1. Evidence for valence-bond pairing in a low-dimensional two-orbital system
- Author
-
Mierzejewski, M., Dagotto, E., and Herbrych, J.
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Valence bond (VB) states as the formation mechanism of Cooper pairs, eventually leading to high-temperature superconductivity, remain a controversial topic. Although various VB-like states find variational relevance in the description of specific spin models and quantum spin liquids, in the realm of many-body fermionic Hamiltonians, the evidence for such states as ground states wave functions remains elusive, challenging the valence-bond pairing mechanism. Here, we present evidence of a VB ground state with pairing tendencies, particularly at finite doping. We achieved this for the generic two-orbital Hubbard model in low dimension, where the VB states can be associated with the presence of the topological order manifested by edge states. Utilizing density-matrix renormalization group calculations, the study reveals key properties akin to those observed in superconductors' phase diagrams, such as pairing restricted to the regime of small but nonzero doping, presence of coherent pairs, and density oscillations in the charge sector.
- Published
- 2024