, Anders, Hagfeldt, Federico, Bella, Marc, Fontecave, and Victor, Mougel
- Subjects
Commentaries - Abstract
Conversion of carbon dioxide into hydrocarbons using solar energy is an attractive strategy for storing such a renewable source of energy into the form of chemical energy (a fuel). This can be achieved in a system coupling a photovoltaic (PV) cell to an electrochemical cell (EC) for CO
- Published
- 2019
13. Low-cost high-efficiency system for solar-driven conversion of CO 2 to hydrocarbons
- Author
-
Lukas Lutz, Anders Hagfeldt, Sarah Lamaison, Nicolas Menguy, Tran Ngoc Huan, Marc Fontecave, Daniel Alves Dalla Corte, Silver-Hamill Turren-Cruz, Dilan Karapinar, Victor Mougel, Martin Foldyna, Federico Bella, Collège de France - Chaire Chimie des processus biologiques, Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique des interfaces et des couches minces [Palaiseau] (LPICM), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratory of Photomolecular Science (LSPM), Ecole Polytechnique Fédérale de Lausanne (EPFL), and Chaire Chimie des processus biologiques
- Subjects
Electrocatalysis ,PV–EC ,CO2 reduction ,Electrolyzer ,Copper dendrites ,Materials science ,copper dendrites ,electrocatalysis ,electrolyzer ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Electrochemical cell ,law.invention ,pv-ec ,law ,evolution ,ethylene ,[CHIM]Chemical Sciences ,Process engineering ,Multidisciplinary ,copper-oxide electrocatalyst ,catalysis ,business.industry ,Photovoltaic system ,021001 nanoscience & nanotechnology ,Solar energy ,electroreduction ,Cathode ,0104 chemical sciences ,Renewable energy ,Anode ,Chemical energy ,water oxidation ,13. Climate action ,cells ,0210 nano-technology ,business ,Efficient energy use - Abstract
Conversion of carbon dioxide into hydrocarbons using solar energy is an attractive strategy for storing such a renewable source of energy into the form of chemical energy (a fuel). This can be achieved in a system coupling a photovoltaic (PV) cell to an electrochemical cell (EC) for CO2 reduction. To be beneficial and applicable, such a system should use low-cost and easily processable photovoltaic cells and display minimal energy losses associated with the catalysts at the anode and cathode and with the electrolyzer device. In this work, we have considered all of these parameters altogether to set up a reference PV–EC system for CO2 reduction to hydrocarbons. By using the same original and efficient Cu-based catalysts at both electrodes of the electrolyzer, and by minimizing all possible energy losses associated with the electrolyzer device, we have achieved CO2 reduction to ethylene and ethane with a 21% energy efficiency. Coupled with a state-of-the-art, low-cost perovskite photovoltaic minimodule, this system reaches a 2.3% solar-to-hydrocarbon efficiency, setting a benchmark for an inexpensive all–earth-abundant PV–EC system. ISSN:0027-8424 ISSN:1091-6490
- Published
- 2019
- Full Text
- View/download PDF
14. Molecular grafting on silicon anodes: artificial Solid-Electrolyte Interphase and surface stabilization
- Author
-
Georges Caillon, Christian Jordy, Khalid Lahlil, Jean-Noël Chazalviel, Anne Chantal Gouget-Laemmel, Michel Rosso, Thierry Gacoin, François Ozanam, and Daniel Alves Dalla Corte
- Subjects
Amorphous silicon ,Materials science ,Silicon ,General Chemical Engineering ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Grafting ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Monolayer ,Electrode ,Interphase ,0210 nano-technology - Abstract
Silicon electrodes represent a great potential on increasing the energy density of Li-ion batteries, but stabilization during cycling is an important issue to be solved for enabling a reliable application. Such stabilization has been sought for by surface grafting of hydrogenated amorphous silicon (a-Si:H) electrodes. Grafting a molecular monolayer of carboxydecyl moieties (acid grafting) or poly(oxoethylene) (PEG) chains decreases the irreversible capacity and stabilizes the solid-electrolyte interphase (SEI) on a-Si:H. FTIR spectroscopy confirms a breathing behavior of the SEI layer at each step of charge/discharge through in-situ experiments, but also shows that acid grafting reduces this behavior to a large extent. In this way, acid grafting decreases the amount of charge irreversibly consumed for the formation of a spontaneous SEI and stabilizes the SEI along the electrochemical cycles.
- Published
- 2016
- Full Text
- View/download PDF
15. Lithiation Mechanism of Methylated Amorphous Silicon Unveiled by Operando ATR-FTIR Spectroscopy
- Author
-
Jean-Noël Chazalviel, Michel Rosso, Bon Min Koo, Daniel Alves Dalla Corte, François Ozanam, Fouad Maroun, Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Chimie du solide et de l'énergie (CSE), and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Amorphous silicon ,Materials science ,Renewable Energy, Sustainability and the Environment ,Atr ftir spectroscopy ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,General Materials Science ,0210 nano-technology ,Mechanism (sociology) ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
- Full Text
- View/download PDF
16. Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries
- Author
-
Daniel Alves Dalla Corte, Gaurav Assat, Charles Delacourt, and Jean-Marie Tarascon
- Subjects
Battery (electricity) ,Diffusion ,Inorganic chemistry ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Oxygen ,Redox ,law.invention ,chemistry.chemical_compound ,law ,Materials Chemistry ,Renewable Energy, Sustainability and the Environment ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Cathode ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Hysteresis ,chemistry ,0210 nano-technology - Abstract
Li-rich layered oxides, e.g. Li[Li 0.20 Ni 0.13 Mn 0.54 Co 0.13 ]O 2 (LR-NMC), lead high energy density Li-ion battery cathodes, thanks to the reversible redox of oxygen anions that boost charge storage capacity. Unfortunately, their commercialization has been stalled by practical issues (i.e. voltage hysteresis, poor rate capability, and voltage fade) and hence it is necessary to investigate whether these problems are intrinsically inherent to anionic redox and its structural consequences. To this end, the 'model' Li-rich layered oxide Li 2 Ru 0.75 Sn 0.25 O 3 (LRSO) is here used as a fertile test-bed for scrutinizing the effects of cationic and anionic redox independently since they are neatly isolated at low and high potentials, respectively. Through an arsenal of electrochemical techniques, we demonstrate that voltage hysteresis is triggered by anionic redox and grows progressively with deeper oxidation of oxygen in conjunction with the deterioration of both interfacial charge-transfer kinetics and bulk diffusion coefficient. We equally show that this anionic-driven poor kinetics keeps deteriorating further with cycling and we also find that voltage fades faster if oxygen is kept oxidized for longer. Our findings, which are in fact harsher for LR-NMC, convey caution that anionic redox risks practical problems; hence, when chasing larger capacities with this class of materials, we encourage considering real-world applications.
- Published
- 2016
- Full Text
- View/download PDF
17. Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li6CuB4O10
- Author
-
Matthieu Saubanère, Daniel Alves Dalla Corte, Florian Strauss, Gwenaëlle Rousse, Mohamed Ben hassine, Matthieu Courty, Jean-Marie Tarascon, Robert Dominko, Hervé Vezin, Mingxue Tang, Université Pierre et Marie Curie - Paris 6 (UPMC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), National Institute of Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Univeristy of Ljubljana, Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL), and Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,Context (language use) ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Redox ,Copper ,0104 chemical sciences ,law.invention ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,law ,Ionic conductivity ,Lithium ,Density functional theory ,Physical and Theoretical Chemistry ,0210 nano-technology ,Electron paramagnetic resonance - Abstract
In the search for new cathode materials for Li-ion batteries, borate (BO33-) based compounds have gained much interest during the last two decades due to the low molecular weight of the borate polyanions which leads to active materials with increased theoretical capacities. In this context we herein report the electrochemical activity versus lithium and the ionic conductivity of a diborate or pyroborate B2O54- based compound, Li6CuB4O10. By combining various electrochemical techniques with in situ X-ray diffraction, we show that this material can reversibly insert/deinsert limited amounts of lithium (~0.3 Li+) in a potential window ranging from 2.5 to 4.5 V vs. Li+/Li0. We demonstrate, via electron paramagnetic resonance (EPR), that such an electrochemical activity centered near 4.25 V vs. Li+/Li0 is associated with the Cu3+/Cu2+ redox couple, confirmed by density functional theory (DFT) calculations. Another specificity of this compound lies in its different electrochemical behavior when cycled down to 1 V vs. Li+/Li0 which leads to the extrusion of elemental copper via a conversion type reaction as deduced by transmission electron microscopy (TEM). Lastly, we probe the ionic conductivity by means of AC and DC impedance measurements as a function of temperature and show that Li6CuB4O10 undergoes a reversible structural transition around 350 °C, leading to a surprisingly high ionic conductivity of ~1.4 mS cm-1 at 500 °C.
- Published
- 2016
- Full Text
- View/download PDF
18. Competition between Metal Dissolution and Gas Release in Li-Rich Li 3 Ru y Ir 1– y O 4 Model Compounds Showing Anionic Redox
- Author
-
Quentin Jacquet, Gwenaëlle Rousse, Matthieu Saubanère, Antonella Iadecola, Jean-Marie Tarascon, Erik J. Berg, Marie-Liesse Doublet, Daniel Alves Dalla Corte, Louis Lemarquis, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Paul Scherrer Institute (PSI), Chaire Chimie du solide et énergie, Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Absorption spectroscopy ,020209 energy ,General Chemical Engineering ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,Mass spectrometry ,Redox ,Ultraviolet visible spectroscopy ,Chemical engineering ,0202 electrical engineering, electronic engineering, information engineering ,Materials Chemistry ,Degradation (geology) ,[CHIM]Chemical Sciences ,Density functional theory ,0210 nano-technology ,Dissolution - Abstract
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b02955. Crystallographic data, additional Rietveld refinements, and EXAFS analysis (PDF) PDF cm8b02955_si_001.pdf (1.91 MB); International audience; Li-ion batteries have experienced tremendous progress over the past decade; however, their energy density should still be increased to power electric vehicles. Following this aim, the energy density of the cathode material can be drastically increased by making use of anionic redox, although it often comes along with material degradation. In this study, through a detailed analysis of the charge compensation mechanism of Li3RuO4 by online electrochemical mass spectrometry, X-ray absorption spectroscopy, and ultraviolet spectroscopy, we unveiled a new degradation mechanism for a cathode material showing anionic redox, namely the dissolution of Ru forming RuO4/RuO4– species with limited release of gas from the material. We show that this dissolution can be effectively tackled by substituting Ru with Ir. However, such a strategy leads to a massive increase in the release of O2 gas at the end of the charge. Density functional theory calculations prove that the relative stability of the end members RuO4 and IrO4 versus oxygen release is at the origin of this competition between metal dissolution and gas release.
- Published
- 2018
- Full Text
- View/download PDF
19. Assessment of the Electrochemical Stability of Carbonate-Based Electrolytes in Na-Ion Batteries
- Author
-
Nathalie Madern, Wei Yin, Guochun Yan, Jean-Marie Tarascon, Daniel Alves-Dalla-Corte, Grégory Gachot, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), and Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,020209 energy ,Inorganic chemistry ,02 engineering and technology ,Electrolyte ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrochemistry ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,chemistry ,0202 electrical engineering, electronic engineering, information engineering ,Materials Chemistry ,Carbonate ,0210 nano-technology - Abstract
International audience; The large abundance of Na combined with the feasibility of Na-based insertion compounds, such as Na3V2(PO4)(2)F-3, makes the Na-ion battery an attractive technology compared with Li-ion battery for a few applications. Nonetheless, one identified limitation of the Na3V2(PO4)(2)F-3/HC system is its poor long-term cycling performance at elevated temperature, hence the sorely need to screen the proper electrolyte formulation. Here, we report a thorough survey aiming to assess the pros and cons of cyclic vs. linear carbonates with respect to the performances of Na3V2(PO4)(2)F-3/HC cells. Through complementary in-situ UV and CV analytical techniques we reveal the formation of soluble species stemming from the partial decomposition of linear carbonates (DMC and EMC) in reduction into soluble products, hence stressing their failure to provide a stable solid electrolyte interphase (SEI) at the hard carbon electrode and by the same token accounting for the poor performance of the overall cell. We discuss the decomposition reaction paths, and propose a shuttle mechanism to account for the cell deterioration. Our results, which underscores the detrimental effects of linear carbonates in full Na-ion Na3V2(PO4)(2)F-3/HC cells, should serve as an impetus to identify superior electrolyte formulation for increasing the high temperature robustness of this technology. (C) 2018 The Electrochemical Society.
- Published
- 2018
- Full Text
- View/download PDF
20. Methylated silicon: A longer cycle-life material for Li-ion batteries
- Author
-
A. Cheriet, Daniel Alves Dalla Corte, Catherine Henry de Villeneuve, Noureddine Gabouze, Larbi Touahir, Aissa Keffous, Ionel Solomon, Michel Rosso, François Ozanam, Jean-Noël Chazalviel, Laboratoire de physique de la matière condensée (LPMC), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Amorphous silicon ,Materials science ,Silicon ,Inorganic chemistry ,Energy Engineering and Power Technology ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,chemistry.chemical_compound ,Plasma-enhanced chemical vapor deposition ,[CHIM]Chemical Sciences ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Renewable Energy, Sustainability and the Environment ,Nanocrystalline silicon ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Anode ,Amorphous solid ,Chemical engineering ,chemistry ,Electrode ,0210 nano-technology ,Carbon - Abstract
Using Plasma Enhanced Chemical Vapor Deposition, one can prepare methylated amorphous silicon thin-layer anodes for Li-ion batteries exhibiting good cyclability. The properties of that material are investigated here in view of this target application. In comparison with pure amorphous silicon prepared in the same conditions, the improvement is twofold: longer lifetime, and capability of working with thicker electrodes. For example, capacity retention after 100 cycles of 150 nm thick layers with 10% carbon content is almost 70% larger than that of pure a-Si layers. The observed improvement is attributed to mechanical softening of amorphous Si by incorporation of CH3 groups.
- Published
- 2013
- Full Text
- View/download PDF
21. Synthesis, Structure, and Electrochemical Properties of K-Based Sulfates K
- Author
-
Laura, Lander, Gwenaëlle, Rousse, Dmitry, Batuk, Claire V, Colin, Daniel Alves, Dalla Corte, and Jean-Marie, Tarascon
- Abstract
Stabilizing new host structures through potassium extraction from K-based polyanionic materials has been proven to be an interesting approach to develop new Li
- Published
- 2017
22. Synthesis, structure, and electrochemical properties of k-based sulfates <tex>K_{2}M_{2}(SO_{4})_{3}$</tex>) with M = Fe and Cu
- Author
-
Gwenaëlle Rousse, Jean-Marie Tarascon, Laura Lander, Claire V. Colin, Dmitry Batuk, Daniel Alves Dalla Corte, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université Pierre et Marie Curie - Paris 6 (UPMC), University of Antwerp (UA), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Matériaux, Rayonnements, Structure (MRS)
- Subjects
Diffraction ,Langbeinite ,Chemistry ,Potassium ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Synchrotron ,0104 chemical sciences ,law.invention ,Inorganic Chemistry ,Crystallography ,law ,Phase (matter) ,[CHIM]Chemical Sciences ,Neutron ,Orthorhombic crystal system ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
International audience; Stabilizing new host structures through potassium extraction from K-based polyanionic materials has been proven to be an interesting approach to develop new Li+/Na+ insertion materials. Pursuing the same trend, we here report the feasibility of preparing langbeinite “Fe2(SO4)3” via electrochemical and chemical oxidation of K2Fe2(SO4)3. Additionally, we succeeded in stabilizing a new K2Cu2(SO4)3 phase via a solid-state synthesis approach. This novel compound crystallizes in a complex orthorhombic structure that differs from that of langbeinite as deduced from synchrotron X-ray and neutron powder diffraction. Electrochemically, the performance of this new phase is limited, which we explain in terms of sluggish diffusion kinetics. We further show that K2Cu2(SO4)3 decomposes into K2Cu3O(SO4)3 on heating, and we report for the first time the synthesis of fedotovite K2Cu3O(SO4)3. Finally, the fundamental attractiveness of these S = 1/2 systems for physicists is examined by neutron magnetic diffraction, which reveals the absence of a long-range ordering of Cu2+ magnetic moments down to 1.5 K.
- Published
- 2017
- Full Text
- View/download PDF
23. Synthesis, Structure, and Electrochemical Properties of Na
- Author
-
Florian, Strauss, Gwenaëlle, Rousse, Moulay Tahar, Sougrati, Daniel Alves, Dalla Corte, Matthieu, Courty, Robert, Dominko, and Jean-Marie, Tarascon
- Abstract
In the search for new cathode materials for sodium ion batteries, the exploration of polyanionic compounds has led to attractive candidates in terms of high redox potential and cycling stability. Herein we report the synthesis of the two new sodium transition-metal pentaborates Na
- Published
- 2016
24. Synthesis, Structure, and Electrochemical Properties of Na3MB5O10 (M = Fe, Co) Containing M2+in Tetrahedral Coordination
- Author
-
Gwenaëlle Rousse, Daniel Alves Dalla Corte, Robert Dominko, Florian Strauss, Jean-Marie Tarascon, Matthieu Courty, Moulay Tahar Sougrati, Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), National Institute of Chemistry, Université Pierre et Marie Curie - Paris 6 (UPMC), Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), and Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Diffraction ,Chemistry ,Sodium ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Redox ,Synchrotron ,Cathode ,0104 chemical sciences ,law.invention ,Inorganic Chemistry ,Crystallography ,law ,Mössbauer spectroscopy ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,Boron - Abstract
International audience; In the search for new cathode materials for sodium ion batteries, the exploration of polyanionic compounds has led to attractive candidates in terms of high redox potential and cycling stability. Herein we report the synthesis of two new sodium transition metal pentaborates Na 3 MB 5 O 10 (M = Fe, Co), where Na 3 FeB 5 O 10 represents the first sodium iron borate reported at present. By means of synchrotron X-ray diffraction, we reveal a layered structure consisting of pentaborate B 5 O 10 groups connected through M 2+ in tetrahedral coordination, providing possible three-dimensional Na-ion migration pathways. Inspired by these structural features we examined the electrochemical performances versus sodium and show that Na 3 FeB 5 O 10 is active at an average potential of 2.5 V vs. Na + /Na 0 , correlated to the Fe 3+ /Fe 2+ redox couple as deduced from ex situ Mössbauer measurements. This contrasts with Na 3 CoB 5 O 10 which is electrochemical inactive. Moreover, we show that their electrochemical performances are kinetically limited as deduced by complementary AC/DC conductivity measurements, hence confirming once again the complexity in designing highly performant borate-based electrodes.
- Published
- 2016
- Full Text
- View/download PDF
25. ChemInform Abstract: A2VO(SO4)2(A: Li, Na) as Electrodes for Li-Ion and Na-Ion Batteries
- Author
-
Gwenaëlle Rousse, Daniel Alves Dalla Corte, Matthieu Saubanère, Marie-Liesse Doublet, Jean-Marie Tarascon, and Meiling Sun
- Subjects
Crystallography ,Chemistry ,Phase (matter) ,Electrode ,Vanadium ,chemistry.chemical_element ,Density functional theory ,General Medicine ,Crystal structure ,Alkali metal ,Electrochemistry ,Ion - Abstract
We herein report the synthesis, crystal structure, and electrochemical performances of a new Li-based vanadium oxysulfate phase, Li2VO(SO4)2, whose structure is built on vanadyl-containing VO5 square-based pyramids and SO4 groups linked by vertices to form layers. Li2VO(SO4)2 presents a redox activity at 4.7 V vs Li+/Li0 with a reversible capacity of 50 mA·h/g, while the chemically similar but structurally different Na2VO(SO4)2 delivers a capacity of 60 mA h/g at 4.5 V vs Na+/Na0. Density functional theory calculations are also performed to rationalize our findings in terms of redox activity and phase stability.
- Published
- 2016
- Full Text
- View/download PDF
26. A2VO(SO4)2 (A = Li, Na) as Electrodes for Li-Ion and Na-Ion Batteries
- Author
-
Gwenaëlle Rousse, Jean-Marie Tarascon, Marie-Liesse Doublet, Matthieu Saubanère, Daniel Alves Dalla Corte, Meiling Sun, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Phase stability ,General Chemical Engineering ,Vanadium ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,General Chemistry ,Crystal structure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Ion ,Crystallography ,chemistry ,Phase (matter) ,Electrode ,Materials Chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Density functional theory ,0210 nano-technology - Abstract
International audience; We herein report the synthesis, crystal structure, and electrochemical performances of a new Li-based vanadium oxysulfate phase, Li2VO(SO4)2, whose structure is built on vanadyl-containing VO5 square-based pyramids and SO4 groups linked by vertices to form layers. Li2VO(SO4)2 presents a redox activity at 4.7 V vs Li+/Li0 with a reversible capacity of 50 mA·h/g, while the chemically similar but structurally different Na2VO(SO4)2 delivers a capacity of 60 mA h/g at 4.5 V vs Na+/Na0. Density functional theory calculations are also performed to rationalize our findings in terms of redox activity and phase stability.
- Published
- 2016
- Full Text
- View/download PDF
27. ChemInform Abstract: A Fully Ordered Triplite, LiCuSO4F
- Author
-
Matthieu Saubanère, Jean-Marie Tarascon, Daniel Alves Dalla Corte, Marie-Liesse Doublet, Meiling Sun, and Gwenaëlle Rousse
- Subjects
Chemical engineering ,Chemistry ,Annealing (metallurgy) ,Anhydrous ,General Medicine ,Ball mill ,Stoichiometry - Abstract
The title compound is prepared by ball milling and annealing of a stoichiometric mixture of anhydrous LiF and CuSO4 (Al2O3 boat, 400—415 °C, 8 h).
- Published
- 2016
- Full Text
- View/download PDF
28. A Fully Ordered Triplite, LiCuSO 4 F
- Author
-
Marie-Liesse Doublet, Jean-Marie Tarascon, Meiling Sun, Gwenaëlle Rousse, Daniel Alves Dalla Corte, Saubanère Matthieu, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), ANR-12-PRGE-0005,HIPOLITE,Development of New High Voltage Positive Electrodes for Sustainable Li-Ion Batteries(2012), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,General Chemical Engineering ,Materials Chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,0104 chemical sciences - Abstract
International audience
- Published
- 2016
- Full Text
- View/download PDF
29. Area Effects on the Mott-Schottky Behavior of Anodic Films Formed on AISI 304 Stainless Steel
- Author
-
Daniel Alves Dalla Corte, Luis Frederico Pinheiro Dick, and L. V. Taveira
- Subjects
Materials science ,Metallurgy ,Mott schottky ,Anode - Abstract
The electronic properties of thick oxide films formed on AISI 304L by hot acid anodizing was investigated using the Mott-Schottky approach. All modified films showed n-type and p-type behavior, depending on the applied potential. The incorporation of molybdate and niobil oxalate during the anodization affected mainly the acceptor concentration. The apparent increase in the dopant concentrations is mainly explained by surface area increase associated to the treatments.
- Published
- 2010
- Full Text
- View/download PDF
30. Microsized Sn as Advanced Anodes in Glyme-Based Electrolyte for Na-Ion Batteries
- Author
-
Gwena�lle Rousse, Daniel Alves Dalla Corte, Romain Dugas, Biao Zhang, Jean-Marie Tarascon, Dominique Foix, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Chimie du solide et énergie, and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Na ion battery ,Mechanical Engineering ,Inorganic chemistry ,chemistry.chemical_element ,microsize ,02 engineering and technology ,Electrolyte ,electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Anode ,chemistry ,Mechanics of Materials ,Tin ,Energy density ,[CHIM]Chemical Sciences ,General Materials Science ,0210 nano-technology ,Carbon - Abstract
International audience; Microsized Sn presents stable cyclic performance in glyme-based electrolyte, which brings 19% increase in energy density of Sn/Na3V2(PO4)3 cells as compared to the cells using hard carbon anode. The Na[BOND]Sn intermediate phases are also clarified.
- Published
- 2016
- Full Text
- View/download PDF
31. Spectroscopic Insight into Li-Ion Batteries during Operation: An Alternative Infrared Approach
- Author
-
Christian Jordy, Georges Caillon, François Ozanam, Daniel Alves Dalla Corte, Jean-Noël Chazalviel, and Michel Rosso
- Subjects
Amorphous silicon ,Materials science ,Silicon ,Renewable Energy, Sustainability and the Environment ,Analytical chemistry ,Infrared spectroscopy ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Phase (matter) ,Electrode ,General Materials Science ,Lithium ,0210 nano-technology ,Absorption (electromagnetic radiation) - Abstract
Multiple-internal-reflection infrared spectroscopy allows for the study of thin-film amorphous silicon electrodes in situ and in operando, in conditions typical of those used in Li-ion batteries. It brings an enhanced sensitivity, and the attenuated-total-reflection geometry allows for the extraction of quantitative information. When electrodes are cycled in representative electrolytes, the simultaneously recorded infrared spectra give an insight into the solid/electrolyte interphase (SEI) composition. They also unravel the dynamic behavior of this SEI layer by quantitatively assessing its thickness, which increases during silicon lithiation and partially decreases during delithiation. Li-ion solvation effects in the vicinity of the electrode indicate that lithium incorporation in the solid phase is the rate-determining step of the electrochemical processes during lithiation. The lithiation of the active material also results in the irreversible consumption of a large quantity of hydrogen in the pristine material. Finally, the evolution of the electronic absorption of the electrode material suggests that lithium diffusion is much easier after the first lithiation than in the pristine material. Therefore, in situ Fourier-transform infrared spectroscopy performed in a well-suited configuration efficiently extracts original and quantitative pieces of information on the surface and bulk phenomena affecting Li-ion electrodes during their operation in realistic conditions.
- Published
- 2015
- Full Text
- View/download PDF
32. Improved Electrochemical Performances of Methylated Amorphous Si Electrode Studied By Tof-SIMS
- Author
-
Jolanta Swiatowska, Catarina Pereira-Nabais, Daniel Alves Dalla Corte, Michel Rosso, François Ozanam, Aurélien Gohier, Pierre Tran-Van, Antoine Seyeux, Michel Cassir, and Philippe Marcus
- Abstract
Silicon is considered as a promising anode material for Li-ion batteries due to its ability to insert large amounts of lithium, delivering a very high theoretical specific capacity of 3579 mAh/g, which is almost 10 times higher than graphite electrode (372 mAh/g). Nevertheless, a high volume variation (280 % for Li15Si4) during lithiation leading to a morphological damage of electrode materials and a huge capacity loss (of about 30%) observed during the first charge are the major drawbacks for application of Si as anode material. These damages can be considerably decreased or avoided by using nanosized materials, such as Si nanowires (SiNW), allowing better accommodation of volume variation.[i],[ii] Another solution to limit the consequences of these damages is to use electrolyte additives like vinylene carbonate (VC) and monofluoroethylene carbonate (FEC), having polymerizable features and the possibility of forming a SEI layer with improved mechanical properties.[iii],[iv] A new way to improve the Si electrode performances is the modification of the chemical bulk composition of the Si electrode material. In this work, we present the improved electrochemical performance of methylated amorphous silicon (a-Si0.9(CH3)0.1:H), a new type of Si-based material containing methyl (CH3) groups. In order to focus on the material itself, we compare thin-film electrodes of this material[v] to similar electrodes of hydrogenated amorphous Si (a-Si:H),[vi] without using additives or nanosize shaping of the material. The chemical modifications of these two electrodes induced by the electrochemical lithiation process were studied by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) negative-ion depth profiles. Experiments were performed in propylene carbonate (PC, purity > 99.7 %, 30 ppm H2O, Sigma-Aldrich) containing 1 M LiClO4 (purity > 99.99%, battery grade, Sigma-Aldrich). As compared to a-Si:H, the modified chemical composition of a-Si0.9(CH3)0.1:H has an influence on the electrochemical behaviour by shifting the lithiation plateau from 200 mV to 160 mV. The most important difference between the two types of electrodes is the instantaneous formation of a thin, stable and homogenous Solid Electrolyte Interphase (SEI) layer on a-Si0.9(CH3)0.1:H electrode during the first cycle. On the contrary, a thick unstable SEI layer is formed on a-Si:H, with possible dissolution/oxidation and cracking of the layer formed during the first cycle and continuous uptake of electrolyte decomposition products during the following discharge/charge cycles. The ion-depth profiles obtained by ToF-SIMS also evidence significant volume variations and swelling of a-Si:H electrodes which can lead to large morphological modifications, electrode cracking. The a-Si0.9(CH3)0.1:H electrode also shows much lower irreversible capacity during the first 100 discharge/charge cycles, as compared to the a-Si:H electrode. Finally, the diffusion coefficient of Li ions (determined from Li- ToF-SIMS profile) is found to be one order of magnitude higher in a-Si0.9(CH3)0.1:H than in a-Si:H, confirming its improved electrochemical performance. References [i] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zang, Y. Cui, Nat. Nanotechnol. 3, 31 (2008). [ii] B. Laïk, D. Ung, A. Caillard, C.-S. Cojocaru, D. Pribat, J.-P. Pereira-Ramos, J. Solid State Electrochem. 14, 1835 (2010). [iii] M. Ulldemolins, F. Le Cras, B. Pecquenard, V. P. Phan, L. Martin, H. Martinez, J. Power Sources 206, 245 (2012). [iv] V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 28, 965 (2012). [v] L. Touahir, A. Cheriet, D. Alves Dalla Corte, J.-N. Chazalviel, C. Henry de Villeneuve, F. Ozanam, I. Solomon, A. Keffous, N. Gabouze, M. Rosso, J. Power Sources 240, 551 (2013). [vi] C. Pereira-Nabais, J. Światowska, A. Chagnes, F. Ozanam, A. Gohier, P. Tran-Van, C.–S. Cojocaru, M. Cassir, P. Marcus, App. Surf. Sci. 266, 5 (2013).
- Published
- 2014
- Full Text
- View/download PDF
33. In Situ Infrared Studies at the Semiconductor/Electrolyte Interface and Application to Lithium-Ion Batteries
- Author
-
Daniel Alves Dalla Corte, Michel Rosso, Jean-Noël Chazalviel, Christian Jordy, Georges Caillon, and François Ozanam
- Abstract
In-situ spectroscopic characterization of electrode/ electrolyte interfaces is of paramount importance in order to complement classical electrochemical investigation tools and obtain a full understanding of the investigated electrochemical systems. This approach has been shown to be quite useful for semiconductor electrodes, since the chemistry of the semiconductor surface often plays a dominant role in the behavior of the whole system. At the semiconductor/electrolyte interface, the multiple-reflection, attenuated-total-reflection (ATR) geometry has long proved to be the most useful experimental tool for maximizing the surface vibrational signals and minimizing the electrolyte absorption [1]. This advantage is gained without suffering from the mass-transport limitations inherent to the thin-electrolyte-layer spectroelectrochemical cells needed for external reflection geometry. Using polarized infrared beams in ATR geometry also allows for quantitative measurements to be performed and structural information to be extracted. When coupled to a modulation technique, dynamic information can also be accessed. Many applications of the technique have been demonstrated, especially for the vibrational characterization of interface and double-layer species under electrochemical control (e.g., surface chemical changes, changes in the adsorption of neutral or ionic species, or changes in the ionic composition of the double layer as a function of the applied potential). Changes in the concentration of IR absorbing species outside the double layer but close to the surface can also be detected (e.g., measurement of the local pH). More specific information can be obtained on the semiconductor side such as changes in the electronic absorption (from electronic surface states or from free carriers) upon external stimuli or electrochemical insertion of specific species (e.g., semiconductor hydrogen loading under cathodic conditions). Finally, the technique has been proved very useful for the study of electrochemically grown thin films (e.g., for the detailed characterization of anodic films). Specific cells allow for performing such studies in aqueous or anhydrous solvents, and under potentiostatic or galvanostatic control, hydrodynamic control, temperature control, or illumination. Therefore, in situ infrared spectroscopy appears as a unique technique to investigate electrode surface properties in lithium-ion batteries. Moreover, the advantages brought by using multiple-reflection, ATR geometry allow for overcoming the limitations encountered in the other in-situ IR studies of these systems. Silicon electrodes (which represent an impressive gain in energy density for negative electrodes in Li-ion batteries) have therefore been studied in a half-cell configuration against a lithium-metal electrode. The use of a thin-film geometry prevents electrode mechanical failure when films are thin enough and provides a well-controlled geometry allowing for the quantitative measurements of electrode evolutions, e.g., the formation of the solid-electrolyte interphase (SEI). Electrodes are thin films of hydrogenated amorphous Si deposited on a crystalline Si ATR prism, and experiments have been performed in 1M LiClO4 in PC or in 1M LiPF6in PC:EC:3DMC (2% VC, 10% FEC) electrolyte. As shown in Fig. 1, experimental spectra consist of positive peaks characteristic of the SEI film formed during the electrochemical process, and negative peaks due to electrolyte exclusion from the interface due to the SEI growth. The latter peaks can be used for quantitatively monitoring the film growth, which allows for determining the evolution of the SEI thickness during the first lithiation and after subsequent cycles (Fig. 2). A noticeable effect is the SEI growth and partial disappearance during the first lithiation/delithiation cycle. The experimental spectra can also be corrected for electrolyte absorption, which allows for isolating the SEI spectra and characterize its composition. In this way, Li solvation effects can also be evidenced close to the SEI. Additional information includes effects of lithiation on the bulk silicon thin-film, where the Si-H bonds, present in abundance in the a-Si:H network, are gradually and irreversibly consumed along silicon lithiation. Electronic absorption also evidences a distinct lithiation process in the first cycle (progressive invasion of a heavily lithiated phase from the silicon outer surface) as compared to subsequent cycles (quasi-homogeneous lithiation). [1] J.-N. Chazalviel, B. H. Erné, F. Maroun, F. Ozanam, J. Electroanal. Chem. 509 (2001) 108-178.
- Published
- 2014
- Full Text
- View/download PDF
34. Selective Dissolution of Ni from Nitinol for Increasing the Biocompatibility
- Author
-
Daniel Alves Dalla Corte and Luis Frederico Pinheiro Dick
- Subjects
Materials science ,Biocompatibility ,Scanning electron microscope ,Alloy ,chemistry.chemical_element ,Electrolyte ,Shape-memory alloy ,engineering.material ,Corrosion ,Nickel ,chemistry ,Chemical engineering ,engineering ,Dissolution - Abstract
Different electrochemical surface treatments were applied to the Ni-Ti shape memory alloy and to pure Ti and Ni for comparison. Electrolytes containing complexing ions, as F- or Cl-, produced localized corrosion on Ni-Ti. However, by Rutherford backscattering spectroscopy and scanning electron microscopy a loss of nickel and morphological modifications of the surface were verified for Ni-Ti polarized in 1M H3PO4 or 1M H2SO4. Corrosion resistance improvement in Hank's solution was observed for the Ni-Ti alloy polarized at 3V in 1M H3PO4.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.