Due to the increase of data rates, users and the pressure made by the telecommunication market, new technologies have emerged to supply their necessities. 5G New Radio (NR) appears then, offering higher data rates, better spectral efficiency and lower latency when compared to the previous mobile networks technologies. With the increase of devices with wireless connections, interference problems appears causing a reducing in the system performance. In the last years, orthogonal frequency division multiplexing (OFDM) was a modulation technique that provided more efficient transmissions. However, the main disadvantage of this technique, is its higher peak-to-average ratio (PAPR), motivating then the search for more promising modeling techniques. So, one advantage that 5G offers is the possibility of using techniques in the uplink (UL) like the discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM). Comparing with OFDM, the advantage of this transmission technique is its lower (PAPR), being then less sensitive to non-linear distortions caused by the power amplifier (PA). This type of techniques are important for the overall system performance, as they can handle transmission channels experiencing strong frequency selectivity while still providing transmissions with high data rates. DFT-s-OFDM performance can be improved using non-linear equalizers in the frequency domain. One example of these equalizers is the iterative block decision-feedback equalizer (IB-DFE). In this dissertation we implement and evaluate single and multi-user nonlinear equalizers based on IB-DFE approach for DFT-s-OFDM 5G NR systems. It is considered two main different scenarios:single-user and multi-user cases. In the first one, the data of each each user is transmitted by different set of carriers and therefore there is no multi-user interference and the equalizer only needs to deal with inter-symbol interference (ISI). In the second case, the same set of carries are allocated to the several users, with the base station equipped with multiple antennas and the user terminal with a single antenna. Therefore the equalizer must deals with both intersymbol- interference and multi-user interference (MUI). The nonlinear equalizers are designed for different number of antennas at the receiver terminal in order to exploit the space diversity and increase the Signal-to-Noise Ratio (SNR) and consequently reduce the Bit Error Rate (BER). The implemented single/multi-user equalizers are evaluated under several TDL channel models and for different numerologies defined in the 5G NR. Devido ao aumento de transmissões com altas taxas de transferência de dados, necessidades de suportar um maior número de utilizadores e constantes pressões feitas pelo mercado das telecomunicações, novas tecnologias têm sido desenvolvidas. Um dos casos destas novas tecnologias é o 5G New Radio (NR), oferecendo taxas de transmissão de dados muito elevadas, melhor eficiência espectral e menor latência quando comparado a tecnologias anteriores. Com o aumento exponencial das comunicações sem fios, surge então problemas relacionados com interfências levando assim à uma diminuição do desempenho geral do sistema. Orthogonal frequency division multiplexing (OFDM) foi durante os últimos anos uma técnica de modelação de dados que serviu como base para transmissões de dados mais eficientes. Contudo, a principal desvantagem do OFDM é o seu elevado peak-toaverage ratio (PAPR), motivando assim à procura de técnicas de modelação mais promissoras. Portanto, uma das melhorias que o 5G oferece é a possibilidade de usar técnicas de transmissão de blocos no uplink como a discrete Fourier transform spread orthogonal frequency-division multiplexing(DFT-s-OFDM). Em comparação com o OFDM, esta técnica de transmissão possui um baixo valor de PAPR, sendo então menos sensível às distorções não-lineares causadas pelo amplificador de potência (AP). Esta técnica de transmissão oferece uma melhoria significativa no desempenho geral dos sistemas, pois consegue lidar com canais que possuem um forte desvanescimento selectivo na frequência ao mesmo tempo que fornece ligações com altas taxas de transmissão. O desempenho do DFT-s-OFDM pode ser melhorado com o recurso a igualizadores não-lineares no domínio da frequência, como o iterative block decision-feedback equalizer(IB-DFE). Esta dissertação têm com principal objectivo, a implementação e o estudo de sistemas de igualizadores para sistemas mono e múltiplo utilizador, baseado no modelo IB-DFE, aplicado a DFT-s-OFDM 5G. São considerado dois casos distintos: single-user e multi-user, como já foi referenciado. Na primeira abordagem, single-user, cada utilizador é transmitido em diferentes subportadoras não havendo assim interferência entre os vários utilizadores, tendo o igualizador de lidar com interferência entre símbolos (ISI). No segundo procedimento, multi-user, foi considerado um cenário onde os vários utilizadores partilham as mesmas subportadoras, sendo assim transmitidos no mesmo canal físico para a estação base (BS). É assumido que a BS está equipada com múltiplas antenas, e os terminais dos utilizadores com uma antena apenas. Nesta situação como os vários utilizadores partilham os mesmos recursos o nosso equalizador têm que lidar com ambas as interferências, ISI e multi-user interferência (MUI). O igualizador não linear vai ser desenvolvido para várias configurações de antenas na estação base, com o intuito de esplorar a diversidade espacial de maneira a aumentar a relação sinal-ruído (SNR) e assim reduzir a taxa de erros de bits (BER). Ambos os cenários vão ser implementados e avaliados segundo as várias numerologias e TDL modelos de canais, definidos pelos relatórios técnicos do 5G NR. Mestrado em Engenharia Eletrónica e Telecomunicações