72 results on '"Damián A. Scherlis"'
Search Results
2. Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations
- Author
-
Carlos M. Bustamante, Esteban D. Gadea, Tchavdar N. Todorov, and Damián A. Scherlis
- Subjects
General Materials Science ,Physical and Theoretical Chemistry - Abstract
Cooperative optical effects provide a pathway to both the amplification (superradiance) and the suppression (subradiance) of photon emission from electronically excited states. These captivating phenomena offer a rich variety of possibilities for photonic technologies aimed at electromagnetic energy manipulation, including lasers and high-speed emitting devices in the case of superradiance or optical energy storage in that of subradiance. The employment of molecules as the building pieces in these developments requires a precise understanding of the roles of separation, orientation, spatial distribution, and applied fields, which remains challenging for theory and experiments. These questions are addressed here through ab initio quantum dynamics simulations of collective emission on the basis of a novel semiclassical formalism and time-dependent density functional theory. By establishing the configurations leading to decoherence and how the fine-tuning of a pulse can accumulate or release optical energy in H
- Published
- 2022
3. Radiative thermalization in semiclassical simulations of light-matter interaction
- Author
-
Esteban D. Gadea, Carlos M. Bustamante, Tchavdar N. Todorov, and Damián A. Scherlis
- Abstract
Prediction of the equilibrium populations in quantum dynamics simulations of molecules exposed to black-body radiation has proved challenging for semiclassical treatments, with the usual Ehren- fest and Maxwell-Bloch methods exhibiting serious failures. In this context, we explore the behavior of a recently introduced semiclassical model of light-matter interaction derived from a dissipative Lagrangian [Phys. Rev. Lett. 126, 087401 (2021)]. It is shown that this model reproduces the Boltzmann populations for two-level systems, predicting the black-body spectra in approximate agreement with Planck’s distribution. In multilevel systems, small deviations from the expected oc- cupations are seen beyond the first excited level. By averaging over fast oscillations, a rate equation is derived from the dissipative equation of motion that makes it possible to rationalize these devi- ations. Importantly, it enables us to conclude that this model will produce the correct equilibrium populations provided the occupations of the lowest levels remain close to unity, a condition satisfied at low temperature or small excitations.
- Published
- 2022
4. Transport and Spectroscopy in Conjugated Molecules: Two Properties and a Single Rationale
- Author
-
Francisco F. Ramírez, Mariano C. González Lebrero, Carlos M Bustamente, and Damián A. Scherlis
- Subjects
Physics ,Dipole ,Absorption spectroscopy ,Transition dipole moment ,Molecular conductance ,Charge density ,Electron ,Electronic structure ,Physical and Theoretical Chemistry ,Atomic physics ,Dissipation ,Computer Science Applications - Abstract
In the context of electron dynamics simulations, when the charge density of a molecule is subject to a perturbation in the form of a short electric field pulse, density fluctuations develop in time. In the absence of dissipation, these oscillations continue indefinitely, reflecting the resonances of the electronic system; as a matter of fact, from the Fourier transform of the time dependent dipole arising from them, the absorption spectrum of the molecule can be calculated. Since these oscillations are the result of the electrons moving through the molecular structrure, it seems plausible that they carry information on the transport properties of the system. This is the idea explored in the present article for the case of conjugated polymers. Specifically, we depart from a nonequilibrium state with the charge concentrated on the ends of the molecule, and estimate the currents flowing back and forth during the evolution of electron dynamics simulations. These show that the charge oscillates between the sides of the polymer with the predominance of a frequency that is coincident with one of the main bands in the absorption spectrum, which can be ascribed to a charge transfer transition. Thus, from the charge transfer band frequency appearing in the absorption spectrum, the molecular conductance of a conjugated molecule can be calculated. Also interestingly, we find that, while a perturbation excites all resonances of an electronic system, the form in which this perturbation is applied can be manipulated to determine the relative manifestation of the response. The electric field pulse excites all resonances according to the transition dipole moment and is then appropriate to produce the absorption spectrum. A charge separated initial state, however, specifically stimulates the charge transfer mode and is then suitable to calculate transport properties. This allows us to propose a simple approach to obtain molecular conductances and tunneling decay constants in agreement with results from much more demanding electronic structure techniques.
- Published
- 2020
5. Doping and coupling strength in molecular conductors: polyacetylene as a case study
- Author
-
Damián A. Scherlis and Carlos M Bustamante
- Subjects
Materials science ,Condensed matter physics ,Dopant ,Doping ,Fermi level ,General Physics and Astronomy ,Condensed Matter::Materials Science ,Polyacetylene ,chemistry.chemical_compound ,symbols.namesake ,Atomic orbital ,chemistry ,Orders of magnitude (time) ,Condensed Matter::Superconductivity ,symbols ,Molecule ,Physical and Theoretical Chemistry ,HOMO/LUMO - Abstract
The doping mechanisms responsible for elevating the currents up to eleven orders of magnitude in semiconducting polymer films are today well characterized. Doping can also improve the performance of nanoscale devices or single molecule conductors, but the mechanism in this case appears to be different, with theoretical studies suggesting that the dopant affects the electronic properties of the junctions. In the present report, multiscale time-dependent DFT transport simulations help clarify the way in which n-type doping can raise the current flowing through a polymer chain connected to a pair of electrodes, with the focus on polyacetylene. In particular, our multiscale methodology offers control over the magnitude of the chemical coupling between the molecule and the electrodes, which allows us to analyze the effect of doping in low and strong coupling regimes. Interestingly, our results establish that the impact of dopants is the highest in weakly coupled devices, while their presence tends to be irrelevant in low-resistance junctions. Our calculations point out that both the equalization of the frontier orbitals with the Fermi level and a small gap between the HOMO and the LUMO must result from doping in order to observe any significant increase of the currents.
- Published
- 2021
6. Structure and dynamics of nanoconfined water and aqueous solutions
- Author
-
Horacio R. Corti, Gaia Camisasca, Igal Szleifer, Marcia C. Barbosa, Ali Hassanali, Joan Manuel Montes de Oca, Mauro Rovere, M. Paula Longinotti, Damián A. Scherlis, Javier Rodriguez, Daniel Laria, Carles Calero, Giancarlo Franzese, M Dolores Elola, Cintia A. Menéndez, Paola Gallo, Gustavo A. Appignanesi, Kai Huang, J Rafael Bordin, Corti, H. R., Appignanesi, G. A., Barbosa, M. C., Bordin, J. R., Calero, C., Camisasca, G., Elola, M. D., Franzese, G., Gallo, P., Hassanali, A., Huang, K., Laria, D., Menendez, C. A., de Oca, J. M. M., Longinotti, M. P., Rodriguez, J., Rovere, M., Scherlis, D., and Szleifer, I.
- Subjects
Work (thermodynamics) ,Materials science ,Field (physics) ,Biophysics ,Structure (category theory) ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Termodinàmica ,General Materials Science ,Nanoscopic scale ,Aqueous solution ,Particle physics ,Water ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Thermal conduction ,6. Clean water ,0104 chemical sciences ,Aigua ,Nanopore ,13. Climate action ,Chemical physics ,Thermodynamics ,Física de partícules ,0210 nano-technology ,Porous medium ,Biotechnology - Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid’s structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed. Graphic abstract: [Figure not available: see fulltext.]
- Published
- 2021
7. Mechanisms of Nucleation and Stationary States of Electrochemically Generated Nanobubbles
- Author
-
Esteban D. Gadea, Damián A. Scherlis, Valeria Molinero, and Yamila A. Perez Sirkin
- Subjects
Supersaturation ,NANOBUBBLES ,CNT ,Chemistry ,Bubble ,Ciencias Químicas ,Nucleation ,Non-equilibrium thermodynamics ,General Chemistry ,Química Inorgánica y Nuclear ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Catalysis ,0104 chemical sciences ,purl.org/becyt/ford/1 [https] ,Physics::Fluid Dynamics ,Contact angle ,Colloid and Surface Chemistry ,Chemical physics ,Electrode ,purl.org/becyt/ford/1.4 [https] ,Dissipative system ,CIENCIAS NATURALES Y EXACTAS ,Stationary state - Abstract
Gas evolving reactions are ubiquitous in the operation of electrochemical devices. Recent studies of individual gas bubbles on nanoelectrodes have resulted in unprecedented control and insights on their formation. The experiments, however, lack the spatial resolution to elucidate the molecular pathway of nucleation of nanobubbles and their stationary size and shape. Here we use molecular simulations with an algorithm that mimics the electrochemical formation of gas, to investigate the mechanisms of nucleation of gas bubbles on nanoelectrodes, and characterize their stationary states. The simulations reproduce the experimental currents in the induction and stationary stages, and indicate that surface nanobubbles nucleate through a classical mechanism. We identify three distinct regimes for bubble nucleation, depending on the binding free energy per area of bubble to the electrode, ΔΓbind. If ΔΓbind is negative, the nucleation is heterogeneous and the nanobubble remains bound to the electrode, resulting in a low-current stationary state. For very negative ΔΓ, the bubble fully wets the electrode, forming a one-layer-thick micropancake that nucleates without supersaturation. On the other hand, when ΔΓbind > 0 the nanobubble nucleates homogeneously close to the electrode, but never attaches to it. We conclude that all surface nanobubbles must nucleate heterogeneously. The simulations reveal that the size and contact angle of stationary nanobubbles increase with the reaction driving force, although their residual current is invariant. The myriad of driven nonequilibrium stationary states with the same rate of production of gas, but distinct bubble properties, suggests that these dissipative systems have attractors that control the stationary current. Fil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Gadea, Esteban David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos
- Published
- 2019
8. Dissipative equation of motion for electromagnetic radiation in quantum dynamics
- Author
-
Andrew P. Horsfield, Esteban D. Gadea, Tchavdar N. Todorov, Carlos M Bustamante, Damián A. Scherlis, Mariano C. González Lebrero, and Commission of the European Communities
- Subjects
Physics ,General Physics ,Science & Technology ,02 Physical Sciences ,Quantum dynamics ,Physics, Multidisciplinary ,General Physics and Astronomy ,Charge density ,01 natural sciences ,Electromagnetic radiation ,09 Engineering ,Dipole ,Excited state ,0103 physical sciences ,Physical Sciences ,Dissipative system ,Absorption (logic) ,Atomic physics ,010306 general physics ,Excitation ,01 Mathematical Sciences - Abstract
The dynamical description of the radiative decay of an electronically excited state in realistic many-particle systems is an unresolved challenge. In the present investigation electromagnetic radiation of the charge density is approximated as the power dissipated by a classical dipole, to cast the emission in closed form as a unitary single-electron theory. This results in a formalism of unprecedented efficiency, critical for ab initio modeling, which exhibits at the same time remarkable properties: it quantitatively predicts decay rates, natural broadening, and absorption intensities. Exquisitely accurate excitation lifetimes are obtained from time-dependent DFT simulations for ${\mathrm{C}}^{2+}$, ${\mathrm{B}}^{+}$, and Be, of 0.565, 0.831, and 1.97 ns, respectively, in accord with experimental values of $0.57\ifmmode\pm\else\textpm\fi{}0.02$, $0.86\ifmmode\pm\else\textpm\fi{}0.07$, and 1.77--2.5 ns. Hence, the present development expands the frontiers of quantum dynamics, bringing within reach first-principles simulations of a wealth of photophysical phenomena, from fluorescence to time-resolved spectroscopies.
- Published
- 2021
9. Computational Vibrational Spectroscopy: A Contemporary Perspective
- Author
-
Damián A. Scherlis, Diego J. Alonso de Armiño, Mariano C. González Lebrero, and Darío A. Estrin
- Subjects
Field (physics) ,Computer science ,Anharmonicity ,Perspective (graphical) ,Infrared spectroscopy ,Statistical physics ,Variety (cybernetics) - Abstract
In this chapter, we present a brief analysis of the state of the art in the field of computational vibrational spectroscopy. We discuss the latest achievements in the modelling of vibrational spectroscopy experiments applied to various physical and chemical phenomena, and the different levels of detail the theory can offer in each case. We analyze a wide variety of methods: from harmonic to fully anharmonic and from classical to full quantum-mechanical schemes. The latest advances in the inclusion of environmental effects are also accounted for, with particular emphasis on biological systems applications and hybrid quantum-classical QM/MM simulation techniques. We also identify what we consider to be the main challenges, and the perspectives for future advances in this rapidly evolving, and exciting field.
- Published
- 2020
10. A simple approximation to the electron-phonon interaction in population dynamics
- Author
-
Cristián G. Sánchez, Carlos M Bustamante, Damián A. Scherlis, Tchavdar N. Todorov, Andrew P. Horsfield, and Commission of the European Communities
- Subjects
Population ,General Physics and Astronomy ,Physics, Atomic, Molecular & Chemical ,010402 general chemistry ,CONDUCTORS ,EHRENFEST ,7. Clean energy ,01 natural sciences ,09 Engineering ,purl.org/becyt/ford/1 [https] ,symbols.namesake ,0103 physical sciences ,Statistical physics ,Physical and Theoretical Chemistry ,education ,Quantum ,Eigenvalues and eigenvectors ,Physics ,education.field_of_study ,Science & Technology ,Chemical Physics ,02 Physical Sciences ,010304 chemical physics ,Chemistry, Physical ,Joule heating ,excitation ,dissipation ,purl.org/becyt/ford/1.3 [https] ,0104 chemical sciences ,Vibration ,Chemistry ,Amplitude ,MOLECULAR-DYNAMICS ,Physical Sciences ,symbols ,Hamiltonian (quantum mechanics) ,03 Chemical Sciences ,tightbinding ,Fermi Gamma-ray Space Telescope - Abstract
The modeling of coupled electron–ion dynamics including a quantum description of the nuclear degrees of freedom has remained a costly and technically difficult practice. The kinetic model for electron–phonon interaction provides an efficient approach to this problem, for systems evolving with low amplitude fluctuations, in a quasi-stationary state. In this work, we propose an extension of the kinetic model to include the effect of coherences, which are absent in the original approach. The new scheme, referred to as Liouville–von Neumann + Kinetic Equation (or LvN + KE), is implemented here in the context of a tight-binding Hamiltonian and employed to model the broadening, caused by the nuclear vibrations, of the electronic absorption bands of an atomic wire. The results, which show close agreement with the predictions given by Fermi’s golden rule (FGR), serve as a validation of the methodology. Thereafter, the method is applied to the electron–phonon interaction in transport simulations, adopting to this end the driven Liouville–von Neumann equation to model open quantum boundaries. In this case, the LvN + KE model qualitatively captures the Joule heating effect and Ohm’s law. It, however, exhibits numerical discrepancies with respect to the results based on FGR, attributable to the fact that the quasi-stationary state is defined taking into consideration the eigenstates of the closed system rather than those of the open boundary system. The simplicity and numerical efficiency of this approach and its ability to capture the essential physics of the electron–phonon coupling make it an attractive route to first-principles electron–ion dynamics. Fil: Bustamante, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Todorov, Tchavdar N.. The Queens University of Belfast; Irlanda Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina Fil: Horsfield, Andrew. Imperial College London; Reino Unido Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2020
11. Electrochemically Generated Nanobubbles: Invariance of the Current with Respect to Electrode Size and Potential
- Author
-
Esteban D. Gadea, Valeria Molinero, Yamila A. Perez Sirkin, and Damián A. Scherlis
- Subjects
Materials science ,Nanoelectrode ,Nanotechnology ,Kinetic Monte Carlo ,02 engineering and technology ,Molecular Dynamics ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,purl.org/becyt/ford/1 [https] ,electrochemistry ,Electrode ,purl.org/becyt/ford/1.4 [https] ,Energy transformation ,General Materials Science ,Liquid bubble ,Physical and Theoretical Chemistry ,Current (fluid) ,0210 nano-technology ,Astrophysics::Galaxy Astrophysics - Abstract
Gas-producing electrochemical reactions are key to energy conversion and generation technologies. Bubble formation dramatically decreases gas-production rates on nanoelectrodes, by confining the reaction to the electrode boundary. This results in the collapse of the current to a stationary value independent of the potential. Startlingly, these residual currents also appear to be insensitive to the nanoelectrode diameter in the 5 to 500 nm range. These results are counterintuitive, as it may be expected that the current be proportional to the circumference of the electrode, i.e., the length of the three-phase line where the reaction occurs. Here, we use molecular simulations and a kinetic model to elucidate the origin of current insensitivity with respect to the potential and establish its relationship to the size of nanoelectrodes. We provide critical insights for the design and operation of nanoscale electrochemical devices and demonstrate that nanoelectrode arrays maximize conversion rates compared to macroscopic electrodes with same total area. Fil: Gadea, Esteban David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2020
12. Water Confined in Mesoporous TiO2 Aerosols: Insights from NMR Experiments and Molecular Dynamics Simulations
- Author
-
Rodolfo H. Acosta, Damián A. Scherlis, Esteban A. Franceschini, Manuel I. Velasco, Galo J. A. A. Soler-Illia, M. Belén Franzoni, and Estefania Gonzalez Solveyra
- Subjects
Nanoporous ,Chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Molecular dynamics ,General Energy ,Adsorption ,Computational chemistry ,Chemical physics ,Molecule ,Bound water ,Physical and Theoretical Chemistry ,0210 nano-technology ,Mesoporous material ,Layer (electronics) ,Water vapor - Abstract
The adsorption of water vapor in mesoporous TiO2 was studied by nuclear magnetic resonance (NMR) and multiscale molecular dynamics simulations. Three different water environments were distinguished and quantified: a first layer, where strongly bound water molecules exist at the inner surfaces; a second less structured layer but still with restricted mobility; and a bulk-like fraction of mobile water. The obtained NMR results can be explained in the framework of molecular dynamics simulations that give insight on the filling mechanisms in TiO2 nanoporous materials. For these highly hydrophilic materials, it is shown that adsorption isotherms may render a smaller effective pore size due to the presence of a layer of highly bound water. The synergistic combination of experimental NMR data and MD simulations renders a detailed analysis of the water dynamics inside the titania pore space.
- Published
- 2017
13. Multiscale approach to electron transport dynamics
- Author
-
Francisco F. Ramírez, Cristián G. Sánchez, Carlos M Bustamante, and Damián A. Scherlis
- Subjects
Physics ,010304 chemical physics ,Field (physics) ,Computation ,General Physics and Astronomy ,Electronic structure ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,symbols.namesake ,Tight binding ,0103 physical sciences ,symbols ,Density functional theory ,Boundary value problem ,Statistical physics ,Physical and Theoretical Chemistry ,Quantum ,Von Neumann architecture - Abstract
Molecular simulations of transport dynamics in nanostructures usually require the implementation of open quantum boundary conditions. This can be instrumented in different frameworks including Green's functions, absorbing potentials, or the driven Liouville von Neumann equation, among others. In any case, the application of these approaches involves the use of large electrodes that introduce a high computational demand when dealing with first-principles calculations. Here, we propose a hybrid scheme where the electrodes are described at a semiempirical, tight binding level, coupled to a molecule or device represented with density functional theory (DFT). This strategy allows us to use massive electrodes at a negligible computational cost, preserving the accuracy of the DFT method in the modeling of the transport properties, provided that the electronic structure of every lead is properly defined to behave as a conducting fermionic reservoir. We study the nature of the multiscale coupling and validate the methodology through the computation of the tunneling decay constant in polyacetylene and of quantum interference effects in an aromatic ring. The present implementation is applied both in microcanonical and grand-canonical frameworks, in the last case using the Driven Liouville von Neumann equation, discussing the advantages of one or the other. Finally, this multiscale scheme is employed to investigate the role of an electric field applied normally to transport in the conductance of polyacetylene. It is shown that the magnitude and the incidence angle of the applied field have a considerable effect on the electron flow, hence constituting an interesting tool for current control in nanocircuits.
- Published
- 2019
14. Halide-Mediated Modification of Magnetism and Electronic Structure of α-Co(II) Hydroxides: Synthesis, Characterization, and DFT+U Simulations
- Author
-
Matías Jobbágy, Ramón Torres-Cavanillas, Gonzalo Abellán, Damián A. Scherlis, Víctor Oestreicher, and Diego Hunt
- Subjects
010405 organic chemistry ,Magnetism ,epoxide route ,chemistry.chemical_element ,Halide ,Electronic structure ,010402 general chemistry ,cobalt ,01 natural sciences ,0104 chemical sciences ,Characterization (materials science) ,purl.org/becyt/ford/1 [https] ,Inorganic Chemistry ,chemistry ,magnetism ,purl.org/becyt/ford/1.4 [https] ,Physical chemistry ,Density functional theory ,Physical and Theoretical Chemistry ,layered hydroxides ,Cobalt ,Fisicoquímica - Abstract
The present study introduces a comprehensive exploration in terms of physicochemical characterization and calculations based on density functional theory with Hubbard's correction (DFT+U) of the whole family of α-Co(II) hydroxyhalide (F, Cl, Br, I). These samples were synthesized at room temperature by employing a one-pot approach based on the epoxide route. A thorough characterization (powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis/mass spectroscopy, and magnetic and conductivity measurements) corroborated by simulation is presented that analyzes the structural, magnetic, and electronic aspects. Beyond the inherent tendency of intercalated anions to modify the interlayer distance, the halide's nature has a marked effect on several aspects. Such as the modulation of the CoOh to CoTd ratio, as well as the inherent tendency towards dehydration and irreversible decomposition. Whereas the magnetic behavior is strongly correlated with the CoTd amount reflected in the presence of glassy behavior with high magnetic disorder, the electrical properties depend mainly on the nature of the halide. The computed electronic structures suggest that the CoTd molar fraction exerts a minor effect on the inherent conductivity of the phases. However, the band gap of the solid turns out to be significantly dependent on the nature of the incorporated halide, governed by ligand to metal charge transfer, which minimizes the gap as the anionic radius becomes larger. Conductivity measurements of pressed pellets confirm this trend. To the best of our knowledge, this is the first report on the magnetic and electrical properties of α-Co(II) hydroxyhalides validated with in silico descriptions, opening the gate for the rational design of layered hydroxylated phases with tunable electrical, optical, and magnetic properties. Fil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Hunt, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Torres Cavanillas, Ramon. Universidad de Valencia; España Fil: Abellan, Gonzalo. Universidad de Valencia; España Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2019
15. Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
- Author
-
Tchavdar N. Todorov, Damián A. Scherlis, Francisco Ramirez, Cristián G. Sánchez, and Daniel Dundas
- Subjects
Algebraic structure ,Electrode ,Ciencias Físicas ,FOS: Physical sciences ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,Equilibrium density ,Open quantum system ,symbols.namesake ,Quantum transport ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Tight-binding ,Physical and Theoretical Chemistry ,Quantum dynamics ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Equations of motion ,purl.org/becyt/ford/1.3 [https] ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Formalism (philosophy of mathematics) ,General Energy ,Classical mechanics ,Conductance ,symbols ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS ,Von Neumann architecture ,Voltage ,Física de los Materiales Condensados - Abstract
The so called Driven Liouville-von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green's functions that allows to fix the electrochemical potentials in two regions of an open quantum system. In this article, the equations of motion of the hairy probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the Driven Liouville-von Neumann equation in the form proposed by Morzan et al. [J. Chem. Phys. 2017, 146, 044110]. In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performance of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians the Driven Liouville-von Neumann approach is of special interest, because it does not require the calculation of Green's functions. Hence, the effects of replacing the reference density based on the Green's function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the Driven Liouville-von Neumann equation., 40 pages, 15 figures
- Published
- 2019
16. Electron transfer pathways from quantum dynamics simulations
- Author
-
Federico N. Pedron, Damián A. Scherlis, Federico Issoglio, and Darío A. Estrin
- Subjects
Work (thermodynamics) ,Hydrogen ,Phenylalanine ,Trypanosoma cruzi ,Quantum dynamics ,General Physics and Astronomy ,chemistry.chemical_element ,Heme ,Molecular Dynamics Simulation ,010402 general chemistry ,01 natural sciences ,Electron Transport ,Electron transfer ,Polyacetylene ,chemistry.chemical_compound ,0103 physical sciences ,Physical and Theoretical Chemistry ,Physics ,010304 chemical physics ,Tryptophan ,Charge (physics) ,Acceptor ,0104 chemical sciences ,Models, Chemical ,Peroxidases ,chemistry ,Chemical physics ,Quantum Theory ,Density functional theory - Abstract
This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, -1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.
- Published
- 2020
17. QM–MM Ehrenfest dynamics from first principles: photodissociation of diazirine in aqueous solution
- Author
-
Gonzalo Diaz Miron, Mariano C. González Lebrero, Francisco F. Ramírez, and Damián A. Scherlis
- Subjects
Density matrix ,Physics ,010304 chemical physics ,PHOTOCHEMISTRY ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Ciencias Químicas ,Time-dependent density functional theory ,010402 general chemistry ,01 natural sciences ,Molecular physics ,0104 chemical sciences ,Photoexcitation ,chemistry.chemical_compound ,Molecular dynamics ,chemistry ,TDDFT ,Excited state ,0103 physical sciences ,Diazirine ,Vibrational energy relaxation ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,Ground state ,NONADIABATIC DYNAMICS ,CIENCIAS NATURALES Y EXACTAS - Abstract
This article describes an implementation of Ehrenfest molecular dynamics based on TDDFT and Gaussian basis sets, optimized for hybrid QM–MM simulations in GPU. The present method makes use of the equations of motion proposed by Chen et al. (J Chem Phys 135:044126, 2011), which, at variance with previous formulations of the Ehrenfest dynamics, takes into account the movement of the localized basis functions, thus improving accuracy and energy conservation. This methodology is used to explore the evolution and the stability of excited state dynamics for two different constructions of the initial excited state, consisting in the linear response TDDFT S1 solution, and in the ground state density matrix where the HOMO–LUMO occupancies have been switched, which is a widespread approach to model photoexcitation in electron dynamics simulations. It is found that the second kind of starting state leads to a larger numerical noise and to a poorer stability of the dynamics, aside from “awakening” inner electronic modes that become manifest in the frequency spectrum, and which are absent if the dynamics departs from the linear response TDDFT density matrix. Then, the method is applied to investigate the photodissociation of the diazirine molecule, CH2N2, both in vacuum and in aqueous solution. Diazirine decomposes into carbene and molecular nitrogen upon irradiation with UV light, and for this reason it has been widely adopted to photolabel biomolecules through the insertion of carbenes in the macromolecular surface. Our simulations suggest that the quantum yield of the dissociative reaction experiences a decrease in solution with respect to the gas phase, that can be understood in terms of the vibrational relaxation facilitated by the solvent molecules. Besides, the present results indicate that the isomerization and dissociation mechanism occur fully on the S1 excited state. Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Díaz Mirón, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2018
18. One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes
- Author
-
Ali Hassanali, Yamila A. Perez Sirkin, and Damián A. Scherlis
- Subjects
Materials science ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Ciencias Químicas ,02 engineering and technology ,Carbon nanotube ,Molecular dynamics ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Dissociation (chemistry) ,0104 chemical sciences ,law.invention ,Umbrella sampling ,QM-MM ,Chemical physics ,law ,General Materials Science ,Physical and Theoretical Chemistry ,Free energy ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS - Abstract
The effect of nanoconfinement on the self-dissociation of water constitutes an open problem whose elucidation poses a serious challenge to experiments and simulations alike. In slit pores of width ?1 nm, recent first-principles calculations have predicted that the dissociation constant of H2O increases by almost 2 orders of magnitude [ Muñoz-Santiburcio and Marx, Phys. Rev. Lett. 2017, 119, 056002 ]. In the present study, quantum mechanics?molecular mechanics simulations are employed to compute the dissociation free-energy profile of water in a (6,6) carbon nanotube. According to our results, the equilibrium constant Kw drops by 3 orders of magnitude with respect to the bulk phase value, at variance with the trend predicted for confinement in two dimensions. The higher barrier to dissociation can be ascribed to the undercoordination of the hydroxide and hydronium ions in the nanotube and underscores that chemical reactivity does not exhibit a monotonic behavior with respect to pore size but may vary substantially with the characteristic length scale and dimensionality of the confining media. Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Hassanali, Ali. The Abdus Salam; Italia Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2018
19. Interplay of Coordination Environment and Magnetic Behavior of Layered Co(II) Hydroxichlorides: A DFT+U Study
- Author
-
Matías Jobbágy, Damián A. Scherlis, and Diego Hunt
- Subjects
Work (thermodynamics) ,Band gap ,02 engineering and technology ,Química Inorgánica y Nuclear ,010402 general chemistry ,DFT ,01 natural sciences ,Inorganic Chemistry ,Metal ,Layered solid ,Physical and Theoretical Chemistry ,Coupling ,Co(OH)2 ,Magnetic moment ,Chemistry ,Plane (geometry) ,Ciencias Químicas ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Crystallography ,Octahedron ,visual_art ,Ferromagnetism ,visual_art.visual_art_medium ,Tetrahedron ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS - Abstract
In this work we present a systematic computational study of the structural and magnetic properties of a layered family of Co(II) hydroxichlorides, obeying to the general formula Co(OH)2-xClx(H2O)y. This solid contains both octahedral and tetrahedral cobalt ions, displaying a complex magnetic order arising from the particular coupling between the two kinds of metallic centers. Here, supercells representing concentrations of 12, 20, and 40% of tetrahedral sites were modeled consistently with the compositions reported experimentally. Our simulations show that the two types of cobalt ions tend to couple antiferromagnetically, giving rise to a net magnetic moment slightly out of the plane of the layers. The band gap reaches its minimum value of 1.4 eV for the most diluted fraction of tetrahedral Co(II) sites, going up to 2.2 eV when the content is 40%. Moreover, our results suggest that the presence of interlayer water stabilizes the material and at the same time strongly modifies the electronic environment of tetrahedral Co(II), leading to a further drop of the band gap. To our knowledge, this is the first theoretical investigation of this material. Fil: Hunt, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2018
20. Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?
- Author
-
Martin Paleico, Damián A. Scherlis, Ignacio Pickering, Matías H. Factorovich, and Yamila A. Perez Sirkin
- Subjects
Materials science ,Triple point ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Condensation ,Ciencias Químicas ,Evaporation ,Ice Ih ,Thermodynamics ,02 engineering and technology ,QLL ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,law.invention ,Molecular dynamics ,Monatomic ion ,law ,Materials Chemistry ,Physical and Theoretical Chemistry ,Crystallization ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS ,Phase diagram - Abstract
In this study, the solid-vapor equilibrium and the quasi liquid layer (QLL) of ice Ih exposing the basal and primary prismatic faces were explored by means of grand canonical molecular dynamics simulations with the monatomic mW potential. For this model, the solid-vapor equilibrium was found to follow the Clausius-Clapeyron relation in the range examined, from 250 to 270 K, with a δHsub of 50 kJ/mol in excellent agreement with the experimental value. The phase diagram of the mW model was constructed for the low pressure region around the triple point. The analysis of the crystallization dynamics during condensation and evaporation revealed that, for the basal face, both processes are highly activated, and in particular cubic ice is formed during condensation, producing stacking-disordered ice. The basal and primary prismatic surfaces of ice Ih were investigated at different temperatures and at their corresponding equilibrium vapor pressures. Our results show that the region known as QLL can be interpreted as the outermost layers of the solid where a partial melting takes place. Solid islands in the nanometer length scale are surrounded by interconnected liquid areas, generating a bidimensional nanophase segregation that spans throughout the entire width of the outermost layer even at 250 K. Two approaches were adopted to quantify the QLL and discussed in light of their ability to reflect this nanophase segregation phenomena. Our results in the μVT ensemble were compared with NPT and NVT simulations for two system sizes. No significant differences were found between the results as a consequence of model system size or of the working ensemble. Nevertheless, certain advantages of performing μVT simulations in order to reproduce the experimental situation are highlighted. On the one hand, the QLL thickness measured out of equilibrium might be affected because of crystallization being slower than condensation. On the other, preliminary simulations of AFM indentation experiments show that the tip can induce capillary condensation over the ice surface, enlarging the apparent QLL. Fil: Pickering, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Paleico, Martín Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
- Published
- 2018
21. Spectroscopy in Complex Environments from QM-MM Simulations
- Author
-
Nicolás O. Foglia, Darío A. Estrin, Francisco F. Ramírez, Mariano C. González Lebrero, Uriel N. Morzan, Diego J. Alonso de Armiño, and Damián A. Scherlis
- Subjects
SPECTROSCOPY ,010304 chemical physics ,Chemistry ,Spectroscopy methods ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Ciencias Químicas ,General Chemistry ,010402 general chemistry ,01 natural sciences ,SIMULATIONS ,0104 chemical sciences ,Variety (cybernetics) ,QM/MM ,QMMM ,0103 physical sciences ,Systems engineering ,Spectroscopy ,CIENCIAS NATURALES Y EXACTAS - Abstract
The applications of multiscale quantum-classical (QM-MM) approaches have shown an extraordinary expansion and diversification in the last couple of decades. A great proportion of these efforts have been devoted to interpreting and reproducing spectroscopic experiments in a variety of complex environments such as solutions, interfaces, and biological systems. Today, QM-MM-based computational spectroscopy methods constitute accomplished tools with refined predictive power. The present review summarizes the advances that have been made in QM-MM approaches to UV-visible, Raman, IR, NMR, electron paramagnetic resonance, and Mössbauer spectroscopies, providing in every case an introductory discussion of the corresponding methodological background. A representative number of applications are presented to illustrate the historical evolution and the state of the art of this field, highlighting the advantages and limitations of the available methodologies. Finally, we present our view of the perspectives and open challenges in the field. Fil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Alonso de Armiño, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Foglia, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2018
22. Hydrogen-Bond Heterogeneity Boosts Hydrophobicity of Solid Interfaces
- Author
-
Matías H. Factorovich, Damián A. Scherlis, and Valeria Molinero
- Subjects
Quantitative Biology::Biomolecules ,Hydrogen ,Nanodroplet ,Hydrogen bond ,Otras Ciencias Químicas ,Interfaces ,Ciencias Químicas ,chemistry.chemical_element ,Nanotechnology ,General Chemistry ,Molecular Dynamics ,Biochemistry ,Catalysis ,Contact angle ,Molecular dynamics ,Nanopore ,Colloid and Surface Chemistry ,chemistry ,Chemical physics ,Desorption ,Tetrahedron ,Contact Angle ,CIENCIAS NATURALES Y EXACTAS - Abstract
Experimental and theoretical studies suggest that the hydrophobicity of chemically heterogeneous surfaces may present important nonlinearities as a function of composition. In this article, this issue is systematically explored using molecular simulations. The hydrophobicity is characterized by computing the contact angle of water on flat interfaces and the desorption pressure of water from cylindrical nanopores. The studied interfaces are binary mixtures of hydrophilic and hydrophobic sites, with and without the ability to form hydrogen bonds with water, intercalated at different scales. Water is described with the mW coarse-grained potential, where hydrogen-bonds are modeled in the absence of explicit hydrogen atoms, via a three-body term that favors tetrahedral coordination. We found that the combination of particles exhibiting the same kind of coordination with water gives rise to a linear dependence of contact angle with respect to composition, in agreement with the Cassie model. However, when only the hydrophilic component can form hydrogen bonds, unprecedented deviations from linearity are observed, increasing the contact angle and the vapor pressure above their values in the purely hydrophobic interface. In particular, the maximum enhancement is seen when a 35% of hydrogen bonding molecules is randomly scattered on a hydrophobic background. This effect is very sensitive to the heterogeneity length-scale, being significantly attenuated when the hydrophilic domains reach a size of 2 nm. The observed behavior may be qualitatively rationalized via a simple modification of the Cassie model, by assuming a different microrugosity for hydrogen bonding and non-hydrogen bonding interfaces. Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
- Published
- 2015
23. Stability and Vapor Pressure of Aqueous Aggregates and Aerosols Containing a Monovalent Ion
- Author
-
Valeria Molinero, Matías H. Factorovich, Yamila A. Perez Sirkin, and Damián A. Scherlis
- Subjects
Range (particle radiation) ,Aqueous solution ,010304 chemical physics ,Vapor pressure ,Chemistry ,Otras Ciencias Químicas ,Nucleation ,Ciencias Químicas ,Radius ,010402 general chemistry ,01 natural sciences ,Charged particle ,0104 chemical sciences ,Ion ,purl.org/becyt/ford/1 [https] ,Chemical physics ,0103 physical sciences ,purl.org/becyt/ford/1.4 [https] ,Physical chemistry ,Classical nucleation theory ,Physical and Theoretical Chemistry ,CIENCIAS NATURALES Y EXACTAS - Abstract
The incidence of charged particles on the nucleation and the stability of aqueous aggregates and aerosols was reported more than a century ago. Many studies have been conducted ever since to characterize the stability, structure, and nucleation barrier of ion-water droplets. Most of these studies have focused on the free-energy surface as a function of cluster size, with an emphasis on the role of ionic charge and radius. This knowledge is fundamental to go beyond the rudimentary ion-induced classical nucleation theory. In the present article, we address this problem from a different perspective, by computing the vapor pressures of (H2O)nLi+ and (H2O)nCl- aggregates using molecular simulations. Our calculations shed light on the structure, the critical size, the range of stability, and the role of ion-water interactions in aqueous clusters. Moreover, they allow one to assess the accuracy of the classical thermodynamic model, highlighting its strengths and weaknesses. Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
- Published
- 2017
24. Role of core electrons in quantum dynamics using TDDFT
- Author
-
Mariano C. González Lebrero, Nicolás O. Foglia, Darío A. Estrin, Damián A. Scherlis, and Uriel N. Morzan
- Subjects
Quantum dynamics ,Electrons ,02 engineering and technology ,Electron ,01 natural sciences ,Reduction (complexity) ,Core electron ,TDDFT ,Quantum mechanics ,0103 physical sciences ,Excitations ,Statistical physics ,Physical and Theoretical Chemistry ,Representation (mathematics) ,Pseudopotentials ,Physics ,010304 chemical physics ,Otras Ciencias Químicas ,Ciencias Químicas ,Charge density ,Equations of motion ,Time-dependent density functional theory ,021001 nanoscience & nanotechnology ,Computer Science Applications ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS - Abstract
The explicit simulation of time dependent electronic processes requires computationally onerous routes involving the temporal integration of motion equations for the charge density. Efficiency optimization of these methods typically relies on increasing the integration time-step and on the reduction of the computational cost per step. The implicit representation of inner electrons by effective core potentials-or pseudopotentials-is a standard practice in localized-basis quantum-chemistry implementations to improve the efficiency of ground-state calculations, still preserving the quality of the output. This article presents an investigation on the impact that effective core potentials have on the overall efficiency of real time electron dynamics with TDDFT. Interestingly, the speedups achieved with the use of pseudopotentials in this kind of simulation are on average much more significant than in ground-state calculations, reaching in some cases a factor as large as 600×. This boost in performance originates from two contributions: on the one hand, the size of the density matrix, which is considerably reduced, and, on the other, the elimination of high-frequency electronic modes, responsible for limiting the maximum time-step, which vanish when the core electrons are not propagated explicitly. The latter circumstance allows for significant increases in time-step, that in certain cases may reach up to 3 orders of magnitude, without losing any relevant chemical or spectroscopic information. Fil: Foglia, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
- Published
- 2017
25. Structure, Dynamics, and Phase Behavior of Water in TiO2 Nanopores
- Author
-
Estefania Gonzalez Solveyra, Damián A. Scherlis, Valeria Molinero, Galo J. A. A. Soler-Illia, and Ezequiel de la Llave
- Subjects
Materials science ,Capillary condensation ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Diffusion ,Ciencias Químicas ,Nanotechnology ,MESOPOROUS TITANIA ,WATER ADSORPTION ,Thermal diffusivity ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Nanopore ,Molecular dynamics ,General Energy ,Chemical physics ,Phase (matter) ,CAPILLARY CONDENSATION ,SIMULATION ,Photocatalysis ,Physical and Theoretical Chemistry ,Mesoporous material ,CIENCIAS NATURALES Y EXACTAS - Abstract
Mesoporous titania is a highly studied material due to its energy and environment-related applications, which depend on its tailored surface and electronic properties. Understanding the behavior of water in titania pores is a central issue for practical purposes in photocatalysis, solar cells, bone implants, or optical sensors. In particular, the mechanisms of capillary condensation of water in titania mesopores and the organization and mobility of water as a function of pore filling fraction are not yet known. In this work, molecular dynamics simulations of water confined in TiO2-rutile pores of diameters 1.3, 2.8, and 5.1 nm were carried out at various water contents. Water density and diffusion coefficients were obtained as a function of the distance from the surface. The proximity to the interface affects density and diffusivity within a distance of around 10 Å from the walls, beyond which all properties tend to converge. The densities of the confined liquid in the 2.8 and the 5.1 nm pores decrease, respectively, 7% and 4% with respect to bulk water. This decrease causes the water translational mobility in the center of the 2.8 nm pore to be appreciably larger than in bulk. Capillary condensation takes place in equilibrium for a filling of 71% in the 2.8 nm pore and in conditions of high supersaturation in the 5.1 nm pore, at a filling of 65%. In the former case, the surface density increases uniformly with filling until condensation, whereas in the larger nanopore, a cluster of water molecules develops on a localized spot on the surface for fillings just below the transition. No phase transition is detected in the smaller pore. For all the systems studied, the first monolayer of water is strongly immobilized on the interface, thus reducing the accessible or effective diameter of the pore by around 0.6 nm. As a consequence, the behavior of water in these pores turns out to be comparable to its behavior in less hydrophilic pores of smaller size. Fil: Gonzalez Solveyra, Estefania. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: de la Llave, Ezequiel Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
- Published
- 2013
26. Nitrosodisulfide [S
- Author
-
Juan P, Marcolongo, Uriel N, Morzan, Ari, Zeida, Damián A, Scherlis, and José A, Olabe
- Abstract
Nitrosodisulfide S
- Published
- 2016
27. The magnetic structure of β-cobalt hydroxide and the effect of spin-orientation
- Author
-
Diego Hunt, Matías Jobbágy, Gaston Garbarino, V. Ferrari, Damián A. Scherlis, José Alberto Rodríguez-Velamazán, Agencia Nacional de Promoción Científica y Tecnológica (Argentina), Universidad de Buenos Aires, and Consejo Superior de Investigaciones Científicas (España)
- Subjects
Magnetic domain ,Magnetism ,Hydroxyde ,Ciencias Físicas ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,Otras Ciencias Físicas ,01 natural sciences ,Magnetization ,Paramagnetism ,Condensed Matter::Materials Science ,Spin ,Antiferromagnetism ,Physical and Theoretical Chemistry ,Magnetic structure ,Condensed matter physics ,Chemistry ,021001 nanoscience & nanotechnology ,Magnetic susceptibility ,0104 chemical sciences ,Layered Solid ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,Néel temperature ,CIENCIAS NATURALES Y EXACTAS - Abstract
Synchrotron X-ray and neutron diffraction experiments at various temperatures, down to 3 K, along with ab initio calculations, are carried out to elucidate the magnetic order of layered β-cobalt-hydroxide. This combination of techniques allows for the unambiguous assignment of the magnetic structure of this material. Our results confirm that below the Néel temperature high-spin cobalt centers are ferromagnetically coupled within a layer, and antiferromagnetically coupled across layers (magnetic propagation vector k = (0,0,½)), in agreement with the indirect interpretation based on magnetic susceptibility measurements. A paramagnetic/antiferromagnetic transition is observed at around 15 K. Moreover, the thermal expansion behavior along the c-lattice direction, perpendicular to the layers, shows an inflection slightly above this temperature, at around 30 K. The neutron diffraction patterns and the non-collinear DFT+U calculations indicate that the magnetization forms an angle of about 35° with the cobalt planes. In particular, for an isolated ferromagnetic layer, the electronic structure calculations reveal sharp cusps on the potential energy surface when the spins point parallel or perpendicular to the planes, suggesting that the ferromagnetic superexchange mechanism is strongly sensitive to the orientation of the magnetic moment., JARV acknowledges CSIC for a JAEdoc contract. This study has been supported by grants of ANPCYT/PICT 2012-2292 and UBACYT 20020120100333BA.
- Published
- 2016
28. Nitrosodisulfide [S2NO]- (perthionitrite) is a true intermediate during the 'cross-talk' of nitrosyl and sulfide
- Author
-
Juan P. Marcolongo, Ari Zeida, José A. Olabe, Uriel N. Morzan, and Damián A. Scherlis
- Subjects
0301 basic medicine ,chemistry.chemical_classification ,Sulfide ,Tddft ,Uv-Spectra ,Otras Ciencias Químicas ,Ciencias Químicas ,General Physics and Astronomy ,Perthionitrite ,Time-dependent density functional theory ,Photochemistry ,Molecular Dynamics ,03 medical and health sciences ,chemistry.chemical_compound ,Molecular dynamics ,030104 developmental biology ,Uv spectra ,chemistry ,Acetone ,Physical and Theoretical Chemistry ,Acetonitrile ,CIENCIAS NATURALES Y EXACTAS - Abstract
Nitrosodisulfide S2NO- is a controversial intermediate in the reactions of S-nitrosothiols with HS- that produce NO and HNO. QM-MM molecular dynamics simulations combined with TD-DFT analysis contribute to a clear identification of S2NO- in water, acetone and acetonitrile, accounting for the UV-Vis signatures and broadening the mechanistic picture of N/S signaling in biochemistry. Fil: Marcolongo, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Zeida Camacho, Ari Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Olabe Iparraguirre, Jose Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
- Published
- 2016
29. Vapor pressure of aqueous solutions of electrolytes reproduced with coarse-grained models without electrostatics
- Author
-
Valeria Molinero, Damián A. Scherlis, Matías H. Factorovich, and Yamila A. Perez Sirkin
- Subjects
Work (thermodynamics) ,Vapor pressure ,Vapour pressure of water ,Monte Carlo method ,Mixing (process engineering) ,Thermodynamics ,010402 general chemistry ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,Monatomic ion ,0103 physical sciences ,purl.org/becyt/ford/1.4 [https] ,Physical and Theoretical Chemistry ,Physics::Atmospheric and Oceanic Physics ,Canonical ensemble ,010304 chemical physics ,Chemistry ,Otras Ciencias Químicas ,Ciencias Químicas ,Electrostatics ,0104 chemical sciences ,Computer Science Applications ,Solutions ,Physical chemistry ,CIENCIAS NATURALES Y EXACTAS - Abstract
The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach (Factorovich, M. H. et al. J. Chem. Phys. 2014, 140, 064111) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid−vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion−ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions. Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2016
30. Role of Confinement and Surface Affinity on Filling Mechanisms and Sorption Hysteresis of Water in Nanopores
- Author
-
Valeria Molinero, Ezequiel de la Llave, and Damián A. Scherlis
- Subjects
Properties of water ,Nucleation ,purl.org/becyt/ford/1 [https] ,chemistry.chemical_compound ,Molecular dynamics ,Phase (matter) ,CAPILLARY CONDENSATION ,purl.org/becyt/ford/1.4 [https] ,Water cluster ,Physical and Theoretical Chemistry ,Physics::Atmospheric and Oceanic Physics ,Physics::Biological Physics ,Quantitative Biology::Biomolecules ,Supersaturation ,Otras Ciencias Químicas ,SORPTION HYSTERESIS ,Ciencias Químicas ,Sorption ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Condensed Matter::Soft Condensed Matter ,Nanopore ,Crystallography ,General Energy ,chemistry ,Chemical physics ,NANOPORE ,CIENCIAS NATURALES Y EXACTAS ,SORPTION ISOTHERM - Abstract
The liquid-vapor transition in cylindrical pores is studied as a function of pore size and hydrophilicity through molecular dynamics simulations with the mW coarse-grained model of water. We identify two distinct filling mechanisms, depending on whether the water-pore interaction is smaller or larger than the water-water interaction. In the former case (that we term hydrophobic pore), the formation of the condensed phase proceeds gradually with filling, through the nucleation of a water cluster which grows toward the center of the cavity. In hydrophilic pores, instead, the condensed phase develops in conditions of supersaturation, which in principle become more extreme with increasing pore radius and surface affinity. For highly hydrophilic interfaces (those with adsorption energy for water above 10 kcal/mol), the equilibrium and dynamical properties of water in confinement turn out to be practically independent of water affinity. Fil: de la Llave, Ezequiel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2012
31. A Surface Effect Allows HNO/NO Discrimination by a Cobalt Porphyrin Bound to Gold
- Author
-
Aldo A. Rubert, Marcelo A. Martí, Fabio Doctorovich, Roberto Carlos Salvarezza, Ezequiel de la Llave, Mariano H. Fonticelli, Sebastian Suarez, and Damián A. Scherlis
- Subjects
Models, Molecular ,Hemeprotein ,Metalloporphyrins ,Surface Properties ,Inorganic chemistry ,Molecular Conformation ,chemistry.chemical_element ,Hydroxamic Acids ,Nitric Oxide ,Electrochemistry ,Inorganic Chemistry ,chemistry.chemical_compound ,Polyphosphates ,Molecule ,Reactivity (chemistry) ,Physical and Theoretical Chemistry ,Electrodes ,Methylene Chloride ,Photoelectron Spectroscopy ,Nitroxyl ,Cobalt ,Porphyrin ,chemistry ,Covalent bond ,Microscopy, Electron, Scanning ,Quantum Theory ,Nitrogen Oxides ,Gold - Abstract
Nitroxyl (HNO) is a small short-lived molecule for which it has been suggested that it could be produced, under certain cofactors conditions, by nitric oxide (NO) synthases. Biologically relevant targets of HNO are heme proteins, thiols, molecular oxygen, NO, and HNO itself. Given the overlap of the targets and reactivity between NO and HNO, it is very difficult to discriminate their physiopathological role conclusively, and accurate discrimination between them still remains critical for interpretation of the ongoing research in this field. The high reactivity and stability of cobalt(II) porphyrins toward NO and the easy and efficient way of covalently joining porphyrins to electrodes through S-Au bonds prompted us to test cobalt(II) 5,10,15,20-tetrakis[3-(p-acetylthiopropoxy)phenyl]porphyrin [Co(P)], as a possible candidate for the electrochemical discrimination of both species. For this purpose, first, we studied the reaction between NO, NO donors, and commonly used HNO donors, with Co(II)(P) and Co(III)(P). Second, we covalently attached Co(II)(P) to gold electrodes and characterized its redox and structural properties by electrochemical techniques as well as scanning tunneling microscopy, X-ray photoelectron spectroscopy, and solid-state density functional theory calculations. Finally, we studied electrochemically the NO and HNO donor reactions with the electrode-bound Co(P). Our results show that Co(P) is positioned over the gold surface in a lying-down configuration, and a surface effect is observed that decreases the Co(III)(P) (but not Co(III)(P)NO(-)) redox potential by 0.4 V. Using this information and when the potential is fixed to values that oxidize Co(III)(P)NO(-) (0.8 V vs SCE), HNO can be detected by amperometric techniques. Under these conditions, Co(P) is able to discriminate between HNO and NO donors, reacting with the former in a fast, efficient, and selective manner with concomitant formation of the Co(III)(P)NO(-) complex, while it is inert or reacts very slowly with NO donors.
- Published
- 2010
32. Selenium-Based Self-Assembled Monolayers: The Nature of Adsorbate−Surface Interactions
- Author
-
Damián A. Scherlis and Ezequiel de la Llave
- Subjects
Thermal desorption spectroscopy ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Analytical chemistry ,law.invention ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,law ,Monolayer ,Electrochemistry ,General Materials Science ,DENSITY FUNCTIONAL THEORY ,Spectroscopy ,CONDUCTANCE ,Chemistry ,SAMs ,BINDING OF SELENOLS ,Ciencias Químicas ,Selenol ,Self-assembled monolayer ,Surfaces and Interfaces ,Condensed Matter Physics ,Chemical physics ,Density functional theory ,Self-assembly ,Scanning tunneling microscope ,CIENCIAS NATURALES Y EXACTAS - Abstract
In recent years, self-assembled monolayers (SAMs) of selenols have been characterized using electrochemistry, scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy, and other experimental approaches. Interest in the relative stability and conductance of the Se - Au interface as compared to S-Au prompted different investigations which have led to contradictory results. From the theoretical side, on the other hand, the study of selenol-based SAMs has concentrated on the investigation of the electron transport across the Se-Au contact, whereas the structural and the thermodynamic features of the monolayer were essentially neglected. In this Article, we examine the binding of selenols to the Au(111) surface using density functional theory with plane wave basis sets and periodic boundary conditions. Our calculations provide insights on the geometry of the headgroup, the stability of the monolayer, and the electronic properties of the bond. In particular, we propose that the presence of a conjugated backbone might be a major factor determining the relative conductance at the monolayer, by differentially enhancing the intramolecular electron transport in selenols with respect to thiols. This surmise, if confirmed, would explain the conflictive data coming from the available experiments Fil: de la Llave, Ezequiel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2009
33. Binding between Carbon and the Au(111) Surface and What Makes It Different from the S−Au(111) Bond
- Author
-
Ernesto J. Calvo, Damián A. Scherlis, Ezequiel de la Llave, and Alejandra Marcela Ricci
- Subjects
Surface (mathematics) ,Chemistry ,Bond ,Conductance ,chemistry.chemical_element ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Electron transfer ,General Energy ,Chemisorption ,Chemical physics ,Density of states ,Organic chemistry ,Density functional theory ,Physical and Theoretical Chemistry ,Carbon - Abstract
In contrast with the case of thiols, molecular level information regarding the binding of carbon to metals is very scarce. Motivated by the growing interest in the grafting of conducting surfaces and seeking a rationale to explain the differences in electron transfer rates measured in recent experiments, we apply density functional theory to shed light on the binding of carbon to gold. A comparative study between the C−Au(111) and the S−Au(111) bonds allows us to establish a thermodynamic, structural, and electronic description of the aromatic and aliphatic chemisorption. Enlightening insight emerges from the projected density of states, which delivers a natural interpretation of the difference in conductance observed for the two kind of linkages.
- Published
- 2008
34. Mesoporous Aminopropyl-Functionalized Hybrid Thin Films with Modulable Surface and Environment-Responsive Behavior
- Author
-
A. Calvo, Verónica M. Sánchez, Paula C. Angelomé, Federico J. Williams, Damián A. Scherlis, and Galo J. A. A. Soler-Illia
- Subjects
chemistry.chemical_classification ,Materials science ,Proton ,Otras Ciencias Químicas ,General Chemical Engineering ,Biomolecule ,Porous Materials ,Ciencias Químicas ,Nanotechnology ,General Chemistry ,Phosphonate ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,Chemical engineering ,chemistry ,Materials Chemistry ,Surface modification ,Density functional theory ,Thin film ,Mesoporous material ,CIENCIAS NATURALES Y EXACTAS - Abstract
A first study of the behavior of amino functions in mesoporous hybrid thin films M1-x(Si-(CH2)3NH2) xO2-x/2 (M = Si, Ti, Zr; 0.05 ≤ x ≤ 0.2) with accessible Im3̄m- or Fm3̄m-derived pore mesostructures is presented. An XPS study of surface nitrogen species shows two different sites corresponding to amino and ammonium groups. The ratio of these species changes with pH and is related to the nature of M, suggesting that the interaction between the organic functions and the surface M-OH groups can be tailored to tune the surface acid-base behavior. Density functional theory (DFT) calculations were used to rationalize the XPS observations showing that -NH3 + functions irreversibly transfer a proton to neighboring M-O- surface groups. The acid-base surface properties can be further modified by adding a phosphonate "capping" on the M surface sites. Our findings have a series of interesting implications in surface functionalization: attachment of biomolecules to surfaces, design of perm-selective or philicity-selective membranes, or design of catalysts that show a well-defined organic reactive function near surface hydroxyl groups. Fil: Calvo, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina Fil: Angelome, Paula Cecilia. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina Fil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Williams, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Nanociencia y Nanotecnología; Argentina Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Nanociencia y Nanotecnología; Argentina
- Published
- 2008
35. Electronic Perturbation in a Molecular Nanowire of [IrCl5(NO)]− Units
- Author
-
Linda J. W. Shimon, Fabio Doctorovich, José M. Ramallo-López, Florencia Di Salvo, Carlos Bondía, Félix G. Requejo, Damián A. Scherlis, Natalia Escola, Darío A. Estrin, and Daniel H. Murgida
- Subjects
Fourier Analysis ,Nanowires ,Chemistry ,Organic Chemistry ,Stacking ,chemistry.chemical_element ,General Chemistry ,Electronic structure ,Crystallography, X-Ray ,Iridium ,Photochemistry ,Catalysis ,Electron transfer ,Crystallography ,Transition metal ,Oxidation state ,Singlet state ,Ground state ,Oxidation-Reduction - Abstract
is probably the most electrophilic known to date. This fact is reflected by its extremely high IR frequency in the solid state, electrochemical behavior, and remarkable reactivity in solution. PPh 4 [IrCl 5 (NO)] forms a crystal in which the [IrCl 5 (NO)] - anions are in a curious wire-like linear arrangement, in which the distance between the N-O moiety of one anion and the trans chloride of the upper one nearby is only 2.8 A. For the same complex [Ircl 5 (NO)] - but with a different counterion, Na[IrCl 5 (NO)], the anions are stacked one over the other in a side-by-side arrangement. In this case the electronic distribution can be depicted as the closed-shell electronic structure Ir III -NO + , as expected for any d 6 third-row transition metal complex. However, in PPh 4 [IrCl 5 (NO)] an unprecedented electronic perturbation takes place, probably due to NO•-Cl - acceptor-donor interactions among a large number of [IrCl 5 (NO)] - units, favoring a different electronic distribution, namely the open-shell electronic structure Ir IV -NO•. This conclusion is based on XANES experimental evidence, which demonstrates that the formal oxidation state for iridium in PPh 4 -[IrCl 5 (NO)] is +4, as compared with +3 in K[IrCl 5 (NO)]. In agreement, solid-state DFT calculations show that the ground state for [IrCl 5 (NO)] - in the PPh 4 + salt comprises an open-shell singlet with an electronic structure which encompasses half of the spin density mainly localized on a metal-centered orbital, and the other half on an NO-based orbital. The electronic perturbation could be seen as an electron promotion from a metal-chloride to a metal-NO orbital, due to the small HOMO-LUMO gap in PPh 4 -[IrCl 5 (NO)]. This is probably induced by electrostatic interactions acting as a result of the closeness and wire-like spatial arrangement of the Ir metal centers, imposed by lattice forces due to π-π stacking interactions among the phenyl rings in PPh 4 + . Experimental and theoretical data indicate that in PPh 4 [IrCl 5 (NO)] the Ir-N-O moiety is partially bent and tilted.
- Published
- 2007
36. Effect of Counterions on the Interactions of Charged Oligothiophenes
- Author
-
Damián A. Scherlis, Nicholas E. Singh-Miller, and Nicola Marzari
- Subjects
inorganic chemicals ,chemistry.chemical_classification ,Intermolecular force ,Stacking ,Conjugated system ,Surfaces, Coatings and Films ,chemistry.chemical_compound ,chemistry ,Ab initio quantum chemistry methods ,Computational chemistry ,Hexafluorophosphate ,Materials Chemistry ,Polythiophene ,Density functional theory ,Physical and Theoretical Chemistry ,Counterion - Abstract
The functionality of conjugated polymer systems often relies on oxidations or reductions, in most cases mediated by the presence of counterions. The effect that the common counterion hexafluorophosphate (PF6-) has on the intermolecular interactions between charged oligothiophenes is investigated here using ab initio quantum chemistry methods. Counterions are explicitly included in the simulations of oxidized oligothiophenes and in the dimerization process. Our calculations provide quantitative and qualitative insight into the intermolecular interactions in oligothiophene-counterion systems and show that the intermolecular pi-stacking of oligothiophenes is not adversely affected by the presence of counterions and that in fact oligothiophene dimerization is further stabilized by their presence.
- Published
- 2006
37. π-Stacking in Thiophene Oligomers as the Driving Force for Electroactive Materials and Devices
- Author
-
Nicola Marzari and Damián A. Scherlis
- Subjects
Conductive polymer ,Chemistry ,Stacking ,Ab initio ,General Chemistry ,Electronic structure ,Biochemistry ,Catalysis ,Molecular dynamics ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Ab initio quantum chemistry methods ,Chemical physics ,Computational chemistry ,Thiophene ,Electrochemical potential - Abstract
The pi-stacking between aromatic oligomers has been extensively studied for many years, although the notion of exploiting this phenomenon as the driving force for molecular actuation has only recently emerged. In this work we examine with MP2 and Car-Parrinello ab initio calculations the actuation properties of a novel class of thiophene-based materials introduced by Swager et al. (Adv. Mater. 2002, 14, 368; J. Am. Chem. Soc. 2003, 125, 1142). The chemical ingredients of the assembly, calix[4]arenes and oligothiophenes, are screened separately to characterize the actuation mechanisms and design optimal architectures. In particular, ab initio methods are used to study pi-stacking in mixed-valence oligothiophene dimers, revealing strong interactions that can be turned on and off as a function of the electrochemical potential. We show how these interactions could be harnessed to achieve molecular actuation and investigate the response of an active unit in real time with first-principles molecular dynamics simulations.
- Published
- 2005
38. π-Stacking in Charged Thiophene Oligomers
- Author
-
Nicola Marzari and Damián A. Scherlis
- Subjects
Chemistry ,Ab initio ,Stacking ,Solvation ,Surfaces, Coatings and Films ,chemistry.chemical_compound ,Polarizability ,Ab initio quantum chemistry methods ,Computational chemistry ,Physics::Atomic and Molecular Clusters ,Materials Chemistry ,Thiophene ,Singlet state ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,Acetonitrile - Abstract
The π-stacking of oxidized thiophene oligomers is investigated using extensive ab initio quantum chemistry methods. Dimers of singly charged oligothiophenes are unstable in the gas phase but can be stabilized as bound dications in the singlet state by a polarizable solvent such as acetonitrile. Our calculations provide a detailed description of the mechanisms and the energetics involved in the dimerization phenomenon and highlight the role and importance of the environment in the stabilization of the stacks. The need for accurate treatments of electronic correlations and of solvation effects for a realistic description of these materials is underscored.
- Published
- 2004
39. Concerning the origin of superstructures in hydrogen molybdenum bronzes HxMoO3
- Author
-
Carme Rovira, Stefan Adams, Pablo Ordejón, Young Joo Lee, Risto M. Nieminen, Enric Canadell, and Damián A Scherlis
- Subjects
Materials science ,Condensed matter physics ,Hydrogen ,chemistry.chemical_element ,Fermi surface ,02 engineering and technology ,General Chemistry ,Conductivity ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,chemistry ,Molybdenum ,0103 physical sciences ,Condensed Matter::Strongly Correlated Electrons ,General Materials Science ,010306 general physics ,0210 nano-technology ,Electronic band structure ,Charge density wave ,Topology (chemistry) - Abstract
The possible relationship between the superstructures in hydrogen molybdenum bronzes and charge density wave (CDW)-type instabilities of their Fermi surface (FS) is analyzed. It is shown that, depending on structural details, two-dimensional, one-dimensional and quite localized bands can be in competition at the bottom of the t2g-block band structure changing the shape of the FS. It is suggested that the topology of the FS is not the main driving force for the adoption of the superstructures but may be at the origin of some conductivity anomalies of these phases.
- Published
- 2004
40. A DFT-Based QM-MM Approach Designed for the Treatment of Large Molecular Systems: Application to Chorismate Mutase
- Author
-
Pablo Ordejón, Adrian E. Roitberg, Damián A. Scherlis, Darío A. Estrin, Marcelo A. Martí, and Alejandro Crespo
- Subjects
Aqueous solution ,biology ,Chemistry ,Active site ,Activation energy ,Force field (chemistry) ,Surfaces, Coatings and Films ,QM/MM ,Computational chemistry ,Materials Chemistry ,biology.protein ,Chorismate mutase ,Moiety ,Density functional theory ,Physical and Theoretical Chemistry - Abstract
We present a density functional theory (DFT) hybrid quantum mechanical/molecular mechanical (QM-MM) implementation developed for simulations of reactions in complex environments. It is particularly suited to study enzyme active sites or solutes in condensed phases. The method combines a QM description of the solute with a MM treatment of the environment. The QM fragment is treated using DFT as implemented in the computationally efficient program SIESTA, while the environment is treated using the Wang et al. Amber force field parametrization. We applied our new QM-MM scheme to study the conversion of chorismate to prephenate by computing the reaction energy profile in vacuo, aqueous solution and in the active site of the B. subtilis chorismate mutase enzyme. We have performed calculations for two different choices of the QM subsystem in the enzyme simulations: including only the substrate moiety and the substrate plus the charged side chains glu78 and arg90, respectively. In both cases, our results are in good agreement with experiment. The catalytic activity achieved by chorismate mutase relative to the uncatalyzed reaction in solution is due to both a minor destabilization of the substrate molecule by compression and a major electrostatic stabilization of the transition state, which reduce the activation energy of the reaction.
- Published
- 2003
41. Environment effects on chemical reactivity of heme proteins
- Author
-
Damián A. Scherlis, Pablo Ordejón, Marcelo A. Martí, and Darío A. Estrin
- Subjects
chemistry.chemical_classification ,Hemeprotein ,biology ,Hydrogen bond ,Stereochemistry ,Chemistry ,Active site ,Cytochrome P450 ,Condensed Matter Physics ,Horseradish peroxidase ,Atomic and Molecular Physics, and Optics ,Amino acid ,Heme B ,chemistry.chemical_compound ,Biochemistry ,biology.protein ,Physical and Theoretical Chemistry ,Histidine - Abstract
Heme proteins are involved in a variety of physiological processes, such as O2 transport, electron transfer, sensing of O2 or CO, and catalysis of redox reactions. Despite the differences in biologic function, all these proteins have iron protoporphyrin IX (heme b) as the active site. The amino acids surrounding the active site are responsible for the specific reactivity of each protein. We analyzed the environment effects on binding of small ligands such as O2 and NO to several heme proteins using density functional theory (DFT) calculations of model systems including selected amino acid residues, and also DFT calculations of the active site coupled to an electrostatic representation of the rest of the protein. Specifically, we considered the following problems: (1) the mechanisms underlying inactivation by nitric oxide of cytochrome P450; (2) O2 affinity of human and Ascaris hemoglobin and the role of oxygen hydrogen bonding to the distal amino acids; (3) the influence of the amino acid residues surrounding the proximal histidine in the Fehistidine bond cleavage upon binding of NO in FixL, horseradish peroxidase, and human hemoglobin. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002
- Published
- 2002
42. Structure and spin-state energetics of an iron porphyrin model: An assessment of theoretical methods
- Author
-
Darío A. Estrin and Damián A. Scherlis
- Subjects
Spin states ,Chemistry ,Hartree ,Electronic structure ,Condensed Matter Physics ,Molecular physics ,Atomic and Molecular Physics, and Optics ,Hybrid functional ,Computational chemistry ,Spin crossover ,Physics::Atomic and Molecular Clusters ,Density functional theory ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,Multiplicity (chemistry) ,Ground state - Abstract
The ability of unrestricted Hartree–Fock (UHF), Moller–Plesset (MP2), density functional theory (DFT), and hybrid density functional/Hartree–Fock methodologies to describe the structure and spin-state energetics of iron porphyrins was assessed. In the first place, these techniques have been applied to Fe, Fe+, Fe2+, and Fe3+ for which HF calculations overestimate energy gaps, favoring stabilization of higher multiplicity states. DFT shows the opposite trend at the GGA level, with some improvement using the hybrid schemes B3LYP and half-and-half. We use the hybrid functionals to explore the dependence of the spin state with the iron displacement out of the porphyrin plane in the five-coordinate system, for which a high-spin ground state has been experimentally determined. The possibility of spin crossover, proposed in previous studies, is examined. Finally, the hybrid methodologies are applied to the computation of the oxyhemoglobin model. The B3LYP description of the electronic structure of both penta and hexa coordinate model systems is consistent with previous theoretical calculations and with experimental information of deoxy and oxy hemoglobin. © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2002
- Published
- 2002
43. Electron transport in real time from first-principles
- Author
-
Francisco F. Ramírez, Damián A. Scherlis, Uriel N. Morzan, and Mariano C. González Lebrero
- Subjects
Imagination ,Gaussian ,media_common.quotation_subject ,FOS: Physical sciences ,General Physics and Astronomy ,Perturbation (astronomy) ,Basis function ,02 engineering and technology ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,symbols.namesake ,TDDFT ,0103 physical sciences ,Molecular conductance ,purl.org/becyt/ford/1.4 [https] ,Statistical physics ,Physical and Theoretical Chemistry ,Driven Liouville equation ,Gaussian process ,media_common ,Physics ,Condensed Matter - Materials Science ,010304 chemical physics ,Otras Ciencias Químicas ,Ciencias Químicas ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Polyacetylene ,Electron transport chain ,Conductance ,symbols ,Density functional theory ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS - Abstract
While the vast majority of calculations reported on molecular conductance have been based on the static non-equilibrium Green’s function formalism combined with density functional theory (DFT), in recent years a few time-dependent approaches to transport have started to emerge. Among these, the driven Liouville-von Neumann equation [C. G. Sánchez et al., J. Chem. Phys. 124, 214708 (2006)] is a simple and appealing route relying on a tunable rate parameter, which has been explored in the context of semi-empirical methods. In the present study, we adapt this formulation to a density functional theory framework and analyze its performance. In particular, it is implemented in an efficient all-electron DFT code with Gaussian basis functions, suitable for quantum-dynamics simulations of large molecular systems. At variance with the case of the tight-binding calculations reported in the literature, we find that now the initial perturbation to drive the system out of equilibrium plays a fundamental role in the stability of the electron dynamics. The equation of motion used in previous tight-binding implementations with massive electrodes has to be modified to produce a stable and unidirectional current during time propagation in time-dependent DFT simulations using much smaller leads. Moreover, we propose a procedure to get rid of the dependence of the current-voltage curves on the rate parameter. This method is employed to obtain the current-voltage characteristic of saturated and unsaturated hydrocarbons of different lengths, with very promising prospects. Fil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
- Published
- 2017
44. Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
- Author
-
Valeria Molinero, Estefania Gonzalez Solveyra, Matías H. Factorovich, and Damián A. Scherlis
- Subjects
Cavitation ,Capillary condensation ,Chemistry ,Hydriphobicity ,Otras Ciencias Químicas ,Condensation ,Analytical chemistry ,Ciencias Químicas ,Thermodynamics ,Sorption ,Capillary condesation ,Kelvin equation ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Contact angle ,symbols.namesake ,Hysteresis ,Nanopores ,General Energy ,Adsorption ,Desorption ,symbols ,Physical and Theoretical Chemistry ,CIENCIAS NATURALES Y EXACTAS - Abstract
The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in combination with the mW coarse-grained model for water. The contact angle is characterized for different sets of water–surface interactions. First, we show that desorption in open-ended pores with moderate or low water affinity, with contact angles greater or equal than 24°, is a nonactivated process in which pressure is accurately described by the Kelvin equation. Then, we explore the influence of hydrophobicity on the capillary condensation and on the width of the hysteresis loop. We find that a small increase in the contact angle may have a significant impact on the surface density and consequently on the nucleation free energy barrier. This produces a separation of the adsorption and desorption branches, exacerbating the emerging hysteresis. These results suggest that the contact angle is not as relevant as the adsorption energy in determining condensation pressure and hysteresis. Finally, we consider nonequilibrium desorption in pores with no open ends and describe how homogeneous and heterogeneous cavitation mechanisms depend on hydrophilicity. Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Gonzalez Solveyra, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2014
45. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework
- Author
-
M. Belén Oviedo, Mariano C. González Lebrero, Uriel N. Morzan, Francisco F. Ramírez, Damián A. Scherlis, and Cristián G. Sánchez
- Subjects
Hemeproteins ,Computation ,Quantum dynamics ,Gaussian ,Iron ,RT-TDDFT ,General Physics and Astronomy ,Electrons ,Heme ,Molecular Dynamics Simulation ,QM-MM ,purl.org/becyt/ford/1 [https] ,symbols.namesake ,MAGNUS ,Bacterial Proteins ,Quantum mechanics ,Magnus expansion ,purl.org/becyt/ford/1.4 [https] ,Statistical physics ,Physical and Theoretical Chemistry ,LEAPFROG ,Formamides ,Chemistry ,Otras Ciencias Químicas ,Ciencias Químicas ,Water ,Time-dependent density functional theory ,symbols ,Verlet integration ,Quantum Theory ,Density functional theory ,Hamiltonian (quantum mechanics) ,CIENCIAS NATURALES Y EXACTAS - Abstract
This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data. Fil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina
- Published
- 2014
46. Vapor Pressure of Water Nanodroplets
- Author
-
Matías H. Factorovich, Damián A. Scherlis, and Valeria Molinero
- Subjects
Chemistry ,Vapor pressure ,Nanodroplet ,Otras Ciencias Químicas ,Vapour pressure of water ,Kelvin ,Finite system ,Ciencias Químicas ,General Chemistry ,Mechanics ,Biochemistry ,Kelvin equation ,Catalysis ,symbols.namesake ,Molecular dynamics ,Colloid and Surface Chemistry ,Quantum mechanics ,symbols ,Thermodynamics ,Nanoscopic scale ,Order of magnitude ,CIENCIAS NATURALES Y EXACTAS - Abstract
Classical thermodynamics is assumed to be valid up to a certain length-scale, below which the discontinuous nature of matter becomes manifest. In particular, this must be the case for the description of the vapor pressure based on the Kelvin equation. However, the legitimacy of this equation in the nanoscopic regime can not be simply established, because the determination of the vapor pressure of very small droplets poses a challenge both for experiments and simulations. In this article we make use of a grand canonical screening approach recently proposed to compute the vapor pressures of finite systems from molecular dynamics simulations. This scheme is applied to water droplets, to show that the applicability of the Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where the inhomogeneities in the density of matter occur within spatial lengths of the same order of magnitude as the size of the object. While in principle this appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular descriptions depart from each other. Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2014
47. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems
- Author
-
Damián A. Scherlis, Matías H. Factorovich, and Valeria Molinero
- Subjects
Canonical ensemble ,Vapor pressure ,Chemistry ,Otras Ciencias Químicas ,Monte Carlo method ,Ciencias Químicas ,General Physics and Astronomy ,Interface ,Molecular dynamics ,Kelvin equation ,purl.org/becyt/ford/1 [https] ,symbols.namesake ,Water model ,Dynamic Monte Carlo method ,symbols ,purl.org/becyt/ford/1.4 [https] ,Statistical physics ,Physical and Theoretical Chemistry ,Grand canonical ,CIENCIAS NATURALES Y EXACTAS ,Monte Carlo molecular modeling - Abstract
In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size. Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Molinero, Valeria. University of Utah; Estados Unidos Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2014
48. AM1 Study of the Ground and Excited State Potential Energy Surfaces of Symmetric Carbocyanines
- Author
-
Javier Rodriguez, and Pedro F. Aramendía, R. Martín Negri, Darío A. Estrin, and Damián A. Scherlis
- Subjects
chemistry.chemical_compound ,Chemistry ,Excited state ,Indoline ,Molecule ,Activation energy ,Physical and Theoretical Chemistry ,Atomic physics ,Carbocyanines ,Rotation ,Potential energy ,Isomerization - Abstract
Ground (S0) and first excited singlet state (S1) potential energy surfaces were calculated for a series of six symmetric carbocyanines as a function of the twisting angle (θ), around a carbon−carbon bond of the polymethine chain. The surfaces were computed using AM1 semiempirical quantum mechanical calculations. Rotations around different bonds were considered in order to determine the relevant rotation for isomerization, that is, the rotation with the lowest activation energy for the isolated molecule (E0). For that rotation, the computed values of E0 are in good agreement with values extrapolated from experiments in solutions of n-primary alcohols. The same holds for the computed transition energies between both surfaces for the thermodynamically stable N isomer (θ = 0°) and the P photoisomer (θ = 180°). The effects of chain length and pattern substitution of the indoline moiety on E0 were also analyzed for both surfaces. The shape of the potential surfaces referred as the Rulliere's model holds in all ...
- Published
- 1997
49. Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy
- Author
-
Damián A. Scherlis and Pablo G. Lustemberg
- Subjects
Anatase ,Spectrophotometry, Infrared ,Surface Properties ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Inorganic chemistry ,General Physics and Astronomy ,Infrared spectroscopy ,Molecular Dynamics Simulation ,purl.org/becyt/ford/1 [https] ,chemistry.chemical_compound ,Adsorption ,IR SPECTROSCOPY ,Vacancy defect ,purl.org/becyt/ford/1.4 [https] ,Physical and Theoretical Chemistry ,Spectroscopy ,Titanium ,Carbon Monoxide ,Ciencias Químicas ,CARBON MONOXIDE ,CAR-PARRINELLO ,chemistry ,Chemical physics ,Rutile ,Molecular vibration ,Titanium dioxide ,TIO2 SURFACE ,CIENCIAS NATURALES Y EXACTAS - Abstract
The adsorption and vibrational frequency of CO on defective and undefective titanium dioxide surfaces is examined applying first-principles molecular dynamics simulations. In particular, the vibrational frequencies are obtained beyond the harmonic approximation, through the time correlation functions of the atomic trajectories. In agreement with experiments, at low CO coverages we find an upshift in the vibration frequency with respect to the free CO molecule, of 45 and 35 cm-1 on the stoichiometric rutile (110) and anatase (101) faces, respectively. A band falling 8 cm-1 below the frequency corresponding to the perfect face is observed for the reduced rutile (110) surface in the low vacancy concentration limit, where the adsorption is favored on Ti4+ sites. At a higher density of defects, adsorption on Ti3+ sites becomes more stable, accompanied by a downshift in the stretching band. In the case of anatase (101), we analyze the effect of subsurface oxygen vacancies, which have been shown to be predominant in this material. Interestingly, we find that the adsorption of CO on five coordinate Ti atoms placed over subsurface vacancies is favored with respect to other Ti4+ sites (7.25 against 6.95 kcal/mol), exhibiting a vibrational redshift of 20 cm-1 . These results provide the basis to quantitatively assess the degree of reduction of rutile and anatase surfaces via IR spectroscopy, and at the same time allow for the assignment of characteristic bands in the CO spectra on TiO2 whose origin has remained ambiguous. Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentina
- Published
- 2013
50. Molecular and Electronic Structure of Electroactive Self-Assembled Monolayers
- Author
-
Ezequiel de la Llave, Federico J. Williams, Lucila P. Méndez De Leo, and Damián A. Scherlis
- Subjects
Chemistry ,Físico-Química, Ciencia de los Polímeros, Electroquímica ,Fermi level ,ELECTRONIC STRUCTURE ,Ciencias Químicas ,General Physics and Astronomy ,Molecular electronics ,Nanotechnology ,Self-assembled monolayer ,Electronic structure ,DFT ,purl.org/becyt/ford/1 [https] ,symbols.namesake ,chemistry.chemical_compound ,SELF-ASSEMBLED MONOLAYERS ,Ferrocene ,Chemical physics ,Monolayer ,purl.org/becyt/ford/1.4 [https] ,symbols ,Work function ,Self-assembly ,Physical and Theoretical Chemistry ,WORK FUNCTION ,CIENCIAS NATURALES Y EXACTAS - Abstract
Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30 degrees tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. On the other hand, contrary with previous observations, we found that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics. Fil: Méndez de Leo, Lucila Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: de la Llave, Ezequiel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Williams, Federico Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.