47 results on '"Dai, Dongqin"'
Search Results
2. Genomic insights into differentiation and adaptation of Amorphophallus yunnanensis in the mountainous region of Southwest China
- Author
-
Gao, Yong, primary, Dai, Dongqin, additional, Wang, Haibo, additional, Wu, Weijia, additional, Xiao, Penghui, additional, Wu, Lifang, additional, Wei, Xiaomei, additional, and Yin, Si, additional
- Published
- 2024
- Full Text
- View/download PDF
3. Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes
- Author
-
Hongsanan, Sinang, Hyde, Kevin D., Phookamsak, Rungtiwa, Wanasinghe, Dhanushka N., McKenzie, Eric H. C., Sarma, V. Venkateswara, Lücking, Robert, Boonmee, Saranyaphat, Bhat, Jayarama D., Liu, Ning-Guo, Tennakoon, Danushka S., Pem, Dhandevi, Karunarathna, Anuruddha, Jiang, Shu-Hua, Jones, Gareth E. B., Phillips, Alan J. L., Manawasinghe, Ishara S., Tibpromma, Saowaluck, Jayasiri, Subashini C., Sandamali, Diana, Jayawardena, Ruvishika S., Wijayawardene, Nalin N., Ekanayaka, Anusha H., Jeewon, Rajesh, Lu, Yong-Zhong, Phukhamsakda, Chayanard, Dissanayake, Asha J., Zeng, Xiang-Yu, Luo, Zong-Long, Tian, Qing, Thambugala, Kasun M., Dai, Dongqin, Samarakoon, Milan C., Chethana, K. W. Thilini, Ertz, Damien, Doilom, Mingkwan, Liu, Jian-Kui (Jack), Pérez-Ortega, Sergio, Suija, Ave, Senwanna, Chanokned, Wijesinghe, Subodini N., Niranjan, Mekala, Zhang, Sheng-Nan, Ariyawansa, Hiran A., Jiang, Hong-Bo, Zhang, Jin-Feng, Norphanphoun, Chada, de Silva, Nimali I., Thiyagaraja, Vinodhini, Zhang, Huang, Bezerra, Jadson D. P., Miranda-González, Ricardo, Aptroot, André, Kashiwadani, Hiroyuki, Harishchandra, Dulanjalee, Sérusiaux, Emmanuël, Abeywickrama, Pranami D., Bao, Dan-Feng, Devadatha, Bandarupalli, Wu, Hai-Xia, Moon, Kwang Hee, Gueidan, Cecile, Schumm, Felix, Bundhun, Digvijayini, Mapook, Ausana, Monkai, Jutamart, Bhunjun, Chitrabhanu S., Chomnunti, Putarak, Suetrong, Satinee, Chaiwan, Napalai, Dayarathne, Monika C., Yang, Jing, Rathnayaka, Achala R., Xu, Jian-Chu, Zheng, Jiesheng, Liu, Gang, Feng, Yao, and Xie, Ning
- Published
- 2020
- Full Text
- View/download PDF
4. Genome-wide screening of hexokinase gene family and functional elucidation of HXK2 response to cold stress in Jatropha curcas
- Author
-
Wang, Haibo, Xin, Hu, Guo, Junyun, Gao, Yong, Liu, Chao, Dai, Dongqin, and Tang, Lizhou
- Published
- 2019
- Full Text
- View/download PDF
5. Effects of chilling stress on the accumulation of soluble sugars and their key enzymes in Jatropha curcas seedlings
- Author
-
Wang, Haibo, Gong, Ming, Xin, Hu, Tang, Lizhou, Dai, Dongqin, Gao, Yong, and Liu, Chao
- Published
- 2018
- Full Text
- View/download PDF
6. Additions to the genus Periconia from northern Thailand
- Author
-
Tian, Xingguo, Tibpromma, Saowaluck, Karunarathna, Samantha C., Dai, Dongqin, Bao, Danfeng, Mapook, Ausana, and Jayawardena, Ruvishika S.
- Subjects
Ascomycota ,Microascales ,Sordariomycetes ,Fungi ,Microascaceae ,Biodiversity ,Plant Science ,Ecology, Evolution, Behavior and Systematics ,Taxonomy - Abstract
Pineapple is one of the economically important fruits in Chiang Rai Province but few studies have been carried out on fungal saprobes on this plant. During a survey of fungal saprobes on pineapple, several dead leaves covered by hyphomycetous fungi with effuse colonies, dark brown to black on the host substrate were collected. Phylogenetic analyses of combined ITS, LSU, SSU, and TEF1-α sequence data revealed that our fungal collections are members of Periconia. Based on morphological comparisons and multi-locus phylogeny we introduce a new species (Periconia ananasi sp. nov.) and a new host and geographic record for Periconia epilithographicola. The results expand our knowledge of microfungi on pineapple. Full descriptions, illustrations, and multi-locus phylogeny of the taxa studied are provided.
- Published
- 2022
7. Giant atypical lipoma of thoracic cavity:Special tumor location
- Author
-
Huang, Zhicheng, primary, Wang, Xiaoyong, additional, Dai, Dongqin, additional, and Tang, Guangcai, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Three interesting fungi from American bullfrog larvae (Rana catesbeiana) in Yunnan, China
- Author
-
YANG, ERFU, primary, LU, WENHUA, additional, TIBPROMMA, SAOWALUCK, additional, DAI, DONGQIN, additional, GAO, YING, additional, PROMPUTTHA, ITTHAYAKORN, additional, and KARUNARATHNA, SAMANTHA C., additional
- Published
- 2023
- Full Text
- View/download PDF
9. Sordaria Ces. & De Not. 1863
- Author
-
Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn, and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Sordariomycetes ,Fungi ,Sordariales ,Sordariaceae ,Biodiversity ,Sordaria ,Taxonomy - Abstract
Sordaria Ces. & De Not., Commentario della Società Crittogamologica Italiana 1 (4): 225 (1863) Index Fungorum number: IF 5061 Type species: Sordaria fimicola (Roberge ex Desm.) Ces. & De Not., Commentario della Società Crittogamologica Italiana 1 (4): 226 (1863) Notes: Sordaria was introduced with the type species S. fimicola, and 264 records are listed in Index Fungorum (2023), but only 23 species have available sequence data (Huang et al. 2021). The sexual morph of Sordaria was characterized by having sub-immersed to superficial, perithecioid, coriaceous ascomata, contain with cylindrical paraphyses, oblong, upright to slightly curved asci, with a lobate pedicel and distinct apical ring, with eight-spored, uniseriate, ellipsoidal to ovoid, verruculose ascospore, immature ascospore enclosed in a hyaline gelatinous sheath, however, sometimes thick and conspicuous to even difficult to detect (Ivanová et al. 2015; Phukhamsakda et al. 2020). Species of Sordaria are commonly found in dung, soil, and seed pods (Furtado 1969; Watanabe 1989; Mungai et al. 2012). Notably, the filamentous ascomycete Sordaria macrospora was considered a model organism to study the molecular mechanisms that regulate fruiting bodies’ development (Teichert et al. 2020).
- Published
- 2023
- Full Text
- View/download PDF
10. Boothiella Lodhi & Mirza
- Author
-
Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn, and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Boothiella ,Sordariomycetes ,Fungi ,Sordariales ,Biodiversity ,Chaetomiaceae ,Taxonomy - Abstract
Boothiella Lodhi & Mirza, Mycologia 54: 217 (1962) Index Fungorum number: IF 627 Type species: Boothiella tetraspora Lodhi & Mirza, Mycologia 54: 217 (1962) Notes: Boothiella was a monotypic genus and established by the type species B. tetraspora, which was isolated from soil in Lahore City, Pakistan. Boothiella is similar to Thielavia but differs by having a colourless ascomatal wall (Lodhi & Mirza 1962). Eriksson et al. (2004) and Kirk et al. (2008) proposed Boothiella should be accommodated in the family Sordariaceae, and this phylogenetic placement was confirmed by other researchers later (Vu et al. 2019, Wang et al. 2019). The sexual morph was described by having a superficial to immersed, globose to subglobose, cleistothecial ascomata, solitary to aggregated, non-ostiolate, hyaline ascomatal walled, clavate to cylindrical asci with four-spored, short pedicellate, uniseriate, evanescent. Ascospore ellipsoidal to broad ovoid, hyaline to yellow to olivaceous brown with the maturity, one-celled, with apical germ pores, however, no asexual morphs have been reported (Huang et al. 2021). Thielaviella humicola and Thielavia tetraspora were recently re-identified as Boothiella tetraspora based on evidences of morphology and phylogeny (Wang et al. 2019). This genus has a single species (B. tetraspora), and most collections were isolated from soil (Wang et al. 2019)., Published as part of Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn & Karunarathna, Samantha C., 2023, Three interesting fungi from American bullfrog larvae (Rana catesbeiana) in Yunnan, China, pp. 251-268 in Phytotaxa 587 (3) on page 257, DOI: 10.11646/phytotaxa.587.3.4, http://zenodo.org/record/7744408, {"references":["Lodhi, S. A. & Mirza, R. F. (1962) A new genus of the Eurotiales. Mycologia 54: 217 - 219. https: // doi. org / 10.1080 / 00275514.1962.12024993","Eriksson, O. E., Baral, H. O., Currah, R. S., Kurtzman, C. P., Rambold, G. & Laessoe, T. (2004) Outline of Ascomycota - 2004. Myconet 10: 1 - 99.","Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. (2008) Ainsworth & Bisby's Dictionary of the Fungi, 10 th ed. CABI, UK. pp. 1 - 771. https: // doi. org / 10.1079 / 9780851998268.0000","Vu, D., Groenewald, M., de Vries, M. D., Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J. Z., Cardinali, J. & Houbraken, J. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135 - 154. https: // doi. org / 10.1016 / j. simyco. 2018.05.001","Wang, X. W., Bai, F. Y., Bensch, K., Meijer, M., Sun, B. D., Han, Y. F., Crous, P. W., Samson, R. A., Yang, F. Y. & Houbraken, J. (2019) Phylogenetic re-evaluation of Thielavia with the introduction of a new family Podosporaceae. Studies in Mycology 93: 155 - 252. https: // doi. org / 10.1016 / j. simyco. 2019.08.002","Huang, S. K., Hyde, K. D., Mapook, A., Maharachchikumbura, S. S. N., Bhat, J. D., McKenzie, E. H. C., Jeewon, R. & Wen, T. C. (2021) Taxonomic studies of some often over-looked Diaporthomycetidae and Sordariomycetidae. Fungal Diversity 111: 443 - 572. https: // doi. org / 10.1007 / s 13225 - 021 - 00488 - 4"]}
- Published
- 2023
- Full Text
- View/download PDF
11. Boothiella tetraspora Lodhi & J. H. Mirza
- Author
-
Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn, and Karunarathna, Samantha C.
- Subjects
Boothiella tetraspora ,Ascomycota ,Boothiella ,Sordariomycetes ,Fungi ,Sordariales ,Biodiversity ,Chaetomiaceae ,Taxonomy - Abstract
Boothiella tetraspora Lodhi & J.H. Mirza, Mycologia 54(2): 217 (1962) (Figure 4) Index Fungorum number: IF 327083 Isolated from intestinal contents of dead American bullfrog larvae. Sexual morph on PDA: Mycelium 3–5 μm wide, hyaline to yellow pale, thick-walled, branched, septate, with granules. Ascomata 260–370 × 240–330 μm (x̅ =245 × 285 μm, n=10), globose to subglobose, solitary or gregarious, superficial to immersed on PDA, brown to dark brown or black, membranaceous, glabrous, without ostiolate. Ascomatal wall composed of membranaceous, subhyaline to pale brown cells of textura angularis. Hamathecium not observed. Asci 80–100 × 15–20 μm (x̅ =87.5 × 15.5 μm, n=20), unitunicate, four-spored, clavate to broadly cylindrical, apically round, short pedicellate, furcate pedicel, evanescent. Ascospores 20–30 × 10–20 μm (x̅ = 24 × 14.5 μm, n=20), ovoid to ellipsoidal, hyaline to yellowish brown to dark brown, aseptate, rough to verruculose, sometimes visible a germ pore at one or each end, without sheath. Asexual morph: Undetermined. Culture characteristics: Colonies growing on PDA reach 30–40 mm in diameter after one week at 27 °C, forming the brown to dark brown fruiting bodies within one month in PDA. Obverse: flat, velvety, hairy, pale brown, entire edge. Reverse: yellowish brown. Without pigments produced in PDA. Known substratum: Soil (Lodhi & Mirza 1962, Wang et al. 2019); Sand (Wang et al. 2019); Intestinal contents of dead American bullfrog larvae (this study). Known Distribution: Pakistan (Lodhi & Mirza 1962); Spain, India (Wang et al. 2019), China (This study). Material examined: China, Yunnan Province, Qujing Normal University, intestinal contents of dead American bullfrog larvae, GPS: 103°44’35”E, 25°30’46”N, 1856.6 m, Wen-hua Lu, ER 4, (Herb. HKAS 125767), living culture KUNCC22-12510. Notes: Based on detailed descriptions of Boothiella tetraspora, our isolate KUNCC 22-12510 fits with previous strains in morphology, forming brown to dark brown ascomata, with globose to subglobose, superficial to immersed, non-ostiolate, additionally, both strains almost have the same size of asci and ascospores, with four-spored asci, ovoid to ellipsoidal conidia (Lodhi & Mirza 1962, Wang et al. 2019). Phylogenetically, our isolate KUNCC 22-12510 clustered with Boothiella tetraspora (CBS 334.67 and CBS 887.97) with reliable statistical supports (99% ML /1 BYPP, Figure 2). The BLASTn results of ITS, LSU, tub2, and rpb2 region demonstrate 99–100% similarity with Boothiella tetraspora strains (CBS 334.67 and CBS 887.97). Therefore, our isolate KUNCC 22-12510 is identified as B. tetraspora, a new host and country record based on morphological features combined with phylogeny evidence., Published as part of Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn & Karunarathna, Samantha C., 2023, Three interesting fungi from American bullfrog larvae (Rana catesbeiana) in Yunnan, China, pp. 251-268 in Phytotaxa 587 (3) on pages 258-259, DOI: 10.11646/phytotaxa.587.3.4, http://zenodo.org/record/7744408, {"references":["Lodhi, S. A. & Mirza, R. F. (1962) A new genus of the Eurotiales. Mycologia 54: 217 - 219. https: // doi. org / 10.1080 / 00275514.1962.12024993","Wang, X. W., Bai, F. Y., Bensch, K., Meijer, M., Sun, B. D., Han, Y. F., Crous, P. W., Samson, R. A., Yang, F. Y. & Houbraken, J. (2019) Phylogenetic re-evaluation of Thielavia with the introduction of a new family Podosporaceae. Studies in Mycology 93: 155 - 252. https: // doi. org / 10.1016 / j. simyco. 2019.08.002"]}
- Published
- 2023
- Full Text
- View/download PDF
12. Sordaria macrospora Auersw., nov. Series
- Author
-
Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn, and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Sordariomycetes ,Fungi ,Sordariales ,Sordariaceae ,Biodiversity ,Sordaria macrospora ,Sordaria ,Taxonomy - Abstract
Sordaria macrospora Auersw., Fungi Europaei exsiccati, Klotzschii herbarii vivi mycologici continuatio. Editio nov. Series secunda. Cent. 10: no. 954 (1866) (Figure 5) Index Fungorum number: IF 237763 Isolated from intestinal contents of dead American bullfrog larvae. Sexual morph on PDA: Ascomata 340–420 × 270–380 μm (x̅ = 330 × 380 μm, n=20), semi-immersed to superficial, perithecial, solitary or gregarious, ampulliform or pyriform, globose, coriaceous, brown to black, ostiolate. Neck 140–180 × 85–120 μm (x̅ = 160 × 99 μm, n=10) central, oblong, straight to bent, extended, blunt ends. Peridium consist of dark-brown, thick-walled cells of textura angularis. Hamathecium 6–15 wide (x̅ = 9.5 μm, n=20), numerous, wide, branched, septate, markedly constricted at the septa, hyaline, paraphyses. Asci 130–180 × 17–22 μm (̄x̅ = 155×19 μm, n=20), unitunicate, eight-spored, slenderly cylindrical, with a lobate pedicel and a prominent J- ring. Ascospores 20–30 × 15–20 μm (x̅ =25.5 × 15.5 μm, n=20), one-celled, ellipsoidal to ovoid, uniseriate, hyaline to golden to brown to black when mature, guttulate, with some prominent oil droplets, with a thin gelatinous sheath, acute to round ends, with a basal germ pore. Asexual morph: Undetermined. Culture characteristics: Colonies growing on PDA reach around 60 mm in diameter after one week at 27 °C, forming dark brown fruiting bodies within one month in PDA. Obverse: flat, white, entire edge, peripheral fertile. Reverse: pale brown. Without pigments produced in PDA. Known substratum: Pinus sylvestris, Fagus sylvatica (Petrini & Fisher 1988); Salix fragilis, Quercus robur (Petrini & Fisher 1990); Olea europaea (Fisher et al. 1992); Eucalyptus nitens (Fisher et al. 1993); Dactylis glomerata (Sanchez Marquez et al. 2007); Herbivore dung (Lytvynenko & Hayova 2018); Intestinal contents of dead American bullfrog larvae (this study). Known Distribution: England (Petrini & Fisher 1998,1990); Balearic Islands (Fisher et al. 1992); Australia (Fisher et al. 1993); Spain (Sanchez Marquez et al. 2007); Ukraine (Lytvynenko & Hayova 2018); China (This study). Material examined: China, Yunnan Province, Qujing Normal University, on intestinal contents of dead American bullfrog larvae, GPS: 103°44’35”E, 25°30’46”N, 1856.6 m, Wen-hua Lu, ER3, (Herb. HKAS 125766), living culture 22-12509. Notes: Sordaria macrospora is a coprophilic homothallic pyrenomycete, a fungal model organism in biology that was first described in 1866 by Auerswald. Our isolate fits the concept of S. macrospora by having elongated neck, oblong asci with a “J-” apical ring, enwrap eight hyaline to golden to dark brown ascospores, ascospores uniseriate, visible distinct oil droplets when its young, present verruculose surface when it is mature, without gelatinous sheath (Lord & Read 2011). The BLASTn results of ITS, and LSU showed our isolate (KUNCC 22-12509) are highly similar to Sordaria species (Sordaria macrospora CBS:346.62, S. humana CBS:416.82, S. fimicola CBS:566.67, S. lappae CBS:154.97, S. tamaensis and S. nodulifera NBRC:32551), with 99–100% similarity. However, the tub2 gene is mostly similar to Sordaria macrospora (FGSC 4818) and S. superba (CBS 784.96) with 99% similarity, the tub2 gene of other species is not available (Table 1). From morphology, Sordaria superba is different, as the ascospores are wrapped by a distinct gelatinous sheath with a single basal germ pore (Yul et al. 2010), our isolate is more similar to S. macrospora (ascomata: 370–400 (500) × 250–300 µm VS. 340–420 × 270–380 μm; and asci: 160–175 ×20 VS. 20–30 × 15–20 μm) (Ivanová et al. 2015). The phylogenetic tree indicated that our Sordaria macrospora KUNCC 22-12509 is complex with the other species that have high similarity in ITS, and LSU genes (Figure 2), and this problem may be caused by lacking tub2 genes, therefore, our isolate KUNCC 22-12509 is identified based on morphological features (Table 2) coupled with BLASTn results and phylogenetic analyses as Sordaria macrospora which is a new host and country record., Published as part of Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn & Karunarathna, Samantha C., 2023, Three interesting fungi from American bullfrog larvae (Rana catesbeiana) in Yunnan, China, pp. 251-268 in Phytotaxa 587 (3) on pages 259-260, DOI: 10.11646/phytotaxa.587.3.4, http://zenodo.org/record/7744408, {"references":["Petrini, O. & Fisher, P. J. (1988) A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Transactions of the British Mycological Society 91: 233 - 238. https: // doi. org / 10.1016 / S 0007 - 1536 (88) 80210 - 9","Petrini, O. & Fisher, P. J. (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycology Research 94: 1077 - 1080. https: // doi. org / 10.1016 / S 0953 - 7562 (09) 81336 - 1","Fisher, P. J., Petrini, O., Petrini, L. E. & Descals, E. (1992) A preliminary study of fungi inhabiting xylem and whole stems of Olea europaea. Sydowia 44: 117 - 121.","Fisher, P. J., Petrini, O. & Sutton, B. C. (1993) A comparative study of fungal endophytes in leaves, xylem and bark of Eucalyptus in Australia and England. Sydowia 45: 338 - 345.","Sanchez Marquez, S., Bills, G. F. & Zabalgogeazcoa, I. (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Diversity 27: 171 - 195.","Lytvynenko, Y. I. & Hayova, V. P. (2018) New and noteworthy records of coprophilous species of Coniochaeta and Sordaria (Sordariomycetes, Ascomycota) from Ukraine. Ukrainian Botanical Journal 75: 538 - 551. https: // doi. org / 10.15407 / ukrbotj 75.06.538","Lord, K. M. & Read, N. D. (2011) Perithecium morphogenesis in Sordaria macrospora. Fungal Genetics and Biology 48: 388 - 399. https: // doi. org / 10.1016 / j. fgb. 2010.11.009","Yul, G., Mikos, I. G. & OYu, A. (2010) New records of coprophilous ascomycetes in the Crimea. Chornomorski Botanical Journal 6: 67 - 83. https: // doi. org / 10.14255 / 2308 - 9628 / 10.61 / 6","Ivanova, H., Pristas, P. & Ondruskova, E. M. I. L. I. A. (2015) Comparison of two Coniochaeta species (C. ligniaria and C. malacotricha) with a new pathogen of black pine needles - S ordaria macrospora. Plant Protection Science 52: 18 - 25. https: // doi. org / 10.17221 / 45 / 2014 - PPS"]}
- Published
- 2023
- Full Text
- View/download PDF
13. Trichoderma Pers
- Author
-
Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn, and Karunarathna, Samantha C.
- Subjects
Trichoderma ,Hypocreaceae ,Ascomycota ,Sordariomycetes ,Hypocreales ,Fungi ,Biodiversity ,Taxonomy - Abstract
Trichoderma Pers., Neues Magazin f̧r die Botanik 1: 92 (1794) Index Fungorum number: IF 10282 Type species: Trichoderma viride Pers., Neues Magazin f̧r die Botanik 1: 92 (1794) Notes: Trichoderma has been known since at least the 1920s for their antagonistic properties to act as biocontrol agents against plant pathogens (Harman 2006). Recently, 495 records have been listed in the index Fungorum (2023). Trichoderma are soilborne, green-spored ascomycetes, these fungi are often isolated from forest or agricultural soils worldwide and present typical green sporulation in vitro (Brotman et al. 2010, Zhang et al. 2022). Some strains of Trichoderma are opportunistic plant symbionts, that effectively colonize roots, and have evolved multiple mechanisms to increase plant growth and productivity (Harman 2000, 2006). Moreover, Trichoderma is a strong mycoparasite, and shows excellent antagonistic properties to other fungi to produce antibiotics that affect other microbes (Weindling 1934, Weindling & Fawcett 1936). Therefore, Trichoderma is an ideal biocontrol agent in agriculture. Especially, Trichoderma reesei is famous as an industrially important cellulolytic filamentous fungus that produced secondgeneration biofuels from cellulosic waste (Schuster & Schmoll 2010)., Published as part of Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn & Karunarathna, Samantha C., 2023, Three interesting fungi from American bullfrog larvae (Rana catesbeiana) in Yunnan, China, pp. 251-268 in Phytotaxa 587 (3) on page 261, DOI: 10.11646/phytotaxa.587.3.4, http://zenodo.org/record/7744408, {"references":["Harman, G. E. (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190 - 194. https: // doi. org / 10.1094 / PHYTO- 96 - 0190","Brotman, Y., Kapuganti, J. G. & Viterbo, A. (2010) Trichoderma. Current Biology 20: 390 - 391. https: // doi. org / 10.1016 / j. cub. 2010.02.042","Zhang, G. Z., Yang, H. T., Zhang, X. J., Zhou, F. Y., Wu, X. Q., Xie, X. Y., Zhao, X. Y. & Zhou, H. Z. (2022) Five new species of Trichoderma from moist soils in China. MycoKeys 87: 133 - 157. https: // doi. org / 10.3897 / mycokeys. 87.76085","Harman, G. E. (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T- 22. Plant Disease 84: 377 - 393. https: // doi. org / 10.1094 / PDIS. 2000.84.4.377","Weindling, R. (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24: 1153 - 1179.","Weindling, R. & Fawcett, H. S. (1936) Experiments in the control of Rhizoctonia damping-off of citrus seedlings. Hilgardia 10: 1 - 16. https: // doi. org / 10.3733 / hilg. v 10 n 01 p 001","Schuster, A. & Schmoll, M. (2010) Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology 87: 787 - 799. https: // doi. org / 10.1007 / s 00253 - 010 - 2632 - 1"]}
- Published
- 2023
- Full Text
- View/download PDF
14. Trichoderma virens Arx, Beih
- Author
-
Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn, and Karunarathna, Samantha C.
- Subjects
Trichoderma ,Trichoderma virens ,Hypocreaceae ,Ascomycota ,Sordariomycetes ,Hypocreales ,Fungi ,Biodiversity ,Taxonomy - Abstract
Trichoderma virens (J.H. Mill., Giddens & A.A. Foster) Arx, Beih. Nova Hedwigia 87: 288 (1987) (Figure 6) Index Fungorum number: IF 128198 Isolated from intestinal contents of dead American bullfrog larvae. Sexual morph: Undetermined. Asexual morph on PDA: Aerial mycelium abundant on PDA, fast-growing, forming cream-yellow to green sporulation with maturity, with a distinctive odour, sometimes producing a farinose to granular mat. Conidiophores 20–30 μm high, irregularly branched in a dendriform structure. Vegetative hyphae 4–8 μm wide (x̅ = 6 μm, n = 30), branched, hyaline, smooth and thick-walled, septate, narrow and flexuous, terminal branched, often curved. Conidiogenous cells 5.5–8 × 3–5 μm (x̅ = 6.5 × 4 μm, n = 20), occurring in lateral and terminal clusters, pyramidal. Conidia 4–6 × 3–4 μm (x̅ = 5 × 3.5 μm, n = 20), catenated, obovoid to globose, hyaline to olivaceous, delicately roughened, aseptate, smooth-walled. Chlamydospores 8–11 × 7–9 μm (x̅ = 9.5 × 8.5 μm, n = 20), hyaline, thick-walled, globose to subglobose, terminal. Culture characteristics: Colonies growing on PDA reach 70–80 mm in diameter after one week at 27 °C, forming the hyaline to olivaceous to green sporulation in PDA. Obverse: aerial, fluffy, hyaline mycelium, peripheral fertile, creamy green to dark green. Reverse olivaceous to pale brown. Without pigments produced in PDA. Known substratum: Theobroma cacao (Hanada et al. 2010), Betula pendula & Pinus sylvestris (Mulenko et al. 2008), Soil samples (Arx 1987, Kindermann et al. 1998, Chaverri et al. 2001, Zeng et al. 2016), intestinal contents of dead bullfrog larvae (This study). Known distribution: Unites States (Chaverri et al. 2001, Arx 1987), New Zealand (Kindermann et al. 1998), Poland (Mulenko et al. 2008), Brazil (Hanada et al. 2010), China (Zeng et al. 2016, This study). Material examined: China, Yunnan Province, Qujing Normal University, intestinal contents of dead American bullfrog larvae, GPS: 103°44’35”E, 25°30’46”N, 1856.6 m. Wen-hua Lu, ER2 (Herb. HKAS 125765) living culture KUNCC22-12508. Notes: Morphologically, our isolate KUNCC 22-12508 well fits the concept of Trichoderma virens by fastforming typical green sporulation in vitro, with obovoid, hyaline to olivaceous, slightly roughened conidia (Arx 1987, Chaverri et al. 2001). In addition, its chlamydospores were easily formed between the hyphae or formed terminally in the hyphae tip, similar results were also observed by Abd-Aziz et al. (2008). Phylogenetically, KUNCC 22-12508 has placed within Trichoderma virens strains, and separated well with neighbor species T. crassum and T. neocrassum with high statistical supports (100% ML /1 BYPP) (Figure 3). Moreover, the BLASTn results of ITS, LSU, tef1-α and rpb2 expect our isolate KUNCC 22-12508 100% similar to Trichoderma virens strains (LZ 002, LZ 012, Z 051). Therefore, our isolate KUNCC 22-12508 is identified as Trichoderma virens, a new host record based on morphological features and phylogenetic evidence., Published as part of Yang, Erfu, Lu, Wenhua, Tibpromma, Saowaluck, Dai, Dongqin, Gao, Ying, Promputtha, Itthayakorn & Karunarathna, Samantha C., 2023, Three interesting fungi from American bullfrog larvae (Rana catesbeiana) in Yunnan, China, pp. 251-268 in Phytotaxa 587 (3) on pages 262-263, DOI: 10.11646/phytotaxa.587.3.4, http://zenodo.org/record/7744408, {"references":["Arx, J. A. (1987) Plant pathogenic fungi. Beihefte zur Nova Hedwigia 87: 1 - 288","Chaverri, P., Samuels, G. J. & Stewart, E. L. (2001) Hypocrea virens sp. nov., the teleomorph of Trichoderma virens. Mycologia 93: 1113 - 1124. https: // doi. org / 10.1080 / 00275514.2001.12063245","Abd-Aziz, S., Fernandez, C. C., Salleh, M. M., Illias, R. M. & Hassan, M. (2008) Effect of agitation and aeration rates on chitinase production using Trichoderma virens UKM 1 in 2 - l stirred tank reactor. Applied Biochemistry and Biotechnology 150: 193 - 204. https: // doi. org / 10.1007 / s 12010 - 008 - 8140 - 4"]}
- Published
- 2023
- Full Text
- View/download PDF
15. Morpho-phylogeny characterization of Linocarpon bambusina sp. nov. (Linocarpaceae, Chaetosphaeriales) associated with bamboo in Yunnan Province, China
- Author
-
ZHANG, XIAN, primary, DAI, DONGQIN, additional, DU, TIANYE, additional, KARUNARATHNA, SAMANTHA C., additional, and TIBPROMMA, SAOWALUCK, additional
- Published
- 2023
- Full Text
- View/download PDF
16. Linocarpon bambusina X. Zhang & Tibpromma 2023, sp. nov
- Author
-
Zhang, Xian, Dai, Dongqin, Du, Tianye, Karunarathna, Samantha C., and Tibpromma, Saowaluck
- Subjects
Chaetosphaeriales ,Ascomycota ,Linocarpaceae ,Linocarpon bambusina ,Sordariomycetes ,Fungi ,Linocarpon ,Biodiversity ,Taxonomy - Abstract
Linocarpon bambusina X. Zhang & Tibpromma, sp. nov. (Fig. 2) Index Fungorum number: IF900063; Facesoffungi number: FoF 12953 Holotype: GMB1360 Etymology: Species epithet refers to the host genus “ bambusa ” from which the holotype was collected. Saprobic on dead culms of bamboo. Sexual morph: Ascomata 150–330 × 360–560 μm (x = 223.5 × 484 μm, n = 10), solitary or aggregated, mostly aggregated, semi-immersed, black, shiny, dome-shaped, raised, subglobose, flattened at the base, central ostiole with papillate. Ostiole periphysate, carbonaceous. Peridium 15–50 μm wide (x = 32 μm, n = 10), outer cells merging with the host epidermal cells, composed of brown to dark brown cells of textura angularis. Hamathecium 2.5–6 µm wide (x = 4 μm, n = 20), hyaline, hypha-like, septate paraphyses. Asci 75–140 × 9–20 μm (x = 105 × 12 μm, n = 50), 8-spored, unitunicate, long fusiform, shortly pedicellate, furcate pedicel, with a J- subapical ring. Ascospores 65–100 × 2–6 μm (x = 87 × 4.5 μm, n = 50), fasciculate, filiform, straight or curved, hyaline, 28–30 septa, parallel when immature and becoming spiral when mature in asci, with guttules when immature, ends slightly rounded, without appendage or mucilaginous sheath, smooth-walled. Asexual morph: Undetermined. Culture characteristics: Ascospores germinated on PDA within 24 h, and cultured at 25–28 ˚ C after one month, pure mycelia flossy, curled, colonies, circular, umbonate, white to pale brown in above, the reverse side is brown in the middle and yellow-white at the margin. Material examined: China, Yunnan Province, Lijiang City, on dead bamboo culms, 13 July 2021, D.Q. Dai, DDQ02097 (holotype, GMB 1360; isotype, KUN-HKAS 125776; ex-type living culture, GMBCC 1155). Notes: In the phylogenetic tree, our new species Linocarpon bambusina formed a well-separated clade sister to L. pandanicola (HKUCC 3783, HKUCC 4385, HKUM 16280) with moderate bootstrap support (55% ML) (Fig. 1). The comparison of LSU nucleotides between our taxon and L. pandanicola (HKUCC 4385) resulted in 8.1% difference (65/800 bp, without gaps), but L. pandanicola did not have SSU and tef 1-α genes to compare with L. bambusina. Linocaropn bambusina can be distinguished from L. pandanicola by having shiny ascomata, ostiolar papillate, fusiform asci with club shape, ascospores with 28–30 septa, and no appendages or mucilaginous sheath, while these characteristics are not present in L. pandanicola. In addition, our taxon and L. arengae are similar in asci pedicellate with a J- subapical ring, and filiform ascospores with straight or curved but can be distinguished by having semi-immersed ascomata, fusiform asci, ascospores with 28–30 septa, not constricted at septa, guttules, and no appendages or mucilaginous sheath, while L. arengae has immersed ascomata, cylindrical asci, aseptate ascospores, containing numerous refringent septum-like bands with polar mucilaginous appendage at the apex (Konta et al. 2017). Finally, L. bambusina can be distinguished by having solitary or aggregated, mostly aggregated, shiny, semi-immersed ascomata, with a J- subapical ring asci, ascospores with 28–30 septa, without appendage or mucilaginous sheath, while L. bambusicola has gregarious, superficial, ascomata, asci non-amyloid ring, aseptate ascospores, and the basal end sometimes with 1–3 minute mucilaginous drops (Cai et al. 2004). In addition, our new species is distinguished morphologically by its relatively semi-immersed ascomata, 28–30 septate ascospores, and no appendages or mucilaginous sheath, which is different from other species in Linocarpon., Published as part of Zhang, Xian, Dai, Dongqin, Du, Tianye, Karunarathna, Samantha C. & Tibpromma, Saowaluck, 2023, Morpho-phylogeny characterization of Linocarpon bambusina sp. nov. (Linocarpaceae, Chaetosphaeriales) associated with bamboo in Yunnan Province, China, pp. 89-103 in Phytotaxa 584 (2) on pages 95-97, DOI: 10.11646/phytotaxa.584.2.2, http://zenodo.org/record/7639251, {"references":["Konta, S., Hongsanan, S., Liu, J. K., Eungwanichayapant, P. D. & Boonmee, S. (2017) Leptosporella (Leptosporellaceae fam. nov.) and Linocarpon and Neolinocarpon (Linocarpaceae fam. nov.) are accommodated in Chaetosphaeriales. Mycosphere 8 (10): 1943 - 1974. https: // doi. org / 10.5943 / mycosphere / 8 / 10 / 16","Cai, L., Zhang, K., Mckenzie, E. H. C. & Hyde, K. D. (2004) Linocarpon bambusicola sp. nov. and Dictyochaeta curvispora sp. nov. from bamboo submerged in freshwater. Nova Hedwigia 78 (3): 439 - 445. https: // doi. org / 10.1127 / 0029 - 5035 / 2004 / 0078 - 0439","Hyde, K. D. (1997) Additions to the genus Linocarpon (Ascomycetes: Hyponectriaceae). Botanical Journal of the Linnean Society 123 (2): 109 - 131. https: // doi. org / 10.1111 / j. 1095 - 8339.1997. tb 01407. x"]}
- Published
- 2023
- Full Text
- View/download PDF
17. Rare magnetic resonance imaging findings of intracranial solitary fibrous tumor: A case report
- Author
-
Huang, Zhicheng, primary, Dai, Dongqin, additional, and Tang, Guangcai, additional
- Published
- 2022
- Full Text
- View/download PDF
18. Genome-wide Identification of Jatropha curcas MAPK, MAPKK, and MAPKKK Gene Families and Their Expression Profile Under Cold Stress
- Author
-
Wang, Haibo, Gong, Ming, Guo, Junyun, Xin, Hu, Gao, Yong, Liu, Chao, Dai, Dongqin, and Tang, Lizhou
- Published
- 2018
- Full Text
- View/download PDF
19. Lentithecium yunnanensis W. H. Lu, Karun. & Tibpromma 2022, sp. nov
- Author
-
Lu, Wenhua, Dai, Dongqin, Lu, Li, Liu, Xiangfu, Wei, Xiaomei, Karunarathna, Samantha C., and Tibpromma, Saowaluck
- Subjects
Lentithecium ,Lentithecium yunnanensis ,Lentitheciaceae ,Ascomycota ,Dothideomycetes ,Fungi ,Biodiversity ,Pleosporales ,Taxonomy - Abstract
Lentithecium yunnanensis W.H. Lu, Karun. & Tibpromma sp. nov. (FIGURE 2) Index Fungorum number: IF559622; Facesoffungi number: FoF 10778 Holotype: HKAS 123192 Etymology: Named after the place “ Yunnan ” where the new taxon was first discovered. Saprobic on dead culms of Artemisia sp. in the marsh habitat. Sexual morph: Ascomata 190 – 220 μm diam, 220 – 240 μm high (x̅ = 201 × 228 μm, n = 6), scattered to gregarious, conspicuous at the surface, semi-immersed to immersed beneath host epidermis, sometimes sparse erumpent, subglobose to globose in section, with a short papillate ostiolar neck (40 – 70 μm long, 40 – 70 μm diam), central, black. Peridium 20 – 30 μm wide, thick-walled, multilayers, consist of dark – brown, thick - walled cells of textura angularis in the outermost layers, unequal thickness. Hamathecium 2 – 3 μm wide, hyaline, slenderly cylindrical, slightly septate, rarely anastomosing, unbranched, tubular psedoparaphyses. Asci 60 – 150 × 10 – 20 μm (x̅ = 82 × 14 μm, n = 25), 8 – spored, fissitunicate, clavate, bitunicate, oblong to cylindrical, the apex is broadly round with visible apical chambers, short - stalked with club shape perdicel. Ascospores 20 – 40 × 10 – 20 μm (x̅ = 29.7 × 7.5 μm, n = 30), overlapping, bi-seriate, hyaline, clavate to broadly fusiform with broadly rounded ends, slightly curved, 1 – 3-septate, slightly constricted at the middle septum, widest at the centre, tapering towards ends, smooth - walled, with large guttules, surrounded by a hyaline mucilaginous sheath (1 – 4 μm thick). Asexual morph: Undetermined. Culture characteristics: Ascospores germinated on PDA within 20h, pure mycelia were transferred to PDA and cultured for two weeks at 25 °C, circular, effuse, irregular, flossy, velvety, pale brown to brown; reverse dark brown in the middle and yellow-white at the margin. Mycelium superficial and partially immersed raised. Hyphae septate branched, subhyaline, thin, smooth-walled. Incubated culture on PDA for eight months, but not get an asexual morph. Material examined: China, Yunnan, Kunming, Songhua Dam Reservoir, on dead culms of Artemisia sp., Wenhua Lu, LL 96, 17 July 2021, (HKAS 123192, holotype), ex-type, KUNCC 22-10776 = KUNCC 22-10777. Notes: Lentithecium yunnanensis was isolated on a dead culm of Artemisia sp. from Yunnan, China. Its morphology is comparable with the type species of Lentithecium and other taxa in Lentithecium (TABLE 3). The phylogenetic analyses of a combined sequence dataset (LSU, SSU, ITS, and tef 1 - α) position L. yunnanensis well separated from other taxa in Lentithecium with strong statistical supports (89% ML, 0.96PP, FIGURE 1). Lentithecium fluviatile is morphologically similar to our new species but differs from L. yunnanensis by having comparatively small ascomata (180 – 200 × 180 – 210 μm), at asci apex without an obvious apical chamber whereas L. yunnanensis has larger ascomata (190 – 218 × 222 – 236 μm) with a shallow ocular chamber on apex of bi-tunicate asci. Lentithecium fluviatile also has a relatively smaller (69 – 82 × 18 – 23 μm) asci compared with L. yunnanensis (58.4 – 154 × 11 – 18 μm), ascospore 24–31 × 7–10 μm, broadly fusiform, septate, hyaline, constricted at the septa, surrounded by a mucilaginous sheath (Ryckegem et al. 2001). In addition, L. clioninum differs from L. yunnanensis by having a relatively larger (210 – 280 × 330 – 430 μm) ascomata and (81.5–) 86–118 (–128) × 15–19 (–21) μm asci, ascospores of L. yunnanensis lack winglike sheaths as found in L. clioninum (Tanaka et al. 2015). Furthermore, the difference between L. yunnanensis and L. pseudoclioninum are mainly reflected in the following aspects, ascospores of L. yunnanensis hyaline, clavate to fusiform, 3-septums, clavate to multiple global guttules, smooth-walled, surrounded by hyaline mucilaginous sheath, with rounded ends; L. pseudoclioninum ascospore clavate to broadly fusiform, slightly curved, constricted at the septum. A synopsis of morphological characteristics of the accepted species of Lentithecium is provided in TABLE 3. Comparison of gene fragments of Lentithecium yunnanensis and four phylogenetically closely related species (TABLE 4). In addition, this is the first report of Lentithecium on the genus Artemisia in China., Published as part of Lu, Wenhua, Dai, Dongqin, Lu, Li, Liu, Xiangfu, Wei, Xiaomei, Karunarathna, Samantha C. & Tibpromma, Saowaluck, 2022, Additions to microfungi in China: Lentithecium yunnanensis sp. nov., pp. 103-121 in Phytotaxa 554 (2) on pages 108-111, DOI: 10.11646/phytotaxa.554.2.1, http://zenodo.org/record/6820916, {"references":["Zhang, Y., Wang, H. K., Fournier, J., Crous, P. W., Jeewon, R., Pointing, S. B. & Hyde, K. D. (2009 b) Towards a phylogenetic clarification of Lophiostoma / Massarina, morphologically similar genera in the Pleosporales. Fungal Diversity 38: 225 - 251. https: // doi. org / 10.1002 / yea. 1704","Tanaka, K., Hirayama, K., Yonezawa, H., Sato, G., Toriyabe, A., Kudo, H., Hashimoto, A., Matsumura, M., Harada, Y. & Kurihara, Y. (2015) Revisionof the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75 - 136.","Ryckegem, V. G. & Aptroot, A. (2001) A new Massarina and a new Wettsteinina (Ascomycota) from freshwater and tidal reeds. Nova Hedwigia 73: 161 - 166.","Zhang, Y., Crous, P. W., Schoch, C. L. & Hyde, K. D. (2012) Pleosporales. Fungal diversity 53: 1 - 221. https: // doi. org / 10.1007 / s 13225 - 011 - 0117 - x"]}
- Published
- 2022
- Full Text
- View/download PDF
20. Additions to microfungi in China: Lentithecium yunnanensis sp. nov.
- Author
-
LU, WENHUA, primary, DAI, DONGQIN, additional, LU, LI, additional, LIU, XIANGFU, additional, WEI, XIAOMEI, additional, KARUNARATHNA, SAMANTHA C., additional, and TIBPROMMA, SAOWALUCK, additional
- Published
- 2022
- Full Text
- View/download PDF
21. Pseudoberkleasmium chiangraiense X. G. Tian & Tibpromma 2022, sp. nov
- Author
-
Tian, Xingguo, Tibpromma, Saowaluck, Karunarathna, Samantha C., Dai, Dongqin, Lu, Yongzhong, Mapook, Ausana, and Jayawardena, Ruvishika S.
- Subjects
Pseudoberkleasmium ,Pseudoberkleasmium chiangraiense ,Ascomycota ,Dothideomycetes ,Fungi ,Biodiversity ,Pseudoberkleasmiaceae ,Pleosporales ,Taxonomy - Abstract
Pseudoberkleasmium chiangraiense X.G. Tian & Tibpromma, sp. nov. (FIGURE 3) Index Fungorum number: IF 558909; Facesoffungi number: FoF 10572 Etymology:— Referring to Chiang Rai Province, Thailand, where the species was first collected. Holotype: MFLU 21–0291 Saprobic on dead leaves of Cocos nucifera L. Sexual morph Undetermined. Asexual morph Hyphomycetous. Colonies on natural substrate, superficial, in groups, scattered, black, velvety, glistening, with conidia readily liberated when disturbed. Mycelium immersed in the substrate, composed of septate, branched, smooth, hyaline to pale brown hyphae. Conidiophores micronematous, mononematous, hyaline, smooth. Conidiogenous cells 9–13 × 11–13 μm (x̅ = 10.5 × 12.0 μm, n = 20), holoblastic, monoblastic, determinate, terminal, globose to subglobose or cup-shaped, integrated, connected at the base of conidia, smooth, guttulate, hyaline. Conidia 26–30 × 14–17.5 μm (x̅ = 28 × 15.5 μm, n = 50), acrogenous, solitary, ellipsoidal to obovoid, flattened, muriform, smooth-walled, dark brown to black at apical, pale brown at basal, guttulate, usually with a smooth hyaline conidiogenous cell attached. Culture characteristics:— Conidia germinating on PDA within 12 hr at 25 °C, not sporulating after two months. Surface with hyphal growth, circular, umbonate, fluffy, White at the margin, dark brown to black at the middle; reverse white to pale brown at the margin, black at the middle. Mycelium superficial, circular, partially immersed, hyaline to brown, smooth. Material examined:— THAILAND, Chiang Rai Province, Muang District, on decaying leaves of Cocos nucifera (Arecaceae), 8 December 2020, X. G. Tian, C4–1 (MFLU 21–0291, holotype), ex-type culture, MFLUCC 21–0154; ibid. 16 January 2021, C6–7 (MFLU 21–0292, paratype), living culture, MFLUCC 21–0161; ibid. C6–23 (MFLU 21–0293, paratype), living culture, MFLUCC 21–0162. Notes:— In the phylogenetic analyses, our new strains of Pseudoberkleasmium chiangraiense (MFLUCC 21–0154, MFLUCC 21–0161 and MFLUCC 21–0162) clustered as a sister clade to P. chiangmaiense (MFLUCC 17–2088, MFLUCC 17–1809 and MFLU 21–0290) with a 76% ML bootstrap support value (FIGURE 1). Our new isolate Pseudoberkleasmium chiangraiense (MFLUCC 21–0154) resembles P. pandanicola in having micronematous, mononematous conidiophores and muriform, ellipsoidal to obovoid, flattened guttulate conidia. However, our new isolate (MFLUCC 21–0154) differs from P. pandanicola by its conidia that are dark brown to black at the apex and pale brown at the base, while P. pandanicola has brown to olivaceous green conidia (Tibpromma et al. 2018). Our new isolate Pseudoberkleasmium chiangraiense (MFLUCC 21–0154) morphologically differs from P. chiangmaiense by the colour of conidia (dark brown to black at apical, pale brown at basal vs. yellow to brown) and smaller size (25.5– 30.0 vs. 30–35 μm) (Hyde et al. 2019). The nucleotide comparisons revealed that the new strain (MFLUCC 21–0154) is different from P. pandanicola (KUMCC 17–0178) in 15/367 bp (4.09%) of the ITS, and 8/848 (0.94%) of the LSU, while, the new strain (MFLUCC 21–0154) is different from P. chiangmaiense (MFLUCC 17–1809 ex-type) in 15/389 bp (3.86%) of the ITS, 6/840 (0.71%) of the LSU, and 49/899 bp (5.45%) of TEF1-α. Taxa in Pseudoberkleasmium have similar morphological characteristics with Berkleasmium, however, they are distinct in phylogenetic analyses. Berkleasmium nigroapicale and B. sutheppuiense were introduced from Chiang Mai, Thailand, while our new species was collected in Chiang Rai, Thailand that is geographically not too far. However, Berkleasmium nigroapicale and B. sutheppuiense lack molecular data, thus, we compared the morphology of our new species with B. nigroapicale and B. sutheppuiense and found that B. nigroapicale differs from P. chiangraiense in having cylindrical and clavate conidiogenous cells, and broadly clavate conidia (Bussaban et al. 2001). While, B. sutheppuiense differs from our new species in having cylindrical conidiogenous cells with subglobose and very dark brown conidia (Bussaban et al. 2001). Thus, we identified the three new isolates as a distinct new species of Pseudoberkleasmium., Published as part of Tian, Xingguo, Tibpromma, Saowaluck, Karunarathna, Samantha C., Dai, Dongqin, Lu, Yongzhong, Mapook, Ausana & Jayawardena, Ruvishika S., 2022, A new species and a new host record of Pseudoberkleasmium (Pseudoberkleasmiaceae, Dothideomycetes) from Cocos nucifera and Zea mays in northern Thailand, pp. 232-242 in Phytotaxa 547 (3) on page 239, DOI: 10.11646/phytotaxa.547.3.2, http://zenodo.org/record/6577519, {"references":["Tibpromma, S., Hyde, K. D., McKenzie, E. H. C., Bhat, D. J., Phillips, A. J. L., Wanasinghe, D. N., Samarakoon, M. C., Jayawardena, R. S., Dissanayake, A. J., Tennakoon, D. S., Doilom, M., Phookamsak, R., Tang, A. M. C., Xu, J., Mortimer, P. E., Promputtha, I., Maharachchikumbura, S. S. N., Khan, S. & Karunarathna, S. C. (2018) Fungal diversity notes 840 - 928: micro-fungi associated with Pandanaceae. Fungal Diversity 93: 1 - 160. https: // doi. org / 10.1007 / s 13225 - 018 - 0408 - 6","Hyde, K. D., Tennakoon, D. S., Jeewon, R., Bhat, D. J., Maharachchikumbura, S. S. N., Rossi, W., Leonardi, M., Lee, H. B., Mun, H. Y., Houbraken, J., Nguyen, T. T. T., Jeon, S. J., Frisvad, J. C., Wanasinghe, D. N., Lucking, R., Aptroot, A., Caceres, M. E. S., Karunarathna, S. C., Hongsanan, S., Phookamsak, R., Silva, N. I., Thambugala, K. M., Jayawardena, R. S., Senanayake, I. C., Boonmee, S., Chen, J., Luo, Z. L., Phukhamsakda, C., Pereira, O. L., Abreu, V. P., Rosado, A. W. C., Bart, B., Randrianjohany, E., Hofstetter, V., Gibertoni, T. B., Soares, A. M. d. S., Plautz, H. L., Sotao, H. M. P., Xavier, W. K. S., Bezerra, J. D. P., Oliveira, T. G. L., Souza Motta, C. M., Magalhaes, O. M. C., Bundhun, D., Harishchandra, D., Manawasinghe, I. S., Dong, W., Zhang, S. N., Bao, D. F., Samarakoon, M. C., Pem, D., Karunarathna, A., Lin, C. G., Yang, J., Perera, R. H., Kumar, V., Huang, S. K., Dayarathne, M. C., Ekanayaka, A. H., Jayasiri, S. C., Xiao, Y., Konta, S., Niskanen, T., Liimatainen, K., Dai, Y. C., Ji, X. H., Tian, X. M., Mesic, A., Singh, S. K., Phutthacharoen, K., Cai, L., Sorvongxay, T., Thiyagaraja, V., Norphanphoun, C., Chaiwan, N., Lu, Y. Z., Jiang, H. B., Zhang, J. F., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahmanage, R. S., Zeng, M., Chethana, T., Wei, D., Reblova, M., Fournier, J., Nekvindova, J., do Nascimento Barbosa, R., dos Santos, J. E. F., de Oliveira, N. T., Li, G. J., Ertz, D., Shang, Q. J., Phillips, A. J. L., Kuo, C. H., Camporesi, E., Bulgakov, T. S., Lumyong, S., Jones, E. B. G., Chomnunti, P., Gentekaki, E., Bungartz, F., Zeng, X. Y., Fryar, S., Tkalcec, Z., Liang, J., Li, G., Wen, T. C., Singh, P. N., Gafforov, Y., Promputtha, I., Yasanthika, E., Goonasekara, I. D., Zhao, R. L., Zhao, Q., Kirk, P. M., Liu, J. K., Yan, J., Mortimer, P. E., Xu, J. & Doilom, M. (2019) Fungal diversity notes 1036 - 1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96: 1 - 242. https: // doi. org / 10.1007 / s 13225 - 019 - 00429 - 2","Bussaban, B., Lumyong, S., Lumyong, P., McKenzie, E. H. C. & Hyde, K. D. (2001) A synopsis of the genus Berkleasmium with two new species and new records of Canalisporium caribense from Zingiberaceae in Thailand. Fungal Diversity 8: 73 - 85."]}
- Published
- 2022
- Full Text
- View/download PDF
22. Pseudoberkleasmium chiangmaiense Y. Z. Lu & K. D. Hyde
- Author
-
Tian, Xingguo, Tibpromma, Saowaluck, Karunarathna, Samantha C., Dai, Dongqin, Lu, Yongzhong, Mapook, Ausana, and Jayawardena, Ruvishika S.
- Subjects
Pseudoberkleasmium ,Ascomycota ,Dothideomycetes ,Fungi ,Pseudoberkleasmium chiangmaiense ,Biodiversity ,Pseudoberkleasmiaceae ,Pleosporales ,Taxonomy - Abstract
Pseudoberkleasmium chiangmaiense Y.Z. Lu & K.D. Hyde, in Hyde et al., Fungal Diversity 96:38 (FIGURE 2) Index Fungorum number: IF555595; Facesoffungi number: FoF 05310 Saprobic on decaying culms of Zea mays L. Sexual morph Undetermined. Asexual morph Hyphomycetous. Colonies on natural substratum superficial, sporodochia, scattered, compact, irregular, brown to black, glistening, with conidia readily liberated when disturbed. Conidiophores micronematous, mononematous, hyaline, reduced to conidiogenous cells, cylindrical, smooth-walled. Conidiogenous cells 7–11 × 8–11 μm (x̅ = 9 × 9.5 μm, n = 15), holoblastic, monoblastic, integrated, terminal, determinate, subglobose, hyaline, with guttulate. Conidia 24–30 × 15–18 μm (x̅ = 26.5 × 16.5 μm, n = 30), acrogenous, solitary, ellipsoidal to obovoid, muriform, 4–6 transverse septa, 3–4 longitudinal septa, flattened, smooth-walled, yellow-brown, constricted at the septa, with a hyaline conidiogenous cell attached. Material examined:— THAILAND, Chiang Rai Province, Muang District, isolated as saprobic on decaying culms of Zea mays (Poaceae), 11 November 2020, X. G. Tian, corn1–7 (MFLU 21–0290, new host record). Notes:— Phylogenetic analyses showed that our new isolate (MFLU 21–0290) grouped with two strains of P. chiangmaiense (MFLUCC 17–1809 and MFLUCC 17–2088) with strong statistical support (100 ML/1.00 PP, FIGURE 1). The morphology of our new isolate is similar to the holotype of P. chiangmaiense (MFLU 17–1118) except the smaller conidiogenous cells (x̅ = 9 × 9.5 μm vs. x̅ = 15 × 14 µm) (Hyde et al. 2019). Based on nucleotide comparisons, the new strain (MFLU 21–0290) is not significantly different from the ex-type isolate (MFLUCC 17–1809) in ITS, LSU and TEF-α. Therefore, we identified our isolate as P. chiangmaiense based on both phylogeny and morphology. Pseudoberkleasmium chiangmaiense was introduced by Hyde et al. (2019) from an unidentified decaying wood in Thailand. Phukhamsakda et al. (2020) reported the new host record of P. chiangmaiense from Clematis fulvicoma, while, Bao et al. (2021) reported P. chiangmaiense from freshwater in China. Our collection was on Zea mays and herein we provide the first host record of P. chiangmaiense from Maize., Published as part of Tian, Xingguo, Tibpromma, Saowaluck, Karunarathna, Samantha C., Dai, Dongqin, Lu, Yongzhong, Mapook, Ausana & Jayawardena, Ruvishika S., 2022, A new species and a new host record of Pseudoberkleasmium (Pseudoberkleasmiaceae, Dothideomycetes) from Cocos nucifera and Zea mays in northern Thailand, pp. 232-242 in Phytotaxa 547 (3) on pages 235-236, DOI: 10.11646/phytotaxa.547.3.2, http://zenodo.org/record/6577519, {"references":["Hyde, K. D., Tennakoon, D. S., Jeewon, R., Bhat, D. J., Maharachchikumbura, S. S. N., Rossi, W., Leonardi, M., Lee, H. B., Mun, H. Y., Houbraken, J., Nguyen, T. T. T., Jeon, S. J., Frisvad, J. C., Wanasinghe, D. N., Lucking, R., Aptroot, A., Caceres, M. E. S., Karunarathna, S. C., Hongsanan, S., Phookamsak, R., Silva, N. I., Thambugala, K. M., Jayawardena, R. S., Senanayake, I. C., Boonmee, S., Chen, J., Luo, Z. L., Phukhamsakda, C., Pereira, O. L., Abreu, V. P., Rosado, A. W. C., Bart, B., Randrianjohany, E., Hofstetter, V., Gibertoni, T. B., Soares, A. M. d. S., Plautz, H. L., Sotao, H. M. P., Xavier, W. K. S., Bezerra, J. D. P., Oliveira, T. G. L., Souza Motta, C. M., Magalhaes, O. M. C., Bundhun, D., Harishchandra, D., Manawasinghe, I. S., Dong, W., Zhang, S. N., Bao, D. F., Samarakoon, M. C., Pem, D., Karunarathna, A., Lin, C. G., Yang, J., Perera, R. H., Kumar, V., Huang, S. K., Dayarathne, M. C., Ekanayaka, A. H., Jayasiri, S. C., Xiao, Y., Konta, S., Niskanen, T., Liimatainen, K., Dai, Y. C., Ji, X. H., Tian, X. M., Mesic, A., Singh, S. K., Phutthacharoen, K., Cai, L., Sorvongxay, T., Thiyagaraja, V., Norphanphoun, C., Chaiwan, N., Lu, Y. Z., Jiang, H. B., Zhang, J. F., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahmanage, R. S., Zeng, M., Chethana, T., Wei, D., Reblova, M., Fournier, J., Nekvindova, J., do Nascimento Barbosa, R., dos Santos, J. E. F., de Oliveira, N. T., Li, G. J., Ertz, D., Shang, Q. J., Phillips, A. J. L., Kuo, C. H., Camporesi, E., Bulgakov, T. S., Lumyong, S., Jones, E. B. G., Chomnunti, P., Gentekaki, E., Bungartz, F., Zeng, X. Y., Fryar, S., Tkalcec, Z., Liang, J., Li, G., Wen, T. C., Singh, P. N., Gafforov, Y., Promputtha, I., Yasanthika, E., Goonasekara, I. D., Zhao, R. L., Zhao, Q., Kirk, P. M., Liu, J. K., Yan, J., Mortimer, P. E., Xu, J. & Doilom, M. (2019) Fungal diversity notes 1036 - 1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96: 1 - 242. https: // doi. org / 10.1007 / s 13225 - 019 - 00429 - 2","Phukhamsakda, C., McKenzie, E. H. C., Phillips, A. J. L., Gareth Jones, E. B., Jayarama Bhat, D., Stadler, M., Bhunjun, C. S., Wanasinghe, D. N., Thongbai, B., Camporesi, E., Ertz, D., Jayawardena, R. S., Perera, R. H., Ekanayake, A. H., Tibpromma, S., Doilom, M., Xu, J. & Hyde, K. D. (2020) Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102: 1 - 203. https: // doi. org / 10.1007 / s 13225 - 020 - 00448 - 4","Bao, D. F., Hyde, K. D., McKenzie, E. H., Jeewon, R., Su, H. Y., Nalumpang, S. & Luo, Z. L. (2021) Biodiversity of lignicolous freshwater hyphomycetes from China and Thailand and description of sixteen species. Journal of Fungi 7: 669. https: // doi. org / 10.3390 / jof 7080669"]}
- Published
- 2022
- Full Text
- View/download PDF
23. Colletotrichum jiangxiense F. Liu and L. Cai, Persoonia
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Colletotrichum jiangxiense ,Ascomycota ,Glomerellaceae ,Sordariomycetes ,Fungi ,Colletotrichum ,Biodiversity ,Glomerellales ,Taxonomy - Abstract
Colletotrichum jiangxiense F. Liu and L. Cai, Persoonia 35: 82 (2015) (Figure 7) Index Fungorum number: 809161 Saprobic or pathogenic on dead Asian House Gecko, white, cottony mycelium on the skin. Sexual morph: undetermined. Asexual morph: Mycelium 1.5–3.5 μm wide (x̅ = 2.5 μm, n = 30), granular to smooth, branched, with thick-walled septa. Conidiophores 2.5–5 μm (x̅ = 4 μm, n = 15), straight to slight curved, septate, smooth-walled, narrow in the terminal with a hyaline, cylindrical. Conidiogenous cells 10–20 × 1–3 µm (x̅ = 13 × 2.5 μm, n = 20), cylindric to flask-shaped, tapering at apex to narrow, phialidic conidiogenous locus. Conidia 10–20 × 3–5 μm (x̅ = 14 × 4 μm, n = 20), cylindrical to oblong, hyaline, thick-walled, granular to smooth, around, both ends bluntly rounded, or some see bottom end acute, appressoria not observed. Substratum: Camellia sinensis (Liu et al. 2015, Jayawardena et al. 2016 a, Wang et al. 2020); Citrus sinensis (De Silva et al. 2017) Persea americana (Fuentes-Aragón et al. 2020); Distribution: China (Liu et al. 2015, Jayawardena et al. 2016 a, De Silva et al. 2017, Wang et al. 2020); Mexico (Fuentes-Aragón et al. 2020); Material examined: China, Yunnan Province, on dead Asian House Gecko, Peter E. Mortimer, F-1 (Herb. KUN-HKAS 122653), living culture, KUMCC 21-0466. Genbank numbers: ITS: OM 670162, HIS: OM 744410, CAL: OM 744409, ACT: OM 744408, tub2: OM 744407, GPDH: OM 744411. Culture characteristics: Colonies on PDA fast-growing, reach 60 mm in one week, above effuse, aerial mycelium, cottony, light grayish to olivaceous with white margin. Reverse: grayish orange to pale brown, black-brown at the central inoculation, with black pigmented margin, not sporulated, without pigments produced in PDA. Notes: Colletotrichum jiangxiense was first introduced by Liu et al. (2015) from Jiangxi province, China. Our isolate KUMCC 21-0466 has similar morphologies to members of Colletotrichum, and the BLASTn results of GAPDH, CHS- 1, ACT, tub2, CAL and ITS of our strain indicate 99–100% similarity with C. jiangxiense ZY 12 and C. jiangxiense (COP 27.905, LF 488). The multi-locus phylogenetic trees also showed our new isolate clusters together with C. jiangxiense ZY 12 with high statistical support values (ML: 94%, BI: 0.96; Figure 6); thus, we report C. jiangxiense KUMCC 21-0466 as a new host record associated with a reptile (Asian House Gecko) in this study., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 49, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Liu, F., Weir, B. S., Damm, U., Crous, P. W., Wang, Y., Liu, B., Wang, M., Zhang, M., Cai, L. (2015) Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63 - 86. https: // doi. org / 10.3767 / 003158515 X 687597","Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H., Zhang, W., Zhao, W. S. & Yan, J. Y. (2016 a) Notes on currently accepted species of Colletotrichum. Mycosphere 7: 1192 - 1260. https: // doi. org / 10.5943 / mycosphere / si / 2 c / 9","Hallouti, A., Ait Hamza, M., Zahidi, A., Ait Hammou, R., Bouharroud, R., Ait Ben Aoumar, A. & Boubaker, H. (2020) Diversity of entomopathogenic fungi associated with Mediterranean fruit fly (Ceratitis capitata (Diptera: Tephritidae )) in Moroccan Argan forests and nearby area: Impact of soil factors on their distribution. BMC ecology 20: 1 - 13. https: // doi. org / 10.1186 / s 12898 - 020 - 00334 - 2","De Silva, D. D., Ades, P. K., Crous, P. W. & Taylor, P. W. J. (2017) Colletotrichum species associated with chili anthracnose in Australia. Plant Pathology 66: 254 - 267. https: // doi. org / 10.1111 / ppa. 12572","Fuentes-Aragon, D., Silva-Rojas, H. V., Guarnaccia, V., Mora-Aguilera, J. A., Aranda-Ocampo, S., Bautista-Martinez, N. & Teliz-Ortiz, D. (2020) Colletotrichum species causing anthracnose on avocado fruit in Mexico: Current status. Plant Pathology 69: 1513 - 1528. https: // doi. org / 10.1111 / ppa. 13234","Imoulan, A., Hussaina, M., Kirka, P. M., Mezianee, A. E. & Yao, Y. J. (2017) Entomopathogenic fungus Beauveria: host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. Journal of Asia-Pacific Entomology 20: 1204 - 1212. https: // doi. org / 10.1016 / j. aspen. 2017.08.015","Wang, Q. H., Fan, K., Li, D. W., Han, C. M., Qu, Y. Y., Qi, Y. K. & Wu, X. Q. (2020) Identification, virulence and fungicide sensitivity of Colletotrichum gloeosporioides ss responsible for walnut anthracnose disease in China. Plant disease 104: 1358 - 1368. https: // doi. org / 10.1094 / PDIS- 12 - 19 - 2569 - RE"]}
- Published
- 2022
- Full Text
- View/download PDF
24. Beauveria bassiana Vuillemin 1912
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Sordariomycetes ,Hypocreales ,Fungi ,Biodiversity ,Cordycipitaceae ,Beauveria ,Beauveria bassiana ,Taxonomy - Abstract
Beauveria bassiana (Bals.-Criv.) Vuill., Bulletin de la Société Botanique de France 59: 40 (1912) (Figure 5) Index Fungorum number: IF 199430 Saprobic or pathogenic on a dead Asian House Gecko, mycelium clusters on the forehead, recognized as a white, raised, fluffy region. Sexual morph: undetermined. Asexual morph: Aerial mycelium dense, raised, entire edge, white to yellowish, velutinous, powdery while sporulating, yellowish-brown from reverse. Vegetative hyphae 1–3 μm (x̅ = 1.7 μm, n = 30) wide, branched, hyaline, smooth, thick-walled, occasionally jagged wall, septate, constricted at the septum, terminal round, Conidiogenous cells 4–11 μm (x̅ = 7.5 μm, n = 20) long, 1–3 μm (x̅ = 2 μm, n = 20) wide, solitary or occurring in lateral clusters, cylindrical, subglobose to ampulliform. Conidia 2–3 × 1–2.5 μm (x̅ = 2.5 × 2 μm, n = 20), catenated, globose to ellipsoidal, hyaline, aseptate, smooth-walled. Culture characteristics: Colonies growing on PDA reach 15 mm in diameter after one week at 27 °C, and randomly sporulating within one month in PDA, above low convex, entire edge, fluffy, white. Reverse: yellowish brown. Sporulated within one month, visible the effuse, white clusters of mycelia with conidia, without pigments produced in PDA. Substratum: insect, Coleoptera (Tzean et al. 1997); Fragaria ananassa (Rigotti et al. 2003); Cosmopolites sordidus, Hypothenemus hampei, Leucoptera coffeella, Phyllophaga sp., Plutella xylostella (Delgado 2011); Vitis vinifera (Elena et al. 2018); Cannabis sativa (Punja et al. 2019); Coffea arabica (Serrato-Diaz et al. 2020). Distribution: Taiwan, China (Tzean et al. 1997); Switzerland (Rigotti et al. 2003); Nicaragua (Delgado 2011); Spain (Elena et al. 2018); Canada (Punja et al. 2019); Puerto Rico (Serrato-Diaz et al. 2020), China mainland (this study). Material examined: China, Yunnan Province, on dead Asian House Gecko, Peter E. Mortimer, F-5 (Herb. KUN-HKAS 122655), living culture, KUMCC 21-0468. Genbank numbers: ITS: OM 670163, rpb1: OM 681324, rpb2: OM 681325, tef1-α: OM 681322, Bloc: OM 681323. Notes: Our isolate KUMCC 21-0468 fits with the characteristics of Beauveria bassiana by having an asexual morph producing globose to subglobose, catenated conidia, aseptate, hyaline, with globose to flask-shaped phialides; conidiogenous cells normally cluster on the terminals of branched hypha (Paul Vuillemin et al. 1912, Chen et al. 2013). The clade B. bassiana was analysed in detail by Khonsanit et al. (2020). The ITS BLASTn results of our isolate highly overlapped with Beauveria bassiana strains BCC 34332, ARSEF 751 and BBC12907, while rpb1, rpb2 and tef1-α show high matches to B. bassiana ARSEF 1040 (>99%). In addition, Bloc gene region showed 100% (1486/1492, 1 gap) similarity to B. bassiana (ARSEF 4934), and our tree topology of the ML and BI analyses also shows KUMCC 21-0468 is closely related to B. bassiana ARSEF 1040 with high statistical supports (Figure 4). Therefore, our isolate KUMCC 21-0468 is identified as Beauveria bassiana, which is a new host record based on morphological features and phylogenetic evidences., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 45, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Tzean, S. S., Hsieh, L. S. & Wu, W. J. (1997) Atlas of entomopathogenic fungi from Taiwan. Council of Agriculture 1: 214.","Rigotti, S., Gindrat, D. & Viret, O. (2003) Fungi from symptomless strawberry plants in Switzerland. Fungi from symptomless strawberry plants in Switzerland 42: 85 - 88. https: // doi. org / 10.14601 / Phytopathol _ Mediterr- 1690","Delgado, G. R. E. G. O. R. I. O. (2011) Nicaraguan fungi: a checklist of hyphomycetes. Mycotaxon 115: 534.","Elena, G., Bruez, E., Rey, P. & Luque, J. (2018) Microbiota of grapevine woody tissues with or without esca-foliar symptoms in northeast Spain. Phytopathologia Mediterranea 57: 425 - 438. https: // doi. org / 10.14601 / Phytopathol _ Mediterr- 23337","Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J. & Sutton, D. (2019) Pathogens and molds affecting production and quality of Cannabis sativa L. Frontiers in plant science 10: 1120. https: // doi. org / 10.3389 / fpls. 2019.01120","Serrato-Diaz, L. M., Marino, Y. A. & Bayman, P. (2020) Pathogens causing Anthracnose and fruit rots of coffee associated with the coffee berry borer and the entomopathogenic fungus Beauveria bassiana in Puerto Rico. Phytopathology 110: 1541 - 1552. https: // doi. org / 10.1094 / PHYTO- 02 - 20 - 0057 - R","Paul Vuillemin, M. (1912) Beauveria, nouveau genre de Verticilliacees. Bulletin de la societe botanique de france 59: 34 - 40. https: // doi. org / 10.1080 / 00378941.1912.10832379","Chen, M. J., Huang, B., Li, Z. Z., Spatafora, J. W. (2013) Morphological and genetic characterisation of Beauveria sinensis sp. nov. from China. Mycotaxon 124: 301 - 308. https: // doi. org / 10.5248 / 124.301","Khonsanit, A., Luangsa-ard, J. J., Thanakitpipattana, D., Noisripoom, W., Chaitika, T. & Kobmoo, N. (2020) Cryptic diversity of the genus Beauveria with a new species from Thailand. Mycological Progress 19: 291 - 315. https: // doi. org / 10.1007 / s 11557 - 020 - 01557 - 9"]}
- Published
- 2022
- Full Text
- View/download PDF
25. Beauveria Vuill
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Sordariomycetes ,Hypocreales ,Fungi ,Biodiversity ,Cordycipitaceae ,Beauveria ,Taxonomy - Abstract
Beauveria Vuill., Bulletin de la Société Botanique de France 59: 40 (1912) Index Fungorum number: IF 7346 Type species: Beauveria bassiana (Bals.-Criv.) Vuill., Bulletin de la Société Botanique de France 59: 40 (1912) Notes: Beauveria was first described by Balsamo-Crivelli (1835) as Botrytis bassiana, but later the name was changed to Beauveria bassiana, and it was assigned as the type species of new independent genus Beauveria in Cordycipitaceae, Hypocreales (Paul Vuillemin 1912). This genus was characterized asexually by having globose bases and extended denticulate rachis, unicellular, ball-like, holoblastic conidia (et al. 2011, Chen et al. 2013), whereas the sexual morphs produce solitary, paired or gregarious stromata, cylindrical to clavate, yellowish to orange, cylindrical and filiform ascospores (Kepler et al. 2017). Beauveria bassiana has been reported as a pathogen of silkworms as early as 900 AD in Japan, and it was documented that the pathogen resulted in serious silkworm disease in Italy and France around 1800 (Samson et al. 2013). However, some Beauveria spp. also were reported as endophytes or saprobes associated with various plants (Vega et al. 2008, Moonjely et al. 2016, Imoulana et al. 2017, Chen et al. 2018, Khonsanit et al. 2020). Beauveria is a widespread anamorphic genus of entomopathogenic fungi, which includes ecologically and economically important species, for example, B. bassiana is widely utilized as a biological pest control agent in agriculture (Zimmermann 2007, Khonsanit et al. 2020)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 45, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Balsamo-Crivelli, G. (1835) Osservazione sopra una nuova spezie di Mucedinea del genere Botrytis. Biblioteca di Bibliografia Italiana 79: 125.","Paul Vuillemin, M. (1912) Beauveria, nouveau genre de Verticilliacees. Bulletin de la societe botanique de france 59: 34 - 40. https: // doi. org / 10.1080 / 00378941.1912.10832379","Costa, E. M. D., Pimenta, F. C., Luz, C., Oliveira, V. D., Oliveira, M., Bueno, E. & Petrofeza, S. (2011) Beauveria bassiana: quercetinase production and genetic diversity. Brazilian Journal of Microbiology 42: 12 - 21. https: // doi. org / 10.1590 / s 1517 - 83822011000100002","Chen, M. J., Huang, B., Li, Z. Z., Spatafora, J. W. (2013) Morphological and genetic characterisation of Beauveria sinensis sp. nov. from China. Mycotaxon 124: 301 - 308. https: // doi. org / 10.5248 / 124.301","Kepler, R. M., Luangsa-ard, J. J., Hywel-Jones, N. L., Quandt, C. A., Sung, G. H., Rehner, S. A., Aime, M. C., Henkel, T. W., Sanjuan, T., Zare, R., Chen, M., Li, Z., Rossman, A. Y., Spatafora, J. W. & Shrestha, B. (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8: 335 - 353. https: // doi. org / 10.5598 / imafungus. 2017.08.02.08","Samson, R. A., Evans, H. C. & Latge, J. P. (2013) Atlas of entomopathogenic fungi. Springer Science & Business Media. pp. 703 - 705.","Vega, F. E., Posada, F., Aime, M. C., Pava-Ripoll, M., Infante, F. & Rehner, S. A. (2008) Entomopathogenic fungal endophytes. Biological Control 46: 72 - 82. https: // doi. org / 10.1016 / j. biocontrol. 2008.01.008","Moonjely, S., Barelli, L. & Bidochka, M. J. (2016) Insect pathogenic fungi as endophytes. Advances in Genetics 94: 107 - 135. https: // doi. org / 10.1016 / bs. adgen. 2015.12.004","Chen, W. H., Liu, M., Huang, Z. X., Yang, G. M., Han, Y. F., Liang, J. D. & Liang, Z. Q. (2018) Beauveria majiangensis, a new entomopathogenic fungus from Guizhou, China. Phytotaxa 333: 243 - 250. https: // doi. org / 10.11646 / phytotaxa. 333.2.8","Khonsanit, A., Luangsa-ard, J. J., Thanakitpipattana, D., Noisripoom, W., Chaitika, T. & Kobmoo, N. (2020) Cryptic diversity of the genus Beauveria with a new species from Thailand. Mycological Progress 19: 291 - 315. https: // doi. org / 10.1007 / s 11557 - 020 - 01557 - 9","Zimmermann, G. (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology 17: 553 - 596. https: // doi. org / 10.1080 / 09583150701309006"]}
- Published
- 2022
- Full Text
- View/download PDF
26. Colletotrichum Corda, Deutschlands
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Ascomycota ,Glomerellaceae ,Sordariomycetes ,Fungi ,Colletotrichum ,Biodiversity ,Glomerellales ,Taxonomy - Abstract
Colletotrichum Corda, Deutschlands Flora, Abt. III. Die Pilze Deutschlands 3 (12): 41, tab. 21 (1831) Index Fungorum number: IF 7737 Type species: Colletotrichum lineola Corda, Deutschlands Flora (Nürnberg): 41 (1832) Notes: Colletotrichum was introduced by Corda (1831), with C. lineola as the type species, and it is the sole member of Glomerellaceae (Glomerellales, Sordariomycetes) (Hyde et al. 2020). The sexual morph of this genus is characterized by glomerella-like, semi-immersed to aerial, sphaerical, dark-brown ascomata, with or without setae, cylindrical asci contain clavate, elongate to fusiform, multi-septate ascospores (Jayawardena et al. 2016a).The anamorph of Colletotrichum is characterized by having hyaline conidiophores formed on aerial mycelium, cylindrical to clavate conidiogenous cells, conidia cylindrical to clavate, apically round, granular, sepatae or aseptate (Diao et al. 2017). Dean et al. (2012) proposed that Colletotrichum is one of the most common and important plant pathogenic genera generally causing diseases such as anthracnose, seedling blights, and red rot on various plants, include economical crops, around the world (Silva-Rojas & Ávila-Quezada 2011, Wang et al. 2021). Some Colletotrichum species were also introduced as endophytes and saprobes (Jayawardena et al. 2020). In addition, Colletotrichum species have been identified as human pathogens or entomopathogens (Damm et al. 2012, Natarajan et al. 2013, Talhinhas & Baroncelli et al. 2021). Currently, Index Fungorum (2022) lists over 1000 species epithets of Colletotrichum (Kirk et al. 2015)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 49, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Corda, A. C. J. (1831) Deutschlands Flora, Abt. III. Die Pilze Deutschlands 3: 33 - 64.","Hyde, K. D., Jeewon, R., Chen, Y. J., Bhunjun, C. S., Calabon, M. S., Jiang, H. B., Lin, C. G., Norphanphoun, C., Sysouphanthong, P., Pem, D., Tibpromma, S., Zhang, Q., Doilom, M., Jayawardena, R. S., Liu, J. K., Maharachchikumbura, S. S. N., Phukhamsakda, C., Phookamsak, R., Al-Sadi, A. M., Thongklang, N., Wang, Y., Gaforov, Y., Jones, E. B. G. & Lumyong, S. (2020) The numbers of fungi: is the descriptive curve flattening?. Fungal Diversity 103: 219 - 271. https: // doi. org / 10.1007 / s 13225 - 020 - 00458 - 2.","Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H., Zhang, W., Zhao, W. S. & Yan, J. Y. (2016 a) Notes on currently accepted species of Colletotrichum. Mycosphere 7: 1192 - 1260. https: // doi. org / 10.5943 / mycosphere / si / 2 c / 9","Diao, Y. Z., Zhang, C., Liu, F., Wang, W. Z., Liu, L., Cai, L. & Liu, X. L. (2017) Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38: 20 - 37. https: // doi. org / 10.3767 / 003158517 X 692788","Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, G. D. (2012) The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology 13: 414 - 430. https: // doi. org / 10.1111 / j. 1364 - 3703.2011.00783. x","Silva-Rojas, H. V. & Avila-Quezada, G. D. (2011) Phylogenetic and morphological identification of Colletotrichum boninense: a novel causal agent of anthracnose in avocado. Plant Pathology 60: 899 - 908. https: // doi. org / 10.1111 / j. 1365 - 3059.2011.02452. x","Wang, W., de Silva, D. D., Moslemi, A., Edwards, J., Ades, P. K., Crous, P. W. & Taylor, P. W. (2021) Colletotrichum species causing anthracnose of citrus in Australia. Journal of Fungi 7: 47. https: // doi. org / 10.3390 / jof 7010047","Jayawardena, R. S., Hyde, K. D., Chen, Y. J., Papp, V., Palla, B., Papp, D., Bhunjun, C. S., Hurdeal, V. G., Senwanna, C., Manawasinghe, I. S., Harischandra, D. L., Gautam, A. K., Avasthi, S., Chuankid, B., Goonasekara, I. D., Hongsanan, S., Zeng, X. Y., Liyanage, K. K., Liu, N., Karunarathna, A., Hapuarachchi, K. K., Luangharn, T., Raspe, O., Brahmanage, R., Doilom, M., Lee, H. B., Mei, L., Jeewon, R., Huanraluek, N., Chaiwan, N., Stadler, M. & Wang, Y. (2020) One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76 - 100 Fungal Diversity 103: 87 - 218. https: // doi. org / 10.1007 / s 13225 - 020 - 00460 - 8","Damm, U., Cannon, P. F., Woudenberg, J. H. C. & Crous, P. W. (2012) The Colletotrichum acutatum species complex. Studies in mycology 73: 37 - 113. https: // doi. org / 10.3114 / sim 0010","Natarajan, S. V., Rekha, N. S., Sharda, R. D. & Mahalingam, N. (2013) Colletotrichum keratitis: a rare but definite clinical entity. Journal of clinical and diagnostic research 7: 1430. https: // doi. org / 10.7860 / JCDR / 2013 / 5513.3156","Talhinhas, P. & Baroncelli, R. (2021) Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity 110: 109 - 198. https: // doi. org / 10.1007 / s 13225 - 021 - 00491 - 9"]}
- Published
- 2022
- Full Text
- View/download PDF
27. Basidiobolus Eidam, Beitrage
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Fungi ,Basidiobolaceae ,Biodiversity ,Basidiobolales ,Basidiobolus ,Taxonomy ,Zygomycota - Abstract
Basidiobolus Eidam, Beiträge zur Biologie der Pflanzen 4: 194 (1886) Index Fungorum number: IF 20068 Type species: Basidiobolus ranarum Eidam, Beiträge zur Biologie der Pflanzen4: 194 (1886). Notes: Basidiobolus was introduced by Eidam, with B. ranarum as the type species (Eidam 1886). The zygospores are characterized as smooth and thick-walled, globose to subglose, with distinct conjugation beak (Burkitt 1964). Basidiobolus spp. and Conidiobolus spp. have been reported as human pathogens in the order Entomophthorales, and their zygospores differ by the presence or absence of conjugation beaks (Ribes et al. 2000, Yang et al. 2021). Basidiobolus ranarum can cause Zygomycosis to humans, and clinic symptoms include forming the firm and painless subcutaneous swellings on the trunk and extremities (Vilela & Mendoza 2018). In addition, Basidiobolus spp. have also caused diseases in horses and dogs (Owens et al. 1985, Greene et al. 2002). Moreover, B. ranarum as a saprotrophic fungus is commonly present in soil, decaying vegetables, gastrointestinal tracts of amphibians (frogs, and toads), reptiles (house geckoes, lizards, and chameleons), fish and bats (Van Overeem 1925, Burkitt et al. 1964, Gugnani & Okafor 1980, Mugerwa 1984, Okafor et al. 1984, Gugnani 1999)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 42, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Eidam, E. (1886) Basidiobolus, eine neue Gattung der Entomophthoraeeen. Beitrage zur Biologie der Pflanzen 4: 181 - 251.","Burkitt, D. P., Wilson, A. M. M. & Jelliffe, D. B. (1964) Subcutaneous phycomycosis: A review of 31 cases seen in Uganda. British Medical Journal 1: 1669 - 1672. https: // doi. org / 10.1136 / bmj. 1.5399. 1669","Ribes, J. A., Vanover-Sams, C. L. & Baker, D. J. (2000) Zygomycetes in human disease. Clinical microbiology reviews 13: 236 - 301. https: // doi. org / 10.1128 / CMR. 13.2.236","Yang, X., Li, Y., Zhou, X., Wang, Y., Geng, S., Liu, H., Yang, Q., Liu, X., Hiruma, M., Sugita, T., Ikeda, S. & Ogawa, H. (2021) Rhinofacial conidiobolomycosis caused by Conidiobolus coronatus in a Chinese rice farmer. Mycoses 53: 369 - 373. https: // doi. org / 10.1111 / j. 1439 - 0507.2009.01716. x","Vilela, R. & Mendoza, L. (2018) Human pathogenic entomophthorales. Clinical microbiology reviews 31: e 00014 - 18. https: // doi. org / 10.1128 / CMR. 00014 - 18","Owens, W. R., Miller, R. I., Haynes, P. F. & Snider, T. G. (1985) Phycomycosis caused by Basidiobolus haptosporus in two horses. Journal of the American Veterinary Medical Association 186: 703 - 705.","Greene, C. E., Brockus, C. W., Currin, M. P. & Jones, C. J. (2002) Infection with Basidiobolus ranarum in two dogs. Journal of the American Veterinary Medical Association 221: 528 - 532. https: // doi. org / 10.2460 / javma. 2002.221.528","Van Overeem, C. (1925) Uber ain merkwurdiges Vorkommen von Basidiobolus ranarum Eidam. Bulletin du Jardin botanique de Buitenzorg 7: 423 - 431.","Gugnani, H. C. & Okafor, J. I. (1980) Mycotic flora of the intestine and other internal organs of certain reptiles and amphibians with special reference to characterization of Basidiobolus isolates. Mycosen 23: 260 - 268. https: // doi. org / 10.1111 / j. 1439 - 0507.1980. tb 02605. x","Mugerwa, J. W. (1984) Entomophthoromycosis caused by Basidiobolus haptosporus. In: Waren, K. S. & Mahmoud, A. F. (Eds.) Tropical and geographic medicine. Vol. 1. New York: McGraw-Hill. pp. 968 - 970.","Okafor, J. I., TeStrake, D., Mushinsky, H. R. & Yangco, B. G. (1984) A Basidiobolus sp. and its association with reptiles and amphibians in Southern Florida. Sabouraudia 22: 47 - 51. https: // doi. org / 10.1080 / 00362178485380081","Gugnani, H. C. (1999) A review of zygomycosis due to Basidiobolus ranarum. European journal of epidemiology 15: 923 - 929. https: // doi. org / 10.1023 / A: 1007656818038"]}
- Published
- 2022
- Full Text
- View/download PDF
28. Basidiobolus ranarum Eidam, Beitrage
- Author
-
Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E., and Karunarathna, Samantha C.
- Subjects
Fungi ,Basidiobolaceae ,Biodiversity ,Basidiobolus ranarum ,Basidiobolales ,Basidiobolus ,Taxonomy ,Zygomycota - Abstract
Basidiobolus ranarum Eidam, Beiträge zur Biologie der Pflanzen 4: 194 (1886) (Figure 3) Index Fungorum number: IF224388 Saprobic or pathogenic on dead house gecko. Mycelium 10–20 μm wide (x̅ = 16 μm, n = 20), hyaline, septate, branched, tubular, sightly constriction at the septum, soon forming zygospores, the zygospores are (sexual spores) characterized by globose to subglobose 25–40 × 25–35 μm (x̅ = 34 × 31 μm, n = 20), wrapped in mycelium, with smooth and thick wall, 1–3.5 μm (x̅= 2.5 μm, n = 20) thickness, and wall layer thinner with the maturity, attaching a prominent conjugation beaks 10–15 μm wide, 8–11 high (Figure 3: f, g), hyaline (the microscopic features observed with cotton blue), verruculose to granulate in cellular inner, some zygospores form meristospores by cleavage of the cytoplasm (Figure 3: i–k). Culture characteristics: The pure culture was obtained from slimy tissue of gecko’s swollen forelimb, colonies circular, fast-growing on PDA at the room temperature, reaching around 40 mm diameter after two weeks, with an irritating odor, yellowish-brown to creamy grey, waxy, radially striated with barren crack at the centre, visible sparse mycelium tips at the margin, abundant global to subglobose zygospores (conidia) pave on folded surface; reverse sunken at the centre, yellowish to pale outwardly, without pigments produced from PDA. Substratum: Fish (Nickerson & Hutchison 1971); Amphibians (frogs, toads) (Coremans-Pelseneer 1973); house gecko faeces (Hemiolactylus sp.) (Claussen & Schmidt 2019); wall gecko (Hemiolactylus sp.) (Gugnani & Okafor 1980); bat (Chaturvedi et al. 1984); child/adult, human (Khan et al. 2001, Yusuf et al. 2003); dead Asian House Gecko (Hemiolactylus sp.) (this study). Distribution: Arkansas and Missouri, American (Nickerson & Hutchison 1971); Kinshasa, Zaire (Coremans-Pelseneer 1973); Nsukka, Nigeria (Gugnani & Okafor 1980); India (Chaturvedi et al. 1984, Khan et al. 2001); Jizan, Saudi Arabia (Yusuf et al. 2003); KwaZulu-Natal (South Africa) (Claussen & Schmidt 2019), Yunnan, China (this study) Material examined: China, Yunnan Province, on dead Asian House Gecko, Peter E. Mortimer, F-4 (Herb. KUN-HKAS 122654), living culture, KUMCC 21-0467. Genebank numbers: ITS: OM 670164, LSU: OM 670161, mtSSU: OM 692370. Notes: Our isolate KUMCC 21-0467 shares similar characteristics with Basidiobolus magnus and B. ranarum in having globose to subglobose, smooth, thick-walled zygospore 20–60 μm in diameter, wrapped in mycelium, with a conjugation beak (Eidam 1886, Davis et al. 1994). The BLASTn results show the ITS gene region highly overlaps with B. magnus (ARSEF 1139) at 99.3% (668/673 bp, 0 gap), at 99% (664/672 bp, 0 gap) similarity with B. ranarum (ARSEF 260), and the LSU region indicates 99.8 % similarity (1010/1012bp, 0 gap) with B. ranarum (ARSEF 8303) and B. magnus (CBS 205.64). In addition, 667 bp of the mtSSU region was 100% similar to B. ranarum (AFTOL-ID 301); unfortunately, we were unable to amplify the rpb2 (7F/11aR) gene of our strain KUMCC 21-0467, The phylogenetic trees based on ITS, LSU, rpb2 and mtSSU show our isolate clusters with B. ranarum (ARSEF 260 and ATCC 14449) (Figure 2). Basidiobolus ranarum has also been found on frogs in Canada, and many infected cases in humans all over the world have been reported (Gugnani 1999, Al-Hatmi et al. 2021). As morphological characteristics examined largely overlap with B. ranarum, also supported by the phylogenetic evidences, our isolate is identified as Basidiobolus ranarum with a new country record for China; however, B. ranarum has previously been reported on wall gecko and house gecko faeces (Hemidactylus spp.) (Gugnani & Okafor 1980, Gugnani 1999, Claussen & Schmidt 2019)., Published as part of Yang, Erfu, Tibpromma, Saowaluck, Dai, Dongqin, Promputtha, Itthayakorn, Mortimer, Peter E. & Karunarathna, Samantha C., 2022, Three interesting fungal species associated with the Asian House Gecko in Kunming, China, pp. 37-56 in Phytotaxa 545 (1) on page 42, DOI: 10.11646/phytotaxa.545.1.3, http://zenodo.org/record/6520349, {"references":["Nickerson, M. A. & Hutchison, J. A. (1971) The distribution of the fungus Basidiobolus ranarum Eidam in fish, amphibians and reptiles. American Midland Naturalist 86: 500 - 502. https: // doi. org / 10.2307 / 2423642","Coremans-Pelseneer, J. (1973) Isolation of Basidiobolus meristosporus from natural sources. Mycopathologia 49: 173 - 176. https: // doi. org / 10.1080 / 00362178485380311","Claussen, M. & Schmidt, S. (2019) First-time isolation and quantification of Basidiobolus spp. from reptile faeces in KwaZulu-Natal (South Africa) using selective media. Mycoses 62: 298 - 305. https: // doi. org / 10.1111 / myc. 12868","Gugnani, H. C. & Okafor, J. I. (1980) Mycotic flora of the intestine and other internal organs of certain reptiles and amphibians with special reference to characterization of Basidiobolus isolates. Mycosen 23: 260 - 268. https: // doi. org / 10.1111 / j. 1439 - 0507.1980. tb 02605. x","Chaturvedi, V. P., Randhawa, H. S., Khan, Z. U., Singh, N., Kini, S. (1984) Prevalence of Basidiobolus ranarum Eidam in the intestinal tract of an insectivorous bat, Rhinopoma hardwickei hardwickei Gray, in Delhi. Sabouraudia 22: 185 - 189. https: // doi. org / 10.1080 / 00362178485380311","Khan, Z. U., Khoursheed, M., Makar, R., Al-Waheeb, S., Al-Bader, I., Al-Muzaini, A., Chandy, R. & Mustafa, A. S. (2001) Basidiobolus ranarum as an etiologic agent of gastrointestinal zygomycosis. Journal of clinical microbiology 39: 2360 - 2363. https: // doi. org / 10.1128 / JCM. 39.6.2360 - 2363.2001","Yusuf, N. W., Assaf, H. M. & Rotowa, N. A. (2003) Invasive gastrointestinal Basidiobolus ranarum infection in an immunocompetent child. The Pediatric infectious disease journal 22: 281 - 282. https: // doi. org / 10.1097 / 01. inf. 0000054020.84508.02","Eidam, E. (1886) Basidiobolus, eine neue Gattung der Entomophthoraeeen. Beitrage zur Biologie der Pflanzen 4: 181 - 251.","Davis, S. R., Ellis, D. H., Goldwater, P., Dimitriou, S. & Byard, R. (1994) First human culture-proven australian case of entomophthoromycosis caused by Basidiobolus ranarum. Journal of Medical & Veterinary Mycology 32: 225 - 230. https: // doi. org / 10.1080 / 02681219480000291","Gugnani, H. C. (1999) A review of zygomycosis due to Basidiobolus ranarum. European journal of epidemiology 15: 923 - 929. https: // doi. org / 10.1023 / A: 1007656818038","Al-Hatmi, A. M. S., Balkhair, A., Al-Busaidi, I., Sandoval-Denis, M., Al-Housni, S., Ba Taher, H., Hamdan Al-Shehhi, A., Raniga, S., Al- Shaibi, M., Al-Siyabi, T., Sybren de Hoog, G., Jacques, F. M., Al-Rawahi, A., Al-Muharrmi, Z., Al-Harrasi, A., Al-Adawi, B. (2021) Basidiobolus omanensis sp. nov. causing angioinvasive abdominal basidiobolomycosis. Journal of Fungi 7: 653. https: // doi. org / 10.3390 / jof 7080653"]}
- Published
- 2022
- Full Text
- View/download PDF
29. A new species and a new host record of Pseudoberkleasmium (Pseudoberkleasmiaceae, Dothideomycetes) from Cocos nucifera and Zea mays in northern Thailand
- Author
-
TIAN, XINGGUO, primary, TIBPROMMA, SAOWALUCK, additional, KARUNARATHNA, SAMANTHA C., additional, DAI, DONGQIN, additional, LU, YONGZHONG, additional, MAPOOK, AUSANA, additional, and JAYAWARDENA, RUVISHIKA S., additional
- Published
- 2022
- Full Text
- View/download PDF
30. Three interesting fungal species associated with the Asian House Gecko in Kunming, China
- Author
-
YANG, ERFU, primary, TIBPROMMA, SAOWALUCK, additional, DAI, DONGQIN, additional, PROMPUTTHA, ITTHAYAKORN, additional, MORTIMER, PETER E., additional, and KARUNARATHNA, SAMANTHA C., additional
- Published
- 2022
- Full Text
- View/download PDF
31. Inoculation With Ectomycorrhizal Fungi and Dark Septate Endophytes Contributes to the Resistance of Pinus spp. to Pine Wilt Disease
- Author
-
Chu, Honglong, primary, Wang, Haihua, additional, Zhang, Yanan, additional, Li, Zhumei, additional, Wang, Chunyan, additional, Dai, Dongqin, additional, and Tang, Ming, additional
- Published
- 2021
- Full Text
- View/download PDF
32. Genome-Wide SNPs Provide Insights on the Cryptic Genetic Structure and Signatures of Climate Adaption in Amorphophallus albus Germplasms
- Author
-
Gao, Yong, primary, Yin, Si, additional, Chu, Honglong, additional, Zhang, Yanan, additional, Wang, Haibo, additional, Chen, Huanhuan, additional, Liu, Chao, additional, Dai, Dongqin, additional, and Tang, Lizhou, additional
- Published
- 2021
- Full Text
- View/download PDF
33. Giant atypical lipoma of thoracic cavity: Special tumor location
- Author
-
Huang, Zhicheng, Wang, Xiaoyong, Dai, Dongqin, and Tang, Guangcai
- Published
- 2023
- Full Text
- View/download PDF
34. Phyllosticta—an overview of current status of species recognition
- Author
-
Wikee, Saowanee, Udayanga, Dhanushka, Crous, Pedro W., Chukeatirote, Ekachai, McKenzie, Eric H. C., Bahkali, Ali H., Dai, DongQin, and Hyde, Kevin D.
- Published
- 2011
- Full Text
- View/download PDF
35. The Hidden Diversity of Diatrypaceous Fungi in China
- Author
-
Zhu, Haiyan, primary, Pan, Meng, additional, Wijayawardene, Nalin N., additional, Jiang, Ning, additional, Ma, Rong, additional, Dai, Dongqin, additional, Tian, Chengming, additional, and Fan, Xinlei, additional
- Published
- 2021
- Full Text
- View/download PDF
36. The hidden diversity of diatrypaceous fungi in China; introducing Allodiatrypella gen. nov. and ten new species
- Author
-
Zhu, Haiyan, primary, Wijayawardene, Nalin N., additional, Ma, Rong, additional, You, Chongjuan, additional, Dai, Dongqin, additional, Huang, Manrong, additional, Tian, Chengming, additional, and Fan, Xinlei, additional
- Published
- 2020
- Full Text
- View/download PDF
37. Cloning and expression analysis of HXK1 gene from Jatropha curcas L.
- Author
-
Xin, Hu, primary, Tang, Lizhou, additional, Liu, Chao, additional, Gao, Yong, additional, Dai, Dongqin, additional, Chen, Huanhuan, additional, Deng, Yan, additional, Tian, Bin, additional, and Wang, Haibo, additional
- Published
- 2020
- Full Text
- View/download PDF
38. De novo genome assembly of the red silk cotton tree (Bombax ceiba)
- Author
-
Gao, Yong, primary, Wang, Haibo, additional, Liu, Chao, additional, Chu, Honglong, additional, Dai, Dongqin, additional, Song, Shengnan, additional, Yu, Long, additional, Han, Lihong, additional, Fu, Yi, additional, Tian, Bin, additional, and Tang, Lizhou, additional
- Published
- 2018
- Full Text
- View/download PDF
39. Genetic diversity and structure of wild and cultivated Amorphophallus paeoniifolius populations in southwestern China as revealed by RAD-seq
- Author
-
Gao, Yong, primary, Yin, Si, additional, Wu, Lifang, additional, Dai, Dongqin, additional, Wang, Haibo, additional, Liu, Chao, additional, and Tang, Lizhou, additional
- Published
- 2017
- Full Text
- View/download PDF
40. Cloning and expression analysis of HXK1gene from Jatropha curcasL.
- Author
-
Xin, Hu, Tang, Lizhou, Liu, Chao, Gao, Yong, Dai, Dongqin, Chen, Huanhuan, Deng, Yan, Tian, Bin, and Wang, Haibo
- Abstract
HXK (Hexokinase) gene family and the role of JcHXK1in Jatropha curcasL. were explored. Totally 4 HXKgenes JcHXK1, JcHXK2, JcHXK3and JcHKL1were identified and complete ORF of JcHXK1was cloned. Functional domain, phylogenetic evolution and low-temperature expression characteristics were analyzed. Results showed that full-length JcHXK1cDNA was 1497 bp, encoding 498 amino acids with molecular weight of 53.81 kDa and pI of 5.03. Further phylogenetic evolutionary analysis demonstrated HXK1 protein was clustered into 6 small branches and 2 large branches. Sequence alignment showed that HXK1 contained several conserved glycine residues and hydrophobic channels. Prokaryotic expression vector of JcHXK1was constructed and 12% SDS-PAGE detection showed that it was highly expressed in E. coli. These research was expected to lay a foundation for further gene functional verification and cold signal transduction mechanism for HXK1in Jatropha curcasL.
- Published
- 2020
- Full Text
- View/download PDF
41. WITHDRAWN: Towards a natural classification of Dothideomycetes: Clarification of Aldona, Aldonata and Viegasella (Parmulariaceae)
- Author
-
Tian, Qing, primary, Hongsanan, Sinang, additional, Dai, Dongqin, additional, Alias, Siti A., additional, Hyde, Kevin D., additional, and Chomnunti, Putarak, additional
- Published
- 2015
- Full Text
- View/download PDF
42. Transport and magnetic properties in the Dy1−xCaxVO3 ceramics
- Author
-
Zhao, Bangchuan, primary, Huang, Yanan, additional, Yang, Jie, additional, Dai, Dongqin, additional, Dai, Jianming, additional, and Sun, Yuping, additional
- Published
- 2013
- Full Text
- View/download PDF
43. Suppressed spin-density-wave transition and enhanced electrical conductivity in chlorine doped Ca3Co4O9−xClx ceramics
- Author
-
Dai, Dongqin, primary, Zhao, Bangchuan, additional, Huang, Yanan, additional, Sun, Yuping, additional, Xie, Anjian, additional, and Shen, Yuhua, additional
- Published
- 2013
- Full Text
- View/download PDF
44. Bambusicola,a New Genus from Bamboo with Asexual and Sexual Morphs
- Author
-
Dai, Dongqin, primary, Jayarama Bhat, D., additional, Liu, Jiankui, additional, Chukeatirote, Ekachai, additional, Zhao, Ruilin, additional, and Hyde, Kevin D., additional
- Published
- 2012
- Full Text
- View/download PDF
45. Suppressed spin-density-wave transition and enhanced electrical conductivity in chlorine doped Ca3Co4O9− x Cl x ceramics
- Author
-
Dai, Dongqin, Zhao, Bangchuan, Huang, Yanan, Sun, Yuping, Xie, Anjian, and Shen, Yuhua
- Subjects
- *
SPIN waves , *DENSITY wave theory , *ELECTRIC conductivity , *CHLORINE , *DOPED semiconductors , *CALCIUM alloys , *CERAMICS - Abstract
Abstract: The structural, magnetic, electrical and thermal transport properties of the Cl-doped Ca3Co4O9− x Cl x (x =0, 0.225, 0.45, 0.675, 0.9) ceramics have been investigated systematically. The degree of orientation of grains increases with increasing Cl-doping content. Obvious shoulder is observed in the dχ −1(T)/dT versus T curve for the Cl-doped samples and the shoulder shifts to lower temperature as Cl-doping content increases, indicating the long-range spin-density-wave state becomes unstable in these Cl-doped samples. Cl-doping also has a suppression effect on the ferrimagnetic state. The resistivity ρ of the Cl-doped samples is lower than that of Ca3Co4O9 in whole measured temperature range, which is suggested to be related to the increased carrier mobility induced by Cl-doping. The power factor P of the x =0.9 sample is about 1.6 times larger and ZT is 1.3 times larger than that of the un-doped sample Ca3Co4O9. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
46. Bambusicola, a new genus from bamboo with asexual and sexual morphs.
- Author
-
DAI, Dongqin, BHAT, D. Jayarama, LIU, Jiankui, CHUKEATIROTE, Ekachai, ZHAO, Ruilin, and HYDE, Kevin D.
- Subjects
BAMBUSICOLA thoracica ,COELOMYCETES ,FUNGI imperfecti ,PHYLOGENY ,CONIDIA - Abstract
- Bambusicola, gen. nov., is introduced for four new saprobic taxa from culms of bamboos in northern Thailand. One species, chosen as the generic type, has both sexual and asexual morphs, one species has the sexual morph only and two species have the asexual morph only. The four new species, Bambusicola massarinia, B. bambusae, B. irregulispora and B. splendida are illustrated and described. Isolates of each species were sequenced using LSU, SSU and ITS genes and phylogenetic analysis shows the genus to be a distinct clade in the suborder "Massarineae". Morphological differences between Bambusicola and some related genera are noted. Bambusicola is characterized by small, cone-shaped ascomata, slightly broad and fusiform ascospores and a coelomycete asexual morph with light brown conidia. Bambusicola clusters in Trematosphaeriaceae, but the closeness of this relationship cannot be resolved. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
47. Transport and magnetic properties in the Dy1− x Ca x VO3 ceramics
- Author
-
Zhao, Bangchuan, Huang, Yanan, Yang, Jie, Dai, Dongqin, Dai, Jianming, and Sun, Yuping
- Subjects
- *
MAGNETIC properties , *CERAMIC materials , *DYSPROSIUM compounds , *HEAT transfer , *DOPING agents (Chemistry) , *TEMPERATURE effect - Abstract
Abstract: The effect of Ca-doping on the structural, magnetic, electrical, and thermal transport properties has been investigated in Dy1− x Ca x VO3 (0⩽ x ⩽0.2) ceramics. Substituting Ca2+ for Dy3+ leads to a shrinkage of lattice due to the introduction of V4+ with a smaller ionic radius. The parent compound DyVO3 undergoes three spin/orbital ordering (OO/SO) transitions with decreasing temperature at T OO, T SO1 and T SO2, respectively. Increasing the doping level of Ca decreases T SO1, the magnetization above T SO1 and below 50K, whereas increases T SO2, indicating the Ca-doping has a suppressing effect on the ordering state in DyVO3 system. The thermopower of DyVO3 decreases sharply near T OO while it is not observed in the Ca-doped samples. The result shows that the x =0.05 Ca-doping is sufficient to melt the OO state in DyVO3 system. Both the thermopower and resistivity decrease significantly with increasing the Ca-doping content. The decreased thermopower is suggested to originate from the combined effect of the increased carrier concentration and decreased spin/orbital degeneracies. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.