1. Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex
- Author
-
Kazuhiko Maeda, Daehyeon An, Ryo Kuriki, Daling Lu, and Osamu Ishitani
- Subjects
artificial photosynthesis ,heterogeneous photocatalysis ,hybrid material ,metal complexes ,solar fuels ,Science ,Organic chemistry ,QD241-441 - Abstract
Graphitic carbon nitride (g-C3N4) was synthesized by heating urea at different temperatures (773–923 K) in air, and was examined as a photocatalyst for CO2 reduction. With increasing synthesis temperature, the conversion of urea into g-C3N4 was facilitated, as confirmed by X-ray diffraction, FTIR spectroscopy and elemental analysis. The as-synthesized g-C3N4 samples, further modified with Ag nanoparticles, were capable of reducing CO2 into formate under visible light (λ > 400 nm) in the presence of triethanolamine as an electron donor, with the aid of a molecular Ru(II) cocatalyst (RuP). The CO2 reduction activity was improved by increasing the synthesis temperature of g-C3N4, with the maximum activity obtained at 873–923 K. This trend was also consistent with that observed in photocatalytic H2 evolution using Pt-loaded g-C3N4. The photocatalytic activities of RuP/g-C3N4 for CO2 reduction and H2 evolution were thus shown to be strongly associated with the generation of the crystallized g-C3N4 phase.
- Published
- 2018
- Full Text
- View/download PDF