1. Computational Analysis of Flow Structures in Turbulent Ventricular Blood Flow Associated With Mitral Valve Intervention
- Author
-
Kronborg, Joel, Svelander, Frida, Eriksson-Lidbrink, Samuel, Lindström, Ludvig, Homs-Pons, Carme, Lucor, Didier, Hoffman, Johan, Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), DAtascience, trAnsition, Fluid instability, contrOl, Turbulence (DATAFLOT), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Mécanique-Energétique (M.-E.), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH ), DAta science, TrAnsition, Fluid instabiLity, contrOl, Turbulence (DATAFLOT), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,[SPI]Engineering Sciences [physics] ,[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system ,Physiology ,Physiology (medical) ,Fluid Dynamics (physics.flu-dyn) ,FOS: Physical sciences ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,Physics - Fluid Dynamics ,Medical Physics (physics.med-ph) ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,Physics - Medical Physics - Abstract
Cardiac disease and clinical intervention may both lead to an increased risk for thrombosis events due to modified blood flow in the heart, and thereby a change in the mechanical stimuli of blood cells passing through the chambers of the heart. Specifically, the degree of platelet activation is influenced by the level and type of mechanical stresses in the blood flow. Here we analyze the blood flow in the left ventricle of the heart through a computational model constructed from patient-specific data. The blood flow in the ventricle is modeled by the Navier-Stokes equations, and the flow through the mitral valve by a parameterized model which represents the projected opening of the valve. A finite element method is used to solve the equations, from which a simulation of the velocity and pressure of the blood flow is constructed. A triple decomposition of the velocity gradient tensor is then used to distinguish between rigid body rotational flow, irrotational straining flow, and shear flow. The triple decomposition enables the separation of three fundamentally different flow structures, each generating a distinct type of mechanical stimulus on the blood cells in the flow. We compare the results to simulations where a mitral valve clip intervention is modelled, which leads to a significant modification of the ventricular flow. It was found that the shear in the simulation cases treated with clips increased more compared to the untreated case than the rotation and strain did. A decrease in valve opening area of 64 % in one of the cases led to a 90 % increase in rotation and strain, but a 150 % increase in shear. The computational analysis suggests a process for patient-specific simulation of clinical interventions in the heart with a detailed analysis of the resulting blood flow, which could support clinical risk assessment with respect to platelet activation and thrombosis events., Comment: The following article has been submitted to Frontiers in Physiology
- Published
- 2022