79 results on '"D. S. Dale"'
Search Results
2. Precision measurement of the neutral pion lifetime
- Author
-
V. P. Kubarovsky, M. Wood, A. Dolgolenko, Haiyan Gao, D. Lawrence, Dipangkar Dutta, S. Danagoulian, L. Guo, M. Khandaker, S. Kowalski, E. Clinton, J. Feng, E. L. Isupov, P. Ambrozewicz, A. Kubarovsky, L. Gan, D. I. Sober, S. Taylor, V. Baturin, Ashot Gasparian, D. Romanov, A. Shahinyan, I. Nakagawa, C. Salgado, S. Stepanyan, V. V. Tarasov, L. Ma, B. Morrison, H. Y. Lu, Andrey Vasiliev, G. V. Fedotov, B. Zihlmann, R.S. Pedroni, W. Phelps, Eugene Pasyuk, A. M. Micherdzinska, M. M. Ito, Yuelin Zhang, L. Ye, A. V. Glamazdin, Friedrich Klein, D. Protopopescu, D. Rimal, D. S. Dale, V. Matveev, I. Larin, R. A. Miskimen, S. R. Gevorkyan, K. Park, Volker D. Burkert, A. Deur, and A. Ahmidouch
- Subjects
Quantum chromodynamics ,Chiral anomaly ,Physics ,Systematic error ,Particle physics ,Multidisciplinary ,Photon ,Pion ,High Energy Physics::Experiment ,Anomaly (physics) ,Axial symmetry ,Quantum fluctuation - Abstract
Testing the chiral anomaly Pi mesons, also known as pions, consist of a quark and an antiquark and are extremely unstable. Neutral pions have a lifetime of only ∼80 attoseconds, decaying into two photons. Quantum chromodynamics (QCD), the theory of quarks and gluons, predicts this decay and the associated lifetime using the mechanism of broken chiral symmetry—the so-called chiral anomaly. Measuring the lifetime to high precision then provides a benchmark for theories that aim to improve on this original prediction. Larin et al. measured this lifetime with an uncertainty that was half that of the previous most precise result (see the Perspective by Meyer). The measured value was consistent with the original QCD prediction and less consistent with other theoretical approaches. Science , this issue p. 506 ; see also p. 469
- Published
- 2020
3. Photonuclear production of yttrium-88 – A high energy gamma emitter for hydrocarbon extraction applications
- Author
-
D. S. Dale, Emily Oliphant, Valeriia N. Starovoitova, and T. A. Forest
- Subjects
Radiation ,Materials science ,Nuclear engineering ,Bremsstrahlung ,chemistry.chemical_element ,Yttrium ,Tungsten ,010403 inorganic & nuclear chemistry ,01 natural sciences ,0104 chemical sciences ,chemistry ,Yield (chemistry) ,0103 physical sciences ,Neutron ,Monoisotopic mass ,010306 general physics ,Oil shale ,Common emitter - Abstract
The use of fracing has risen over the past decade and revolutionized energy production in the US. However, there is still an impetus for further optimization of the extraction of oil and natural gas from vast shale reservoirs. In this work, we discuss photonuclear production of yttrium-88 as a promising radiotracer for fracing operations. Single neutron knock-out from natural monoisotopic yttrium-89 is an inexpensive process resulting in high activity of 88Y with minimal impurities. MCNPX simulations were performed to estimate the 88Y yield. Irradiations of natural yttrium using a 32 MeV electron linac equipped with a tungsten bremsstrahlung converter were done to benchmark the simulations. Activities of 88Y, 87gY, and 87mY were measured and found to be in good agreement with the predictions.
- Published
- 2018
4. High precision measurement of Compton scattering in the 5 GeV region
- Author
-
M. Konchatnyi, D. McNulty, Ashot Gasparian, K. Hardy, S. Stepanyan, L. Guo, S. Kowalski, R. A. Miskimen, P. P. Martel, A. Sitnikov, E. Clinton, L. Benton, H. Y. Lu, D. Lawrence, L. Ye, Dipangkar Dutta, A. M. Micherdzinska, M. Wood, A. Shahinyan, R. Demirchyan, A. Deur, A. Ahmidouch, X. Li, S. R. Gevorkyan, S. Mtingwa, V. V. Mochalov, A. Dolgolenko, J. Feng, D. Kashy, B. Zihlmann, S. Overby, A. Evdokimov, Brian D. Milbrath, Y. Zhang, M. Levillain, W. Phelps, B. Morrison, D. I. Sober, P. Collins, I. Nakagawa, A. V. Glamazdin, H. Kang, Aron M. Bernstein, B. A. Mecking, L. Jiang, Wolfgang Korsch, G. Dzyubenko, Haiyan Gao, V. Baturin, M. M. Ito, V. Gyurjyan, K. Park, S. Taylor, P. L. Cole, Volker D. Burkert, S. Zhou, L. Gan, O. Kosinov, V. Goryachev, C. Salgado, I. Larin, N. Gevorkyan, A. Kolarkar, Andrey Vasiliev, J. Underwood, R. C. Minehart, A. Teymurazyan, G. V. Fedotov, G. Davidenko, W. A. Stephens, Dmitri Romanov, J. He, K. Baker, S. Danagoulian, E. Pasyuk, Friedrich Klein, E. L. Isupov, P. Ambrozewicz, D. P. Weygand, O. Korchin, A. Kubarovsky, Y. Prok, Barry Ritchie, V. P. Kubarovsky, V. Vishnyakov, M. Payen, P. Kingsberry, V. E. Tarasov, L. Ma, D. Protopopescu, D. Rimal, D. S. Dale, V. Matveev, M. Khandaker, R.S. Pedroni, M. Gabrielyan, and M. A. Kubantsev
- Subjects
Nuclear and High Energy Physics ,Nuclear Theory ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Electron ,01 natural sciences ,7. Clean energy ,Nuclear Theory (nucl-th) ,Nuclear physics ,Cross section (physics) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Radiative transfer ,Nuclear Experiment (nucl-ex) ,Photon beam ,010306 general physics ,Nuclear Experiment ,Nuclear theory ,Physics ,010308 nuclear & particles physics ,Compton scattering ,lcsh:QC1-999 ,High Energy Physics - Phenomenology ,Beam energy ,Beam (structure) ,lcsh:Physics - Abstract
The cross section of atomic electron Compton scattering $\gamma + e \rightarrow \gamma^\prime + e^\prime $ was measured in the 4.40--5.475 GeV photon beam energy region by the {\em PrimEx} collaboration at Jefferson Lab with an accuracy of 2\% and less. The results are consistent with theoretical predictions that include next-to-leading order radiative corrections. The measurements provide the first high precision test of this elementary QED process at beam energies greater than 0.1 GeV., Comment: 6 pages, 4 figures
- Published
- 2019
5. Photoproduction of K+K− meson pairs on the proton
- Author
-
G. Ricco, R. A. Schumacher, K. Mikhailov, L. Bibrzycki, P. Stoler, A. D'Angelo, K. Hicks, H. Hakobyan, Ashot Gasparian, L. Gan, V. Mokeev, A.V. Stavinsky, K. Livingston, D. S. Dale, S. Anefalos Pereira, A. V. Vlassov, D. J. Tedeschi, V. V. Mochalov, K. A. Griffioen, S. Fegan, E. Clinton, Michael Wood, N. Hassall, M. Bellis, K. Hafidi, Michael Vineyard, R. De Vita, S. Stepanyan, C. Bookwalter, P. Nadel-Turonski, M. Kossov, Avraham Klein, T. Mineeva, V. Drozdov, S. Strauch, V. Kuznetsov, Friedrich Klein, D. P. Watts, E. L. Isupov, E. Munevar, H. Egiyan, I. Nakagawa, I. Bedlinskiy, Brian Raue, W. J. Briscoe, Michael L. Williams, A. Kubarovsky, W. Gohn, E. Wolin, Lorenzo Zana, M. Y. Gabrielyan, C. E. Hyde, O. Glamazdin, M. R. Niroula, Z. W. Zhao, S. Niccolai, Y. Prok, D. S. Carman, M. Battaglieri, Barry Ritchie, N. Pivnyuk, I. I. Strakovsky, D. Protopopescu, C. Salgado, E. De Sanctis, M. Garçon, S. Pozdniakov, A. Deur, G. E. Dodge, Martin K. Mayer, G. Rosner, H. Y. Lu, Kei Moriya, C. A. Meyer, M. Osipenko, N. Dashyan, D. I. Sober, F. X. Girod, E. Pasyuk, G. V. Fedotov, S. Tkachenko, Adam P. Szczepaniak, M. S. Saini, I. Niculescu, P. Eugenio, H. Baghdasaryan, K. P. Adhikari, D. P. Weygand, E. Golovatch, M. Taiuti, J. T. Goetz, D. Schott, J. W. Price, C. Djalali, F. Sabatié, V. P. Kubarovsky, O. Pogorelko, W. Kim, P. Collins, M. Anghinolfi, Leonard Lesniak, H. Seraydaryan, J. Zhang, P. Khetarpal, Y. G. Sharabian, C. S. Nepali, M. Ripani, V. Crede, C. Hanretty, J. R. Johnstone, L. Guo, M. Ungaro, S. Park, P. Rossi, K. Joo, M. Guidal, M. Holtrop, A. Daniel, A. I. Ostrovidov, K. Park, Sergey Kuleshov, D. G. Ireland, S. S. Stepanyan, Mark W. Paris, B. Zhao, Volker D. Burkert, A. S. Biselli, S. Dhamija, R. W. Gothe, A. Fradi, M. J. Amaryan, J. Goett, B. McKinnon, D. Branford, S. Pisano, M. Mirazita, S. L. Careccia, J. M. Laget, K. L. Giovanetti, Larry Weinstein, D. Keller, Gerard Gilfoyle, M. Khandaker, M. E. McCracken, Y. Ilieva, D. Sokhan, D. Doughty, A. Teymurazyan, and P. L. Cole
- Subjects
Physics ,Particle physics ,Meson ,010308 nuclear & particles physics ,Partial wave analysis ,Hadron ,Elementary particle ,01 natural sciences ,7. Clean energy ,Particle decay ,Pion ,0103 physical sciences ,High Energy Physics::Experiment ,Production (computer science) ,Nuclear Experiment ,010306 general physics ,Nucleon - Abstract
The exclusive reaction $\ensuremath{\gamma}p\ensuremath{\rightarrow}p{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$ was studied in the photon energy range 3.0--3.8 GeV and the momentum transfer range $0.4l\ensuremath{-}tl1.0\text{ }\text{ }{\mathrm{GeV}}^{2}$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range, the integrated luminosity was about $20\text{ }\text{ }{\mathrm{pb}}^{\ensuremath{-}1}$. The reaction was isolated by detecting the ${\ensuremath{\pi}}^{+}$ and proton in CLAS, and reconstructing the ${\ensuremath{\pi}}^{\ensuremath{-}}$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves, in the ${M}_{{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}}$ mass range 0.4--1.4 GeV, were derived performing a partial wave expansion of the extracted moments. Beside the dominant contribution of the $\ensuremath{\rho}(770)$ meson in the $P$-wave, evidence for the ${f}_{0}(980)$ and the ${f}_{2}(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\ensuremath{\sigma}/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the ${f}_{0}(980)$ has been measured in a photoproduction experiment.
- Published
- 2018
6. High precision photon flux determination for photon tagging experiments
- Author
-
R. Demirchyan, B. A. Mecking, D. Lawrence, Brian D. Milbrath, A. Evdokimov, Y. Prok, Barry Ritchie, P. P. Martel, K. Hardy, Rolf Ent, P. Collins, A. Kolarkar, M. A. Kubantsev, J. Underwood, R. C. Minehart, J. J. He, S. Danagoulian, D. Kashy, A. Deur, D. S. Dale, A. Ahmidouch, A. Dolgolenko, P. Ambrozewicz, Andrey Vasiliev, A. V. Glamazdin, R.S. Pedroni, A. Korchin, L. Jiang, S. Kowalski, A. Shahinyan, D. McNulty, S. Overby, A. Asratyan, V. V. Mochalov, M. Gabrielyan, L. Benton, I. Nakagawa, M. Khandaker, X. Li, Ashot Gasparian, G. Dzyubenko, I. Larin, S. Stepanyan, Volker D. Burkert, Wolfgang Korsch, M. M. Ito, R. A. Miskimen, A. Sitnikov, E. Clinton, E. Pasyuk, O. Kosinov, C. Salgado, K. Baker, V. Goryachev, Viktor Matveev, V. P. Kubarovsky, D. I. Sober, J. Feng, P. L. Cole, W. Stevens, S. Zhou, A. Teymurazyan, M. Wood, V. Vishnyakov, M. Payen, L. Gan, M. Konchatnyi, and G. Davidenko
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,Spectrometer ,Astrophysics::High Energy Astrophysical Phenomena ,Bremsstrahlung ,Flux ,Photon energy ,Particle detector ,Nuclear physics ,Measuring instrument ,Nuclear Experiment ,Absorption (electromagnetic radiation) ,Instrumentation - Abstract
The Jefferson Laboratory PrimEx Collaboration has developed and implemented a method to control the tagged photon flux in photoprocluction experiments at the 1% level over the photon energy range from 4.9 to 5.5 GeV. This method has been successfully implemented in a high precision measurement of the neutral pion lifetime. Here, we outline the experimental equipment and the analysis techniques used to accomplish this. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and a new method for post-bremsstrahlung electron counting. (C) 2014 Elsevier B.V. All rights reserved.
- Published
- 2014
7. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies
- Author
-
Sadiq Setiniyaz, G. Bosson, D. Abbott, M. Ungaro, J. S. Real, A. Camsonne, C. Cuevas, Adeleke Hakeem Adeyemi, T. A. Forest, E. Forman, H. Dong, Riad Suleiman, P. Aguilera, R. Kazimi, Yiyang Zhang, Y. Kim, Y. Wang, M. Poelker, Joseph Grames, T. Michaelides, J. L. McCarter, D. McNulty, P. Harrell, S. Golge, M. Marton, Marcy Stutzman, B. Moffit, Chris Tennant, E. Fanchini, L. Richardson, J. R. Hoskins, K. Mahoney, D. Machie, Dennis Turner, E. Froidefond, M D Muhd Ali, Brian P. Josey, P. Gueye, M. Mchugh, M. Baylac, D. S. Dale, L. S. Cardman, Alessandro Variola, C.-Y. Tsai, P. L. Cole, R. Michaels, C. Munoz Camacho, Brian E. Cade, C. E. Hyde, A. P. Freyberger, D. Moser, H. Areti, Jean-François Muraz, R. Mammei, A. Opper, Philip Adderley, Jay Benesch, J. Dumas, M. McCaughan, O. Dadoun, J. Clark, K. E. Mesick, E. Voutier, S. Covert, J. Hansknecht, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut de Physique Nucléaire d'Orsay (IPNO), and Peppo Collaboration
- Subjects
Accelerator Physics (physics.acc-ph) ,Positron beam ,Astrophysics::High Energy Astrophysical Phenomena ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,Electron ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,law.invention ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Positron ,Electron beam accelerator ,law ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Bremsstrahlung ,Particle accelerator ,Polarization (waves) ,3. Good health ,Cathode ray ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,High Energy Physics::Experiment ,Atomic physics - Abstract
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82\% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community., Comment: 5 pages, 4 figures
- Published
- 2016
8. Moments of the spin structure functions g1p and g1d for 0.05<Q2<3.0 GeV2
- Author
-
R. A. Schumacher, G. V. O'Rielly, C. D. Keith, Cynthia Marie Hadjidakis, Z. W. Zhao, Chaden Djalali, D. G. Jenkins, Michael Dugger, S. Tkachenko, H. O. Funsten, A. I. Ostrovidov, A. C S Lima, S. Bültmann, L. Morand, M. R. Niroula, T. A. Forest, D. G. Ireland, G. Asryan, Volker D. Burkert, A. S. Biselli, J. Pierce, Elton Smith, M. J. Amaryan, M. MacCormick, O. P. Dzyubak, R. A. Niyazov, I. Hleiqawi, S. L. Careccia, Larry Weinstein, Avraham Klein, E. Golovatch, H. G. Juengst, K. Moriya, Daniel S. Carman, J. Kuhn, Philip L. Cole, S. McAleer, H. Hakobyan, S. Anefalos Pereira, P. D. Rubin, L. Blaszczyk, P. Corvisiero, Y. G. Sharabian, A. Fradi, L. Cheng, G. Audit, A.V. Stavinsky, C. E. Hyde-Wright, F. Sabatié, Nikolay Shvedunov, D. Heddle, P. Stoler, Friedrich Klein, J. P. Cummings, R. De Vita, N. Markov, V. Sapunenko, C. Salgado, Dinko Pocanic, L. Elouadrhiri, N. Kalantarians, S. Stepanyan, K. S. Egiyan, R. C. Minehart, C. A. Meyer, J. Ball, M. Taiuti, S. E. Kuhn, I. I. Strakovsky, M. Bektasoglu, M. Kossov, K. Mikhailov, K.H. Hicks, R. J. Feuerbach, G. V. Fedotov, M. Nozar, A. Deur, I. Popa, V. Crede, J. W. Price, Shifeng Chen, M. Anghinolfi, Laird Kramer, D. P. Watts, H. Egiyan, G. Gavalian, John A. Mueller, L. Casey, B. L. Berman, P. Mattione, B. B. Niczyporuk, G. Rosner, N. Benmouna, N. Pivnyuk, Kwangsoo Kim, J. T. Goetz, M. Mirazita, G. Riccardi, J. R. Calarco, R. A. Miskimen, B. A. Raue, B. McKinnon, W. J. Briscoe, L. M. Qin, R. G. Fersh, P. Eugenio, J. Langheinrich, C. Butuceanu, C. Hanretty, S. S. Stepanyan, E. Pasyuk, S. A. Philips, M. Ripani, G. Ricco, S. A. Morrow, C. Paterson, Y. Ilieva, Michael Vineyard, Victor Mokeev, M. Klusman, B. M. Preedom, D. Branford, P. Collins, B. Moreno, J. R. Johnstone, Lorenzo Zana, J. P. Santoro, Tsutomu Mibe, Gerald Feldman, J. M. Laget, L. Todor, D. Protopopescu, K. L. Giovanetti, S. V. Kuleshov, C. Marchand, S. Pozdniakov, M. Garçon, M. L. Seely, Ji Li, D. J. Tedeschi, G. E. Dodge, H. Y. Lu, J. Lachniet, I. Bedlinskiy, Marco A. Huertas, A. Tkabladze, M. D. Mestayer, E. L. Isupov, P. V. Degtyarenko, D. Rowntree, K. Livingston, Michael L. Williams, M. Holtrop, R. Suleiman, V. Kuznetsov, D. S. Dale, J. Zhang, S. Boiarinov, D. I. Sober, Gerard Gilfoyle, F. X. Girod, G. S. Mutchler, N. A. Baltzell, I. Niculescu, D. Sokhan, J. Salamanca, K. A. Griffioen, D. Lawrence, M. Guillo, N. Guler, R. De Masi, L. El Fassi, J. W C McNabb, Sylvain Bouchigny, H. Denizli, M. Guidal, M. Battaglieri, J. Hardie, S. Strauch, J. D. Kellie, Z. Krahn, R. Nasseripour, S. Barrow, P. Rossi, R. Dickson, N. Baillie, D. Doughty, V. Gyurjyan, R. Bradford, K. Lukashin, B. E. Stokes, G. S. Adams, H. Bagdasaryan, P. Nadel-Turonski, A. V. Skabelin, K. Joo, A. Cazes, S. Procureur, Maryam Moteabbed, Bernhard Mecking, K. V. Dharmawardane, L. Guo, M. Ungaro, D. P. Weygand, E. Wolin, N. Hassall, M. Bellis, D. G. Crabb, J. Yun, D. Cords, P. Bosted, A. Yegneswaran, N. Dashyan, Y. Prok, Barry Ritchie, E. De Sanctis, H. S. Jo, S. Niccolai, R. Fatemi, A. V. Vlassov, P. Coltharp, R. W. Gothe, M. M. Ito, K. Y. Kim, M. Osipenko, K. Beard, L. C. Smith, E. Munevar, Kalvir S. Dhuga, B. S. Ishkhanov, O. Pogorelko, M. Khandaker, B. Zhao, F. W. Hersman, W. Kim, G. Niculescu, N. Gevorgyan, L. C. Dennis, B. E. Bonner, H. Avakian, D. Sharov, S. A. Dytman, W. K. Brooks, K. Park, V. P. Kubarovsky, J. Shaw, Michael Wood, K. Hafidi, and V. S. Serov
- Subjects
Physics ,Nuclear and High Energy Physics ,Chiral perturbation theory ,Heavy baryon chiral perturbation theory ,Proton ,010308 nuclear & particles physics ,Nuclear Theory ,Hadron ,01 natural sciences ,Baryon ,Nuclear physics ,Polarizability ,0103 physical sciences ,Sum rule in quantum mechanics ,Nuclear Experiment ,010306 general physics ,Nucleon - Abstract
The spin structure functions g 1 for the proton and the deuteron have been measured over a wide kinematic range in x and Q 2 using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH3 and ND3 targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 Q 2 5 GeV 2 and W 3 GeV . The first moments of g 1 for the proton and deuteron are presented – both have a negative slope at low Q 2 , as predicted by the extended Gerasimov–Drell–Hearn sum rule. The first extraction of the generalized forward spin polarizability of the proton γ 0 p is also reported. This quantity shows strong Q 2 dependence at low Q 2 . Our analysis of the Q 2 evolution of the first moment of g 1 shows agreement in leading order with Heavy Baryon Chiral Perturbation Theory. However, a significant discrepancy is observed between the γ 0 p data and Chiral Perturbation calculations for γ 0 p , even at the lowest Q 2 .
- Published
- 2009
9. Exclusive ρ0 electroproduction on the proton at CLAS
- Author
-
J. Langheinrich, S. S. Stepanyan, E. Pasyuk, S. A. Philips, N. Dashyan, V. Sapunenko, G. Ricco, Alexei V. Klimenko, N. A. Baltzell, C. Salgado, Dinko Pocanic, Barry Ritchie, H. Denizli, A. V. Skabelin, K. A. Griffioen, B. Zhao, V. Gyurjyan, A. I. Ostrovidov, R. Fatemi, K. Park, S. E. Kuhn, Latifa Elouadrhiri, R. C. Minehart, Kei Moriya, C. A. Meyer, H. G. Juengst, B. E. Stokes, G. S. Adams, G. V. Fedotov, V. P. Kubarovsky, J. Zhang, P. Eugenio, K. P. Adhikari, A. V. Vlassov, D. P. Weygand, G. E. Dodge, H. Y. Lu, M. J. Amaryan, G. V. O'Rielly, S. Niccolai, Z. W. Zhao, V. Mokeev, Y. Ilieva, Ji Li, D. G. Jenkins, C. Tur, Gerard Gilfoyle, Elton Smith, H. Hakobyan, A.V. Stavinsky, J. D. Kellie, M. Guidal, M. MacCormick, I. Hleiqawi, S. L. Careccia, R. De Vita, Friedrich Klein, Brian Raue, P. V. Degtyarenko, M. D. Mestayer, J. P. Didelez, R. Nasseripour, L. Todor, F. W. Hersman, P. Coltharp, E. L. Isupov, J. P. Cummings, W. Gohn, S. A. Morrow, S. McAleer, M. Anghinolfi, P. Nadel-Turonski, D. Sokhan, D. Protopopescu, D. J. Tedeschi, M. Holtrop, Michael L. Williams, P. Collins, K. L. Giovanetti, I. Niculescu, F. X. Girod, L. Blaszczyk, B. Carnahan, James Mueller, D. Lawrence, R. G. Fersch, R. A. Miskimen, B. McKinnon, S. Pozdniakov, M. Garçon, J. J. Melone, M. M. Ito, S. Boiarinov, Larry Weinstein, L. Zana, P. D. Rubin, R. De Masi, D. Keller, I. Bedlinskiy, B. M. Preedom, S. Anefalos Pereira, D. Schott, Y. G. Sharabian, R. A. Schumacher, P. L. Cole, M. Yurov, M. Taiuti, S. Mehrabyan, D. Branford, L. C. Smith, E. Munevar, G. S. Mutchler, B. S. Ishkhanov, Michael Wood, K. Hafidi, L. Graham, M. Kossov, M. E. McCracken, C. I O Gordon, J. M. Laget, V. Kuznetsov, J. Kuhn, E. Hourany, M. Khandaker, V. S. Serov, L. C. Dennis, B. E. Bonner, J. W. Price, Tsutomu Mibe, S. Bültmann, G. Audit, Shifeng Chen, C. Bookwalter, N. Gevorgyan, M. Osipenko, C. E. Hyde-Wright, J. P. Santoro, H. S. Jo, H. Avakian, L. Morand, I. Popa, D. Sharov, T. A. Forest, G. Riccardi, M. R. Niroula, E. De Sanctis, O. Pogorelko, S. Stepanyan, P. Mattione, C. Butuceanu, M. S. Saini, D. Doughty, J. Pierce, M. Ripani, B. L. Berman, Avraham Klein, L. M. Qin, M. Aghasyan, E. Wolin, Sergey Kuleshov, W. J. Briscoe, D. Heddle, J. T. Goetz, D. I. Sober, Kalvir S. Dhuga, M. Bektasoglu, S. A. Dytman, S. Dhamija, M. Nozar, E. Polli, M. Mirazita, C. Paterson, J. P. Ball, R. W. Gothe, Y. Prok, B. Moreno, W. Kim, J. Hardie, Hall Crannell, D. S. Carman, K. Livingston, G. Rosner, C. Marchand, G. Niculescu, D. S. Dale, N. Baillie, S. Park, Sylvain Bouchigny, J. Lachniet, A. Tkabladze, D. G. Crabb, R. Dickson, Michael Vineyard, D. G. Ireland, V. Crede, J. R. Calarco, P. Khetarpal, N. Guler, J. Salamanca, L. El Fassi, J. W C McNabb, S. Barrow, P. Rossi, L. Casey, H. Bagdasaryan, Volker D. Burkert, A. S. Biselli, B. B. Niczyporuk, N. Pivnyuk, P. Stoler, C. Hanretty, Laird Kramer, J. R. Johnstone, L. Guo, M. Ungaro, A. Fradi, K. Joo, D. Cords, N. Markov, A. Yegneswaran, K. Hicks, M. Battaglieri, R. Bradford, K. S. Egiyan, A. Cazes, S. Procureur, Maryam Moteabbed, Bernhard Mecking, K. V. Dharmawardane, N. Hassall, M. Bellis, K. Mikhailov, G. Asryan, O. P. Dzyubak, R. A. Niyazov, P. Corvisiero, S. Strauch, D. P. Watts, H. Egiyan, I. I. Strakovsky, A. Deur, W. K. Brooks, R. J. Feuerbach, Cynthia Marie Hadjidakis, M. Guillo, Chaden Djalali, Michael Dugger, L. Cheng, F. Sabatié, Nikolay Shvedunov, N. Kalantarians, G. Gavalian, S. Tkachenko, and N. Benmouna
- Subjects
Quark ,Physics ,REPRESENTATION ,Nuclear and High Energy Physics ,Particle physics ,Valence (chemistry) ,Proton ,Hadron ,Parton ,VECTOR-MESON ELECTROPRODUCTION ,Approx ,PHOTONS ,QCD ,EVOLUTION ,High Energy Physics - Experiment ,Regge theory ,Nuclear physics ,Scattering amplitude ,GENERALIZED PARTON DISTRIBUTIONS, VIRTUAL COMPTON-SCATTERING, VECTOR-MESON ELECTROPRODUCTION, LARGE MOMENTUM-TRANSFER, DIFFRACTIVE PRODUCTION, PHOTOPRODUCTION, PHOTONS, QCD, REPRESENTATION, EVOLUTION ,LARGE MOMENTUM-TRANSFER ,GENERALIZED PARTON DISTRIBUTIONS ,DIFFRACTIVE PRODUCTION ,PHOTOPRODUCTION ,Nuclear Experiment ,VIRTUAL COMPTON-SCATTERING - Abstract
The $e p\to e^\prime p \rho^0$ reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The $W$, $Q^2$ and $t$ dependences of the cross section are compared to theoretical calculations based on $t$-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the $\approx$ 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present., Comment: 29 pages, 29 figures
- Published
- 2008
10. Real-time indoor autonomous vehicle test environment
- Author
-
A. Frank, Jonathan P. How, Brett Bethke, D. S. Dale, and John Vian
- Subjects
Engineering ,business.industry ,Real-time computing ,Testbed ,System testing ,Mobile robot ,Remotely operated underwater vehicle ,Flight test ,Control and Systems Engineering ,Modeling and Simulation ,Control system ,Process control ,Electrical and Electronic Engineering ,Autonomous system (mathematics) ,business ,Simulation - Abstract
To investigate and develop unmanned vehicle systems technologies for autonomous multiagent mission platforms, we are using an indoor multivehicle testbed called real-time indoor autonomous vehicle test environment (RAVEN) to study long-duration multivehicle missions in a controlled environment. Normally, demonstrations of multivehicle coordination and control technologies require that multiple human operators simultaneously manage flight hardware, navigation, control, and vehicle tasking. However, RAVEN simplifies all of these issues to allow researchers to focus, if desired, on the algorithms associated with high-level tasks. Alternatively, RAVEN provides a facility for testing low-level control algorithms on both fixed- and rotary-wing aerial platforms. RAVEN is also being used to analyze and implement techniques for embedding the fleet and vehicle health state (for instance, vehicle failures, refueling, and maintenance) into UAV mission planning. These characteristics facilitate the rapid prototyping of new vehicle configurations and algorithms without requiring a redesign of the vehicle hardware. This article describes the main components and architecture of RAVEN and presents recent flight test results illustrating the applications discussed above.
- Published
- 2008
11. Determination of quadrupole strengths in the γ∗p→Δ(1232) transition at Q2=0.20(GeV/c)2
- Author
-
J.M. Friedrich, C. Ayerbe Gayoso, D. Baumann, Th. Walcher, M. O. Distler, Luca Doria, D. S. Dale, M. Potokar, M. Ding, M. Weis, L. Nungesser, Harald Merkel, U. Müller, Tancredi Botto, R. Neuhausen, A. Karabarbounis, R. Böhm, Patrick Achenbach, A. Christopoulou, Nikolaos Sparveris, I. Nakagawa, S. Stiliaris, A. Piegsa, Costas N. Papanicolas, Jan C. Bernauer, S. Stave, Damir Bosnar, Michael Seimetz, Aron M. Bernstein, J. Pochodzalla, Simon Širca, and Mihael Makek
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Dipole ,Amplitude ,Quark model ,Hadron ,Quadrupole ,Coulomb ,Constituent quark ,High Energy Physics::Experiment ,Nuclear Experiment ,Microtron - Abstract
We report new precise p ( e → , e ′ p ) π 0 measurements at the peak of the Δ + ( 1232 ) resonance at Q 2 = 0.20 ( GeV / c ) 2 performed at the Mainz Microtron (MAMI). The new data are sensitive to both the electric (E2) and the Coulomb (C2) quadrupole amplitudes of the γ ∗ N → Δ transition. They yield precise quadrupole to dipole amplitude ratios: CMR = ( − 5.09 ± 0.28 stat + sys ± 0.30 model ) % and EMR = ( − 1.96 ± 0.68 stat + sys ± 0.41 model ) % for M 1 + 3 / 2 = ( 39.57 ± 0.75 stat + sys ± 0.40 model ) ( 10 −3 / m π + ) . The new results are in disagreement with Constituent Quark Model predictions and in qualitative agreement with models that account for mesonic contributions, including recent Lattice calculations. They thus give further credence to the conjecture of deformation in hadronic systems favoring the attribution of the origin of deformation to the dominance of mesonic effects.
- Published
- 2007
12. Performance of a compact detector package for the out-of-plane spectrometer system
- Author
-
Nilanga Liyanage, Ricardo Alarcon, S. Dolfini, J. R. Comfort, S. Kowalski, J. Zhao, Shalev Gilad, C. Vellidis, S. Sobczynski, K. Joo, P. Bourgeois, K. A. Dow, J. Kirkpatrick, R. S. Hicks, T. McIlvain, A. Dooley, Costas N. Papanicolas, D. S. Dale, S. Georgakopoulos, C. Mertz, C. Tschalaer, S. B. Soong, I. Nakagawa, Jian-Ping Chen, E. Six, R. A. Miskimen, M. Farkhondeh, D. J. Margaziotis, J. R. Calarco, G. A. Peterson, W. Turchinetz, C. Kunz, Nikolaos Sparveris, M. O. Distler, D. R. Tieger, N. I. Kaloskamis, A. Hotta, Glen A. Warren, D. Jordan, J. Shaw, A. J. Sarty, Ross Milner, S. Stiliaris, F. Casagrande, T. Zwart, Tancredi Botto, M. Pavan, Aron M. Bernstein, Z.-L. Zhou, Joseph B. Mandeville, S. E. Williamson, Tadaaki Tamae, X. Jiang, M. Holtrop, S. Širca, W. Boeglin, Larry Weinstein, William Bertozzi, G. Tsentalovich, A. F. Ramirez, G. W. Dodson, Yutaro Sato, S. Stave, A. Karabarbounis, R. Beck, M. B. Epstein, A. Young, and D. Rowntree
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Pion ,Spectrometer ,Detector ,Compton scattering ,Electron ,Nuclear Experiment ,Instrumentation ,Electron scattering ,Linear particle accelerator ,Particle identification - Abstract
We report on the design and performance of compact detector packages currently installed in the four magnetic out-of-plane spectrometers for electron scattering experiments at the MIT-Bates Linear Accelerator Center. The detector packages have been designed to meet the mechanical requirements arising from out-of-plane particle detection. They offer good trajectory and momentum reconstruction, particle identification and time-of-flight measurements for electrons, pions, protons, and deuterons with large momentum bites and in broad kinematical ranges and high luminosities. The detectors have so far been used with great success in out-of-plane measurements of 12 C ( e → , e ′ p ) , 2 H ( e → , e ′ p ) , virtual Compton scattering below pion threshold and in studies of the N → Δ transition in both exclusive reaction channels 1 H ( e → , e ′ p ) π 0 and 1 H ( e → , e ′ π + )n .
- Published
- 2002
13. Cotton Color Classification by Fuzzy Logic
- Author
-
Bugao Xu, M. D. Watson, Y. Huang, and D. S. Dale
- Subjects
010302 applied physics ,Fuzzy classification ,Polymers and Plastics ,business.industry ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,02 engineering and technology ,Color space ,021001 nanoscience & nanotechnology ,Machine learning ,computer.software_genre ,01 natural sciences ,Fuzzy logic ,Fuzzy inference system ,0103 physical sciences ,Chemical Engineering (miscellaneous) ,Color data ,Artificial intelligence ,0210 nano-technology ,Grading (education) ,business ,computer ,Mathematics - Abstract
This paper describes the application of fuzzy logic to cotton color grading in an attempt to improve the acceptance of machine grading for cotton colors. Cotton color grades are a number of classes in the (Rd, b) color space. Adjacent color classes have blurry and overlapping boundaries, making crisp-boundary methods ineffective for cotton color classification. Fuzzy logic is specialized to deal with uncertainty and imprecision in the decision-making process, and thus offers a new approach for grading cotton colors. In this paper, we present the procedures for constructing a fuzzy inference system (FIS) using fuzzy logic to classify major classes of cotton colors, and the preliminary results to demonstrate FIS effectiveness in reducing machine-classer disagreements in color grading. The results from the Fis show great consistency for multiple year of cotton color data.
- Published
- 2002
14. Vertical drift chambers for the Hall A high-resolution spectrometers at Jefferson Lab
- Author
-
Craig Leathers, D. S. Dale, Jian-Ping Chen, E.A.J.M. Offermann, William Bertozzi, R. Michaels, J. Segal, Nilanga Liyanage, Risa H. Wechsler, Bogdan Wojtsekhowski, Jeff Templon, Jianguo Zhao, Shalev Gilad, Kevin Fissum, A. Gavalya, H. Fenker, and Juncai Gao
- Subjects
Physics ,Nuclear and High Energy Physics ,Spectrometer ,business.industry ,Detector ,Cosmic ray ,Particle accelerator ,Particle detector ,law.invention ,Nuclear physics ,Optics ,law ,Measuring instrument ,business ,Instrumentation ,Image resolution ,Dark current - Abstract
The High Resolution Spectrometers in Hall A at Jefferson Laboratory have been instrumented with state-of-the-art Vertical Drift Chambers designed and constructed by the Nuclear Interactions Group at MITLNS in conjunction with the Physics Division at Jefferson Lab. These chambers rely on a unique, high cell-density design made possible by the absence of field-shaping wires. Each chamber has an inert per-plane resolution for 5-cell cosmic ray track of 145 mu-m FWHM when operated on the bench at -4.8 kV with argon-isobutane gas, and 225 mu-m FWHM for 5-cell electron tracks when operated in the High Resolution Spectrometer detector stack at -4.0 kV with argon-ethane gas. The design and construction facilities wire placement and replacement to 50 mu-m, very low dark current, and no crosswalk. The detectors have been in almost continuous use since April 1996, providing reliable, high-resolution charged-particles tracking data for the hall A physics program.
- Published
- 2001
15. Dynamics of the16O(e,e′p)Reaction at High Missing Energies
- Author
-
C. Cavata, A. Soldi, A. J. Sarty, Y. Roblin, Paul Souder, T. Pussieux, K. Wijesooriya, Ronald Ransome, S. Malov, Shalev Gilad, E. Burtin, M. Liang, C. W. de Jager, K. A. Aniol, M. Holtrop, E. A.J.M. Offermann, Wolfgang Korsch, B. Doyle, G. Quéméner, P. Djawotho, T. Terasawa, Vincent Breton, A. Gasparian, A. V. Glamazdin, K. Joo, D. Rowntree, R. Holmes, C. R. Howell, D. M. Manley, J. R. Calarco, R. W. Lourie, O. Ravel, J. W. Watson, Justin I. McIntyre, J. Gao, E. J. Brash, W. U. Boeglin, B. D. Anderson, G. J. Lolos, M. B. Epstein, G. M. Urciuoli, J. A. Templon, W. Kahl, C. E. Hyde-Wright, S. Kerhoas, A. Serdarevic-Offermann, N. d'Hose, F. T. Baker, C. F. Perdrisat, S. Platchkov, Kazushige Maeda, A. Deur, G. M. Huber, T. Saito, J. Martino, L. Auerbach, Bogdan Wojtsekhowski, J. Domingo, J. Berthot, J. Y. Mougey, R. I. Pomatsalyuk, A. Saha, L. Bimbot, H. Ueno, Kevin Fissum, Z. Papandreou, T. P. Smith, Jian-Ping Chen, L. Todor, A. Leone, James J. Kelly, Seigo Kato, P.Y. Bertin, Nilanga Liyanage, G. Rutledge, Hiroaki Tsubota, Z. L. Zhou, Richard Wilson, Branislav Vlahovic, H. Fonvieille, Gordon D. Cates, Mauro Iodice, Larry Weinstein, G. Laveissière, R. Suleiman, E. Cisbani, William Bertozzi, S. Nanda, G. Kumbartzki, Jing Zhao, R. Madey, D. G. Zainea, Ronald Gilman, R. Roche, D. S. Dale, K. McCormick, R. Michaels, L. Cardman, P. E. Ulmer, V. Zeps, S. van Verst, Pete Markowitz, J. M. Finn, S. Jaminion, H. Breuer, J. Gomez, J.E. Ducret, M. Khandaker, R. A. Lindgren, J. J. LeRose, M. Khayat, H. Voskanyan, C. Jutier, D. Neyret, V. Gorbenko, Roberto Perrino, R. De Leo, F. W. Hersman, L. A. Ewell, B. Diederich, Laird Kramer, M. K. Jones, G. G. Petratos, J. S. McCarthy, T. P. Gorringe, Z. E. Meziani, P. M. Rutt, Leonid Levchuk, David L. Prout, F. Garibaldi, V. A. Punjabi, S. Frullani, P. Vernin, R. L.J. van der Meer, D. J. Margaziotis, C. C. Chang, K. S. Kumar, Pavel Sorokin, K. Kino, B. Frois, and Charles Glashausser
- Subjects
Physics ,Proton ,010308 nuclear & particles physics ,Nuclear Theory ,General Physics and Astronomy ,01 natural sciences ,Nuclear physics ,Cross section (geometry) ,Pion ,0103 physical sciences ,Isobar ,Atomic physics ,Nuclear Experiment ,010306 general physics - Abstract
We measured the cross section and response functions for the quasielastic 16O(e,e'p) reaction for missing energies 25< or =E(m)< or =120 MeV at missing momenta P(m)< or =340 MeV/c. For 25
- Published
- 2001
16. Transverse AsymmetryAT′from the Quasielastic3He→(e→,e′)Process and the Neutron Magnetic Form Factor
- Author
-
J. Yeh, B. W. Filippone, William Bertozzi, Wolfgang Korsch, K. McIlhany, K. McCormick, M. Schnee, K. Kramer, L. Todor, T. Pavlin, R. I. Pomatsalyuk, L. Cardman, Jacek Golak, Nilanga Liyanage, F. W. Hersman, Branislav Vlahovic, R. Suleiman, A. Deur, Steffen Strauch, R. D. McKeown, J. O. Hansen, D. J. Margaziotis, J. Gomez, Bogdan Wojtsekhowski, Jian-Ping Chen, T. Averett, Charles Glashausser, de Jager Cw, Y. Roblin, D. Pripstein, W. Xu, J. S. Jensen, M. Sutter, I. K. Kominis, M. Liang, C. Crawford, Hiroyuki Kamada, Dipanwita Dutta, W. Glöckle, A. V. Glamazdin, Z. Chai, M. Viviani, Sebastien Incerti, C. F. Williamson, Gordon D. Cates, E. Lakuriqi, F. Xiong, B. Humensky, E. W. Hughes, Henryk Witała, G. G. Petratos, R. Michaels, B. D. Anderson, E. Pace, J. W. Watson, D. S. Dale, Jones Ce, Z. E. Meziani, B. Tipton, Ronald Ransome, G. S. Corrado, L. Auberbach, J. J. LeRose, A. Kievsky, V. Gorbenko, T. Black, Xin Jiang, R. Holmes, R. Kahl, D. W. Higinbotham, G. Salme, S. Churchwell, P. A. Zolnierczuk, J. M. Finn, G. Kumbartzki, C. R. Howell, J. R. Calarco, E. Chudakov, P. Djawotho, Karl Slifer, Haiyan Gao, Paul Souder, T. Shin, M. Rvachev, J. W. Martin, Seonho Choi, S. Malov, Ronald Gilman, M. K. Jones, A. Saha, G. W. Miller, M. Kuss, and David L. Prout
- Subjects
Nuclear physics ,Physics ,Transverse plane ,Quasielastic scattering ,Experimental uncertainty analysis ,media_common.quotation_subject ,Magnetic form factor ,General Physics and Astronomy ,Neutron ,Asymmetry ,Polarized target ,media_common - Abstract
We have measured the transverse asymmetry A_T′ in ^3He(e,e′) quasielastic scattering in Hall A at Jefferson Laboratory with high precision for Q^2 values from 0.1 to 0.6 (GeV/c)^2. The neutron magnetic form factor GMn was extracted based on Faddeev calculations for Q^2 = 0.1 and 0.2 (GeV/c)^2 with an experimental uncertainty of less than 2%.
- Published
- 2000
17. Cotton Color Grading with a Neural Network
- Author
-
Bugao Xu, Junqiang Su, D. S. Dale, and M. D. Watson
- Subjects
010302 applied physics ,Engineering ,Polymers and Plastics ,Artificial neural network ,business.industry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Machine learning ,computer.software_genre ,01 natural sciences ,Neural network classifier ,0103 physical sciences ,Chemical Engineering (miscellaneous) ,Artificial intelligence ,0210 nano-technology ,Grading (education) ,business ,computer ,Test data - Abstract
It is well known that disagreements about cotton color grades between high volume instruments and classers are substantial, and these machine-classer disagreements deter full acceptance of machine grading of cotton color. This paper provides first a quantitative analysis of the distributions of these disagreements across all the color grades, both major and subcolor categories. The study proves that the disagreements can be both systematic and random, and further analyzes the possible sources for them. Second, the paper introduces a novel design of a neural network classifier for cotton color classification. This classifier consists of multiple networks performing a two-step classification that identifies major and subcolor categories separately. The classifier can be trained by any desirable data. In this research, it is trained using a set of classers' grades, and it exhibits good generalization for the new testing data. The classifier seems to reduce machine-classer disagreements to a minimal level, which is limited by the classer's reproducibility.
- Published
- 2000
18. Dynamical Relativistic Effects in Quasielastic1p-Shell Proton Knockout fromO16
- Author
-
C. E. Hyde-Wright, D. J. Margaziotis, J. Martino, Nilanga Liyanage, C. R. Howell, K. Kino, M. Liang, Richard Wilson, J. R. Calarco, G. Quéméner, T. P. Smith, A. V. Glamazdin, Kazushige Maeda, Branislav Vlahovic, R. Suleiman, E. Cisbani, G. M. Urciuoli, K. Joo, S. Frullani, R. W. Lourie, R. Roche, S. Platchkov, D. Rowntree, Paul Souder, Y. Roblin, T. Terasawa, Vincent Breton, Bogdan Wojtsekhowski, W. Kahl, P. Vernin, T. Pussieux, J. M. Finn, J. Gao, J. Gomez, C. F. Perdrisat, B. Frois, Jian-Ping Chen, K. Wijesooriya, W. Korsh, O. Ravel, Hiroaki Tsubota, Ronald Ransome, Seigo Kato, R. L.J. van der Meer, S. Malov, E. Burtin, J. A. Templon, S. Kerhoas, J. W. Watson, M. Holtrop, B. Doyle, S. van Verst, R. Holmes, Z. Papandreou, R. A. Lindgren, J. J. LeRose, H. Voskanyan, C. Jutier, P. M. Rutt, A. Gasparian, G. Rutledge, F. T. Baker, G. M. Huber, David L. Prout, V. Gorbenko, M. Khayat, Charles Glashausser, B. D. Anderson, G. J. Lolos, M. B. Epstein, Mauro Iodice, L. Auerbach, A. Saha, H. Ueno, L. Todor, A. Leone, J. Berthot, Larry Weinstein, William Bertozzi, D. S. Dale, L. Cardman, S. Jaminion, Pete Markowitz, L. Bimbot, G. G. Petratos, Z. E. Meziani, M. Khandaker, V. Zeps, W. U. Boeglin, Leonid Levchuk, Roberto Perrino, R. De Leo, D. Neyret, V. A. Punjabi, B. Diederich, D. G. Zainea, C. C. Chang, K. S. Kumar, T. Saito, Pavel Sorokin, H. Fonvieille, G. Kumbartzki, J. Y. Mougey, F. Garibaldi, T. P. Gorringe, P. E. Ulmer, Z. L. Zhou, G. Laveissière, J. S. McCarthy, P. Djawotho, P.Y. Bertin, J.E. Ducret, Ronald Gilman, K. McCormick, M. K. Jones, A. Serdarevic-Offermann, A. Deur, H. Breuer, F. W. Hersman, L. A. Ewell, James J. Kelly, R. I. Pomatsalyuk, S. Nanda, Shalev Gilad, D. M. Manley, C. W. de Jager, K. A. Aniol, E. A.J.M. Offermann, J. Domingo, K. A. Griffioen, C. Cavata, A. Soldi, A. J. Sarty, Gordon D. Cates, Laird Kramer, R. Madey, E. J. Brash, Kevin Fissum, Jing Zhao, R. Michaels, Justin I. McIntyre, and N. d'Hose
- Subjects
Physics ,Nuclear reaction ,Proton ,010308 nuclear & particles physics ,Hadron ,General Physics and Astronomy ,Elementary particle ,01 natural sciences ,Omega ,Baryon ,0103 physical sciences ,Atomic physics ,010306 general physics ,Nucleon ,Relativistic quantum chemistry - Abstract
We have measured the cross section for quasielastic 1p -shell proton knockout in the {sup 16}O( e, e{sup '}p) reaction at {omega}=0.439 GeV and Q{sup 2}=0.8 (GeV/c){sup 2} for missing momentum P{sub miss}{
- Published
- 2000
19. GEp/GMpRatio by Polarization Transfer ine→p→ep→
- Author
-
M. K. Jones, K. A. Aniol, F. T. Baker, J. Berthot, P. Y. Bertin, W. Bertozzi, A. Besson, L. Bimbot, W. U. Boeglin, E. J. Brash, D. Brown, J. R. Calarco, L. S. Cardman, C.-C. Chang, J.-P. Chen, E. Chudakov, S. Churchwell, E. Cisbani, D. S. Dale, R. De Leo, A. Deur, B. Diederich, J. J. Domingo, M. B. Epstein, L. A. Ewell, K. G. Fissum, A. Fleck, H. Fonvieille, S. Frullani, J. Gao, F. Garibaldi, A. Gasparian, G. Gerstner, S. Gilad, R. Gilman, A. Glamazdin, C. Glashausser, J. Gomez, V. Gorbenko, A. Green, J.-O. Hansen, C. R. Howell, G. M. Huber, M. Iodice, C. W. de Jager, S. Jaminion, X. Jiang, W. Kahl, J. J. Kelly, M. Khayat, L. H. Kramer, G. Kumbartzki, M. Kuss, E. Lakuriki, G. Lavessière, J. J. LeRose, M. Liang, R. A. Lindgren, N. Liyanage, G. J. Lolos, R. Macri, R. Madey, S. Malov, D. J. Margaziotis, P. Markowitz, K. McCormick, J. I. McIntyre, R. L. J. van der Meer, R. Michaels, B. D. Milbrath, J. Y. Mougey, S. K. Nanda, E. A. J. M. Offermann, Z. Papandreou, C. F. Perdrisat, G. G. Petratos, N. M. Piskunov, R. I. Pomatsalyuk, D. L. Prout, V. Punjabi, G. Quéméner, R. D. Ransome, B. A. Raue, Y. Roblin, R. Roche, G. Rutledge, P. M. Rutt, A. Saha, T. Saito, A. J. Sarty, T. P. Smith, P. Sorokin, S. Strauch, R. Suleiman, K. Takahashi, J. A. Templon, L. Todor, P. E. Ulmer, G. M. Urciuoli, P. Vernin, B. Vlahovic, H. Voskanyan, K. Wijesooriya, B. B. Wojtsekhowski, R. J. Woo, F. Xiong, G. D. Zainea, and Z.-L. Zhou
- Subjects
Elastic scattering ,Physics ,Proton ,010308 nuclear & particles physics ,Proton magnetic moment ,General Physics and Astronomy ,Electron ,Polarization (waves) ,01 natural sciences ,Charged particle ,Nuclear physics ,Magnetization ,0103 physical sciences ,Magnetic form factor ,Physics::Accelerator Physics ,Atomic physics ,Nuclear Experiment ,010306 general physics - Abstract
The ratio of the proton's elastic electromagnetic form factors was obtained by measuring the transverse and longitudinal polarizations of recoiling protons from the elastic scattering of polarized electrons with unpolarized protons. The ratio of the electric to magnetic form factor is proportional to the ratio of the transverse to longitudinal recoil polarizations. The ratio was measured over a range of four-momentum transfer squared between 0.5 and 3.5 GeV-squared. Simultaneous measurement of transverse and longitudinal polarizations in a polarimeter provides good control of the systematic uncertainty. The results for the ratio of the proton's electric to magnetic form factors show a systematic decrease with increasing four momentum squared, indicating for the first time a marked difference in the spatial distribution of charge and magnetization currents in the proton.
- Published
- 2000
20. Measurement of recoil proton polarizations in the electrodisintegration of deuterium by polarized electrons
- Author
-
Shalev Gilad, C. Vellidis, K. A. Dow, K. Joo, J. M. Finn, C. Tschalaer, C. S. Armstrong, A. J. Sarty, Paul Ulmer, D. R. Tieger, D. Liu, Jiahao Chen, P. M. Rutt, D. S. Dale, L.M. Qin, John C. Mitchell, P. Markowitz, S. Kowalski, D.H. Barkhuff, M. Farkhondeh, C. Mertz, R.W. Lourie, Richard Madey, Larry Weinstein, William Bertozzi, M. K. Jones, S.P. Van Verst, B.D. Milbrath, D. J. Margaziotis, Glen A. Warren, V. A. Punjabi, S. Mukhopadhyay, M. Epstein, G. W. Dodson, J. McIntyre, James J. Kelly, W. Turchinetz, C. F. Perdrisat, and R. J. Woo
- Subjects
Physics ,Nuclear and High Energy Physics ,Spin polarization ,Scattering ,Nuclear Theory ,Electron ,Polarization (waves) ,Induced polarization ,Nuclear physics ,Recoil ,Deuterium ,Neutron ,Atomic physics ,Nuclear Experiment - Abstract
In order to test modern theories of two-nucleon bound and scattering states, we have measured the spin polarization of ejectile protons in the electrodisintegration reaction d( e → ,e′ p → )n . Compared with spin-averaged observations, these observables offer the potential of enhanced sensitivity to details of the reaction process. The experiment was carried out in quasielastic kinematics ( q μ q μ =−2m p ω=−0.38 GeV2/c2). Protons were detected at two angles corresponding to neutron recoil momenta pr of 0 and 100 MeV/c. Full nonrelativistic calculations of the polarization transfer components sl and st, including leading order relativistic contributions, describe our measurements well, but calculations of the induced polarization sn at pr=100 MeV/c underpredict the experimental result.
- Published
- 1999
21. High-Precision Studies of theH3e(e,e′p)Reaction at the Quasielastic Peak
- Author
-
M. Kahrau, J. P. Chen, Jing Zhao, Th. Walcher, J. A. Templon, J.M. Friedrich, R. Geiges, G. Rosner, Achim Richter, D. J. Margaziotis, R. E. J. Florizone, P. Bartsch, William Bertozzi, U. Müller, R. Böhm, Klemen Bohinc, K. Merle, Konrad Aniol, E. A. J. M. Offermann, I. Ewald, K. W. Krygier, A. Wagner, W.U. Boeglin, M. O. Distler, M. B. Epstein, Simon Širca, Z. L. Zhou, D. S. Dale, R. Neuhausen, Th. Pospischil, S.P. Van Verst, G. Schrieder, P. Jennewein, A. J. Sarty, Shalev Gilad, M. Kuss, M. Potokar, H. Schmieden, A. Liesenfeld, and Harald Merkel
- Subjects
Baryon ,Nuclear reaction ,Physics ,Nuclear physics ,Momentum ,Nuclear Theory ,Hadron ,Momentum transfer ,General Physics and Astronomy ,Elementary particle ,Nuclear Experiment ,Nucleon ,Microtron - Abstract
Precision studies of the reaction [sup 3]He( e,thinspe[sup [prime]]p) using the three-spectrometer facility at the Mainz microtron MAMI are presented. All data are for quasielastic kinematics at [vert bar][rvec q][vert bar]=685 MeV/c . Absolute cross sections were measured at three electron kinematics. For the measured missing momenta range from 10 to 165 MeV/c , no strength is observed for missing energies higher than 20thinspthinspMeV. Distorted momentum distributions were extracted for the two-body breakup and the continuum. The longitudinal and transverse nature of the cross sections is well described by a widely used prescription of the off-shell electron-nucleon cross section. The results are compared to modern three-body calculations and to previous data. [copyright] [ital 1999] [ital The American Physical Society]
- Published
- 1999
22. Measurements of the Deuteron Elastic Structure FunctionA(Q2)for0.7≤Q2≤6.0(GeV/c)2at Jefferson Laboratory
- Author
-
Paul Souder, Z. L. Zhou, E. Burtin, R. I. Pomatsalyuk, D. S. Dale, N. d'Hose, Ch. Hyde-Wright, J. O. Hansen, T. Saito, H. Breuer, K. Arundell, Seigo Kato, W. M. Zhang, C. R. Howell, J. R. Calarco, S. Nanda, L. Auerbach, K. Wijesooriya, Kevin Fissum, G. M. Huber, G. Rutledge, R. W. Lourie, J. Domingo, Y. Roblin, H. Fonvieille, L. Bimbot, T. P. Smith, S. Frullani, E. Chudakov, P. E. Ulmer, L. A. Ewell, Nilanga Liyanage, Pierre Bertin, Mauro Iodice, S. Mehrabyan, G. W. Miller, S. Malov, P. Vernin, Bogdan Wojtsekhowski, Larry Weinstein, L. C. Alexa, R. Madey, W. Kahl, R. A. Lindgren, Richard Wilson, H. Voskanyan, Branislav Vlahovic, Charles Glashausser, C. Jutier, J. J. LeRose, M. Holtrop, A. Saha, D. Neyret, A. Gasparian, R. L.J. van der Meer, T. Terasawa, Vincent Breton, R. Suleiman, E. Cisbani, V. Gorbenko, G. M. Urciuoli, M. Liang, G. Quéméner, S. Platchkov, L. Cardman, D. J. Margaziotis, David L. Prout, C. Cavata, K. Soldi, A. Serdarevic, K. Kino, Z. Papandreou, A. Leone, S. Jaminion, F. T. Baker, P. M. Rutt, A. J. Sarty, J. Gomez, D. Rowntree, William Bertozzi, Jing Zhao, Ronald Ransome, James J. Kelly, J. Jardillier, J. M. Finn, T. Pussieux, Pete Markowitz, R. Michaels, J. Gao, D. M. Manley, H. Ueno, Jian-Ping Chen, A. Ketikyan, G. Lavessiere, D. G. Zainea, V. A. Punjabi, E. J. Brash, J. W. Watson, A. T. Katramatou, Roberto Perrino, C. C. Chang, R. De Leo, S. Kerhoas, K. S. Kumar, A. V. Glamazdin, B. Diederich, Shalev Gilad, M. Khayat, L. Van Hoorebeke, O. Ravel, Justin I. McIntyre, Pavel Sorokin, L. Todor, J. A. Templon, R. Holmes, C. W. de Jager, W. U. Boeglin, K. A. Aniol, G. G. Petratos, Z. E. Meziani, B. D. Anderson, G. J. Lolos, M. B. Epstein, J. Berthot, A. Deur, J. Martino, C. F. Perdrisat, E. A.J.M. Offermann, Kazushige Maeda, Haiyan Gao, J. Marroncle, Laird Kramer, J. Y. Mougey, C. J. Martoff, F. Garibaldi, G. Kumbartzki, Ronald Gilman, Hiroaki Tsubota, K. McCormick, B. Frois, N Degrande, M. K. Jones, and M. Kuss
- Subjects
Quantum chromodynamics ,Quark ,Physics ,Particle physics ,010308 nuclear & particles physics ,Scattering ,High Energy Physics::Lattice ,Nuclear Theory ,Quark model ,General Physics and Astronomy ,Elementary particle ,7. Clean energy ,01 natural sciences ,Gluon ,Nuclear physics ,0103 physical sciences ,High Energy Physics::Experiment ,Quantum field theory ,Nuclear Experiment ,010306 general physics ,Boson - Abstract
The deuteron elastic structure function A(Q2) has been extracted in the range 0.7≤Q2≤6.0(GeV/c)2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models, based on the impulse approximation with the inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamics.
- Published
- 1999
23. Measurement of the neutral weak form factors of the proton
- Author
-
Justin I. McIntyre, B. Frois, D. Neyret, J. Jardillier, G. D. Cates, A. V. Glamazdin, M. B. Epstein, J. M. Finn, B. Humensky, R. Holmes, D. Lhuillier, J. Gao, F. Garibaldi, D. S. Armstrong, Min Suk Kim, P. Mastromarino, K. Wijesooriya, C. F. Perdrisat, Sebastien Incerti, C. Cavata, J. Thompson, R. Michaels, A. Gasparian, R. I. Pomatsalyuk, Arijit Saha, W. Kahl, J. R. Calarco, F. Marie, G. A. Rutledge, T. Pussieux, Andre Fleck, V. Gorbenko, M. B. Leuschner, G. M. Gerstner, Kevin Fissum, L. Todor, G. Quéméner, J.P. Jorda, P. M. Rutt, E. Chudakov, Paul Souder, J. LeRose, V. A. Punjabi, Bogdan Wojtsekhowski, Daijin Kim, J. S. Price, N. Falletto, R. Suleiman, K. Kramer, Z. E. Meziani, E. Burtin, M. Holtrop, J. P. Chen, R. W. Lourie, D. S. Dale, Stephanie Escoffier, J. Martino, Richard Madey, F. W. Hersman, C. W. de Jager, K. A. Aniol, K. S. Kumar, L. A. Ewell, P. E. Ulmer, A. Deur, G. W. Miller, C. Jutier, David L. Prout, P. Djawotho, Nilanga Liyanage, Marcus Spradlin, G. G. Petratos, Richard Wilson, Branislav Vlahovic, M. K. Jones, D. J. Margaziotis, J. Gomez, M. Kuss, Ronald Gilman, K. McCormick, M. Baylac, and Olfred Hansen
- Subjects
Quantum chromodynamics ,Elastic scattering ,Physics ,Strange quark ,Particle physics ,Proton ,Degree (graph theory) ,Electric form factor ,FOS: Physical sciences ,General Physics and Astronomy ,Standard Model ,High Energy Physics::Experiment ,Astrophysics::Earth and Planetary Astrophysics ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor., 10 pages, 4 figures, submitted to Phys. Rev. Lett
- Published
- 1999
24. Measurement of the interference structure functionRLTfor the12C(e,e′p)reaction in the quasielastic region
- Author
-
V. Bhushan, D. S. Dale, S. Dolfini, Joseph B. Mandeville, T. McIlvain, D. J. Margaziotis, William Bertozzi, D. Martinez, Glen A. Warren, J. Görgen, W. W. Sapp, D. R. Tieger, G. W. Dodson, D. Jordan, Shalev Gilad, K. A. Dow, M. Holtrop, M. B. Epstein, Jiahao Chen, W. Turchinetz, J. Kelsey, J. Dzengeleski, W. Boeglin, C. Tschalaer, A. J. Sarty, Costas N. Papanicolas, K. Joo, Ricardo Alarcon, R. M. Laszewski, W. Kim, M. Farkhondeh, R. Beck, R.W. Lourie, Larry Weinstein, S. Penn, R. A. Miskimen, and S. E. Williamson
- Subjects
Physics ,Nuclear and High Energy Physics ,Nuclear Theory ,Structure function ,Momentum transfer ,Hartree–Fock method ,Hartree ,Atomic physics - Abstract
The coincidence cross section and the interference structure function, ${R}_{\mathrm{LT}},$ were measured for the ${}^{12}\mathrm{C}{(e,e}^{\ensuremath{'}}p){}^{11}\mathrm{B}$ reaction at quasielastic kinematics and central momentum transfer of $|\stackrel{\ensuremath{\rightarrow}}{q}|=400\mathrm{M}\mathrm{e}\mathrm{V}/\mathrm{c}.$ The measurement was at an opening angle of ${\ensuremath{\theta}}_{\mathrm{pq}}=11\ifmmode^\circ\else\textdegree\fi{},$ covering a range in missing energy of ${E}_{m}=0$ to 65 MeV. The ${R}_{\mathrm{LT}}$ structure function is found to be consistent with zero for ${E}_{m}g50\mathrm{MeV},$ confirming an earlier study which indicated that ${R}_{L}$ vanishes in this region. The integrated strengths of the $p$- and $s$-shell are compared with a distorted wave impulse approximation (DWIA) calculation. The $s$-shell strength and shape are also compared with a Hartree Fock--random phase approximation (HF-RPA) calculation. The DWIA calculation does not succeed in giving a consistent description of both the cross section data and the extracted ${R}_{\mathrm{LT}}$ response for either shell. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation.
- Published
- 1998
25. Induced proton polarization forπ0electroproduction atQ2=0.126 GeV2/c2around theΔ(1232)resonance
- Author
-
S. E. Williamson, X. Jiang, B. Asavapibhop, G. W. Dodson, Glen A. Warren, Larry Weinstein, A. J. Sarty, S. B. Soong, K. Joo, D. J. Margaziotis, S. Kowalski, James J. Kelly, Shalev Gilad, C. Vellidis, K. A. Dow, C. S. Armstrong, L. M. Qin, P. Markowitz, Jiunn-Wei Chen, A. Young, R. W. Gothe, D. S. Dale, Justin I. McIntyre, Volker D. Burkert, P. M. Rutt, Ricardo Alarcon, J. P. Chen, M. B. Epstein, D. Liu, R. J. Woo, C. Tschalaer, V. A. Punjabi, D. H. Barkhuff, M. K. Jones, William Bertozzi, D. R. Tieger, J. M. Finn, A. Karabarbounis, J. R. Comfort, M. Farkhondeh, S. Van Verst, B. D. Milbrath, Richard Madey, R. A. Miskimen, S. Mukhopadhyay, S. Dolfini, C. Kunz, C. F. Perdrisat, J. Shaw, Costas N. Papanicolas, P. E. Ulmer, R.W. Lourie, W. Turchinetz, John C. Mitchell, and C. Mertz
- Subjects
Physics ,Baryon ,Nuclear and High Energy Physics ,Particle physics ,Pion ,Proton ,Meson ,Hadron ,Elementary particle ,Nucleon ,Delta baryon - Abstract
We present a measurement of the induced proton polarization ${P}_{n}$ in ${\ensuremath{\pi}}^{0}$ electroproduction on the proton around the $\ensuremath{\Delta}$ resonance. The measurement was made at a central invariant mass and a squared four-momentum transfer of $W=1231 \mathrm{MeV}$ and ${Q}^{2}=0.126 {\mathrm{GeV}}^{2}{/c}^{2},$ respectively. We measured a large induced polarization, ${P}_{n}=\ensuremath{-}0.397\ifmmode\pm\else\textpm\fi{}0.055\ifmmode\pm\else\textpm\fi{}0.009.$ The data suggest that the scalar background is larger than expected from a recent effective Hamiltonian model.
- Published
- 1998
26. Measurements of the γ*p → Δ reaction at low Q2
- Author
-
Michael Seimetz, Costas N. Papanicolas, J.M. Friedrich, S. Stiliaris, Simon Širca, M. Weis, U. Müller, Tancredi Botto, A. Christopoulou, J. Pochodzalla, L. Nungesser, I. Nakagawa, M. Potokar, D. Baumann, Luca Doria, Mihael Makek, M. Ding, Nikos Sparveris, D. Bosnar, P. Achenbach, Th. Walcher, A. Karabarbounis, Aron M. Bernstein, A. Piegsa, M. O. Distler, Harald Merkel, R. Böhm, Jan C. Bernauer, S. Stave, C. Ayerbe Gayoso, D. S. Dale, and R. Neuhausen
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Pion ,Spectrometer ,Lattice (order) ,High Energy Physics::Lattice ,Momentum transfer ,Effective field theory ,electron scattering ,pion production ,chiral effective field theory ,Constituent quark ,Nuclear Experiment - Abstract
We report new p$(\vec{e},e^\prime p)\pi^\circ$ measurements in the $\Delta^{+}(1232)$ resonance at the low momentum transfer region utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud dynamics are predicted to be dominant and appreciably changing in this region while the momentum transfer is sufficiently low to be able to test chiral effective calculations. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations with pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
- Published
- 2013
27. Measurement of the Longitudinal, Transverse, and Longitudinal-Transverse Structure Functions in theH2(e,e′p)nReaction
- Author
-
R. A. Miskimen, William Bertozzi, D. J. Margaziotis, W. Kim, S. Dolfini, M. Epstein, S. Penn, W.W. Sapp, J. Görgen, R. Beck, Shalev Gilad, K. Joo, W. Turchinetz, K. A. Dow, Ricardo Alarcon, A. J. Sarty, Larry Weinstein, D. Martinez, C. Tschalaer, Jiahao Chen, D. S. Dale, D. Jordan, R. M. Laszewski, J. Kelsey, Glen A. Warren, M. Holtrop, J. Dzengeleski, Joseph B. Mandeville, R.W. Lourie, W. Boeglin, M. Farkhondeh, S. E. Williamson, G. W. Dodson, Costas N. Papanicolas, D. R. Tieger, V. Bhushan, and T. McIlvain
- Subjects
Physics ,Transverse plane ,Meson ,Condensed matter physics ,Structure function ,Isobar ,General Physics and Astronomy ,Atomic physics ,Omega - Abstract
We have separated the longitudinal ({ital f}{sub 00}), transverse ({ital f}{sub 11}), and longitudinal-transverse interference ({ital f}{sub 01}) structure functions in the {sup 2}H({ital e},{ital e}{prime}{ital p}){ital n} reaction at {ital q}{searrow}{parallel}{approx_equal} 400 MeV/{ital c} and {omega}{approx_equal}110 MeV. A nonrelativistic calculation which includes effects due to final state interactions, meson exchange currents, and isobar configurations agrees with the measured {ital f}{sub 11} and {ital f}{sub 01} but overpredicts {ital f}{sub 00} by 25{percent} (2{sigma}). The data are also compared to the results of previous structure function measurements. {copyright} {ital 1996 The American Physical Society.}
- Published
- 1996
28. Two neutron correlations in photo-fission
- Author
-
J. Burggraf, O. Kosinov, T. A. Forest, Valeriia N. Starovoitova, D. S. Dale, Sean C. Stave, and G. Warren
- Subjects
Nuclear physics ,Physics ,Cold fission ,Prompt neutron ,Neutron emission ,Fission ,Nuclear Theory ,Neutron cross section ,Neutron ,Nuclear Experiment ,Fast fission ,Delayed neutron - Abstract
A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.
- Published
- 2016
29. Virtual Compton scattering and the generalized polarizabilities of the proton atQ2=0.92and 1.76 GeV2
- Author
-
L. B. Auerbach, C. Cavata, D. J. Margaziotis, K. Kino, A. J. Sarty, Seigo Kato, J. A. Templon, B. Frois, Ronald Ransome, D. Rowntree, R. W. Lourie, Christophe Furget, P. Grenier, M. K. Jones, D. S. Dale, G. W. Miller, H. Voskanyan, C. Jutier, S. Frullani, Z. L. Zhou, C. R. Howell, W. Kahl, M. Khayat, A. T. Katramatou, M. Kuss, J. W. Watson, K. Wijesooriya, W. M. Zhang, J. Jardillier, G.I. Smirnov, David L. Prout, G. Laveissière, A. Deur, G. E. Dodge, J. R. Calarco, G. Fournier, N. Degrande, R. A. Lindgren, J. J. LeRose, R. I. Pomatsalyuk, E. J. Brash, W. U. Boeglin, V. Gorbenko, R. Suleiman, F. T. Baker, S. Platchkov, G. M. Huber, F. Garibaldi, Ronald Gilman, K. McCormick, G. Rutledge, T. Saito, Richard Madey, G. G. Petratos, Z. E. Meziani, K. Arundell, Marc Vanderhaeghen, J. Martino, James J. Kelly, S. Kox, J. Marroncle, L. Cardman, C. E. Hyde, Raphael Noel Tieulent, Z. Papandreou, Pierre A.M. Guichon, F. Merchez, Bogdan Wojtsekhowski, D. Marchand, E. Tomasi-Gustaffson, M. Liang, P. M. Rutt, F. Renard, Shalev Gilad, S. Mehrabyan, G. Quéméner, V. A. Punjabi, D. M. Manley, C. W. de Jager, R. L.J. van der Meer, K. A. Aniol, Nilanga Liyanage, A. Gasparian, B. D. Anderson, G. J. Lolos, M. B. Epstein, Richard Wilson, Branislav Vlahovic, L. C. Alexa, A. Ketikyan, P. E. Ulmer, A. V. Glamazdin, E. A.J.M. Offermann, Jing Zhao, P. Y. Bertin, L. Van Hoorebeke, T. Pussieux, Mauro Iodice, Larry Weinstein, Laird Kramer, T. Terasawa, Vincent Breton, J. Gao, C. F. Perdrisat, C. Marchand, D. Neyret, William Bertozzi, R. Michaels, R. Holmes, H. Fonvieille, D. G. Zainea, Charles Glashausser, C. C. Chang, K. S. Kumar, J. Domingo, Pavel Sorokin, Haiyan Gao, Pete Markowitz, L. Bimbot, R. Di Salvo, J. M. Finn, J. S. Real, Justin I. McIntyre, S. Jaminion, G. Kumbartzki, E. Chudakov, Barbara Pasquini, Latifa Elouadrhiri, N. d'Hose, Roberto Perrino, R. De Leo, M. Baylac, J. O. Hansen, J. P. Chen, R. Van de Vyver, G. M. Urciuoli, J. Berthot, H. Breuer, Kevin Fissum, L. A. Ewell, G. Audit, Kazushige Maeda, J. Mougey, O. Ravel, S. Malov, E. Burtin, M. Holtrop, J. Gomez, Thomas E. Smith, Paul Souder, H. Ueno, S. K. Nanda, Hiroaki Tsubota, S. Kerhoas, L. Todor, A. Leone, A. Saha, E. Voutier, K. Soldi, A. Serdarevic, Sebastien Incerti, Y. Roblin, P. Vernin, and E. Cisbani
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Photon ,Chiral perturbation theory ,Proton ,010308 nuclear & particles physics ,Structure function ,Compton scattering ,01 natural sciences ,Nuclear physics ,Amplitude ,Dispersion relation ,0103 physical sciences ,Beta (velocity) ,010306 general physics - Abstract
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P{sub LL}-P{sub TT}/epsilon and P{sub LT}, and the electric and magnetic generalized polarizabilities (GPs) alpha{sub E}(Q{sup 2}) and beta{sub M}(Q{sup 2}) at values of the four-momentum transfer squared Q{sup 2} = 0.92 and 1.76 GeV{sup 2}. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q{sup 2}-range, and point to their non-trivial behavior.
- Published
- 2012
30. The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
- Author
-
T. Horn, G. A. Rutledge, R. M. Laszewski, A. Kolarkar, R. Hasty, F. Merchez, E. Liatard, K. Grimm, W. F. Vulcan, J. Yun, H. C. Fenker, R. Carr, R. Suleiman, D. McKee, J. Roche, R. Neveling, K. Johnston, M. Versteegen, Raphael Noel Tieulent, A. Coppens, R. Frascaria, S. A. Wood, T. Averett, P. Pillot, S. Kox, D. Marchand, D. S. Armstrong, K. A. Griffioen, G. R. Smith, C. Yan, G. Guillard, J. Lachniet, E. Voutier, K. W. McFarlane, G. Quéméner, J. Schaub, L. Lee, D. S. Dale, Michael Gericke, A. Hawthorne Allen, Fatiha Benmokhtar, V. Zeps, E. J. Beise, M. Muether, R. Clark, D. J. Mack, Michael Pitt, Jay Benesch, Jonathan W. Martin, W. T. H. van Oers, T. A. Porcelli, J. A. Secrest, W. D. Ramsay, A. A. Cowley, S. Niccolai, H. Guler, C. L. Capuano, S. L. Bailey, J. Arvieux, N. S. Chant, L. Bimbot, P. Kammel, C. Ellis, Bryan J. Moffit, R. Asaturyan, G. Batigne, D. T. Spayde, W. R. Falk, P. M. King, Douglas H Beck, A. Micherdzinska, Takeyasu Ito, John Musson, R. D. McKeown, S. A. Page, S. Wells, J. Kuhn, Y. C. Chao, K. Nakahara, B. Guillon, S. E. Williamson, J. Grames, L. Hannelius, M. Morlet, H. Breuer, J. Van de Wiele, S. K. Phillips, J. Hansknecht, J. S. Real, A. S. Biselli, R. J. Woo, S. Covrig, M. K. Jones, J. Lenoble, S. Ong, H. Mkrtchyan, M. Poelker, D. Gaskell, S.G. Stepanyan, T. A. Forest, C. A. Davis, A. Lung, J. M. Finn, M. Stutzman, S. F. Pate, T. Seva, E. Korkmaz, A. W. Rauf, V. Papavassiliou, P. Brindza, G. A. MacLachlan, V. Tadevosyan, J. Birchall, R. Kazimi, C. Furget, Juliette Mammei, Glen A. Warren, Neven Simicevic, P. G. Roos, D. Nilsson, G. B. Franklin, K. Gustafsson, Wolfgang Korsch, Darko Androić, M. Mihovilovic, Jin Liu, P. Bosted, R. D. Carlini, T. Ries, B. P. Quinn, Mines Nantes (Mines Nantes), Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and G0
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Electron ,Mott scattering ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,7. Clean energy ,Nuclear physics ,magnetic spectrometer ,liquid hydrogen target ,polarized electron beam ,parity-violation ,electron scattering ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Cherenkov radiation ,Elastic scattering ,Physics ,Spectrometer ,010308 nuclear & particles physics ,Scattering ,Instrumentation and Detectors (physics.ins-det) ,Small-angle neutron scattering ,Electron scattering - Abstract
In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed., Comment: Submitted to Nuclear Instruments and Methods
- Published
- 2011
31. New Measurement of the π0 radiative decay width
- Author
-
A. Kolarkar, M. Khandaker, A. V. Glamazdin, M. Gabrielyan, D. Kashy, R. A. Miskimen, G. Dzyubenko, I. Larin, M. A. Kubantsev, L. Jiang, T. E. Rodrigues, V. Vishnyakov, M. Payen, X. Li, A. Evdokimov, D. McNulty, G. Davidenko, W. A. Stephens, M. Konchatnyi, I. Nakagawa, S. Danagoulian, E. Pasyuk, J. He, S. Mtingwa, P. Ambrozewicz, L. Gan, A. Dolgolenko, J. Feng, S. Kowalski, P. Kingsberry, J. Underwood, R. C. Minehart, P. Collins, L. Benton, A. Deur, P. L. Cole, D. Lawrence, V. Gyurjyan, M. Wood, V. P. Kubarovsky, A. Ahmidouch, B. A. Mecking, Wolfgang Korsch, S. Gevorkyan, P. P. Martel, Aron M. Bernstein, Ashot Gasparian, V. Goryachev, M. M. Ito, V. V. Mochalov, A. Sitnikov, Y. Prok, Barry Ritchie, E. Clinton, D. S. Dale, V. Matveev, K. Baker, A. Teymurazyan, C. Salgado, S. Overby, Andrey Vasiliev, K. Hardy, Brian D. Milbrath, Rolf Ent, R.S. Pedroni, R. Demirchyan, A. Korchin, A. Shahinyan, A. Asratyan, S. Zhou, Volker D. Burkert, S. Stepanyan, and D. I. Sober
- Subjects
Physics ,Meson ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Carbon-12 ,General Physics and Astronomy ,Particle Data Group ,Elementary particle ,01 natural sciences ,7. Clean energy ,Massless particle ,Nuclear physics ,Particle decay ,Pion ,0103 physical sciences ,High Energy Physics::Experiment ,Atomic physics ,010306 general physics ,Nuclear Experiment - Abstract
High precision measurements of the differential cross sections for $\pi^0$ photoproduction at forward angles for two nuclei, $^{12}$C and $^{208}$Pb, have been performed for incident photon energies of 4.9 - 5.5 GeV to extract the ${\pi^0 \to \gamma\gamma}$ decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The ${\pi^0 \to \gamma\gamma}$ decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is $\Gamma{(\pi^0 \to \gamma\gamma)} = 7.82 \pm 0.14 ~({\rm stat.}) \pm 0.17 ~({\rm syst.}) ~{\rm eV}$. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current PDG average of this fundamental quantity and it is consistent with current theoretical predictions., Comment: 4 pages, 5 figures
- Published
- 2010
32. Nuclear incoherent photoproduction ofπ0andηfrom 4 to 12 GeV
- Author
-
D. S. Dale, P. L. Cole, T. E. Rodrigues, J. D. T. Arruda-Neto, J. Mesa, K. Shtejer, Carmen García, and I. Nakagawa
- Subjects
Physics ,Nuclear and High Energy Physics ,Meson ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Hadron ,Gamma ray ,Particle Data Group ,Elementary particle ,Nuclear physics ,Pion ,High Energy Physics::Experiment ,Atomic physics ,Nuclear Experiment ,Energy (signal processing) ,Radioactive decay - Abstract
The mechanism of incoherent {pi}{sup 0} and {eta} photoproduction from complex nuclei is investigated from 4 to 12 GeV with an extended version of the multicollisional Monte Carlo (MCMC) intranuclear cascade model. The calculations take into account the elementary photoproduction amplitudes via a Regge model and the nuclear effects of photon shadowing, Pauli blocking, and meson-nucleus final-state interactions. The results for {pi}{sup 0} photoproduction reproduced for the first time the magnitude and energy dependence of the measured rations {sigma}{sub {gamma}A}/{sigma}{sub {gamma}N} for several nuclei (Be, C, Al, Cu, Ag, and Pb) from a Cornell experiment. The results for {eta} photoproduction fitted the inelastic background in Cornell's yields remarkably well, which is clearly not isotropic as previously considered in Cornell's analysis. With this constraint for the background, the {eta}{yields}{gamma}{gamma} decay width was extracted using the Primakoff method, combining Be and Cu data [{Gamma}{sub {eta}{yields}{gamma}{gamma}=}0.476(62) keV] and using Be data only [{Gamma}{sub {eta}{yields}{gamma}{gamma}=}0.512(90) keV]; where the errors are only statistical. These results are in sharp contrast ({approx}50-60%) with the value reported by the Cornell group [{Gamma}{sub {eta}{yields}{gamma}{gamma}=}0.324(46) keV] and in line with the Particle Data Group average of 0.510(26) keV.
- Published
- 2010
33. Photofission of Actinides with Linearly Polarized Photons
- Author
-
D. S. Dale, R. Bodily, P. L. Cole, A. Conn, T. A. Forest, K. Kelley, O. Kosinov, S. Setiniyaz, R. Shapovlov, V. Starovoitova, J. Swanson, Ricardo Alarcon, Phil Cole, Andres J. Kreiner, and Hugo F. Arellano
- Subjects
Physics ,Nuclear reaction ,Nuclear physics ,Photon ,Fission ,Photodisintegration ,Nuclear Theory ,Photofission ,Bremsstrahlung ,Physics::Accelerator Physics ,Neutron source ,Neutron ,Nuclear Experiment - Abstract
Idaho State University and the Idaho Accelerator Center are developing a polarized photon facility in the 10 MeV region using the off axis bremsstrahlung technique. Initial tests have been performed with the aim of using the high analyzing power of the photodisintegration of the deuteron to measure the beam polarization. A program is currently underway to measure the potential angular asymmetries of neutrons arising from the angular distribution of the fission fragments from photofission with linearly polarized photons. In this paper, we describe the Idaho State University Polarized Photon Facility, present results of commissioning runs, and describe potential application of polarized photofission in detecting actinides for homeland security and safeguards applications.
- Published
- 2010
34. IsovectorE2 resonance inPb208
- Author
-
D. S. Dale, R. M. Laszewski, and Ricardo Alarcon
- Subjects
Physics ,Relaxometry ,Electron nuclear double resonance ,Nuclear magnetic resonance ,Spin echo ,General Physics and Astronomy ,Resonance - Published
- 1992
35. Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region
- Author
-
R. J. Feuerbach, J. P. Cummings, L. C. Smith, E. Munevar, R. De Masi, D. Keller, M. Kossov, B. S. Ishkhanov, I. Popa, K. S. Egiyan, G. Ricco, K. Mikhailov, L. Cheng, M. Khandaker, M. Garçon, J. Shaw, Michael Wood, P. Nadel-Turonski, Nikolay Shvedunov, M. R. Niroula, K. Hafidi, R. Nasseripour, S. McAleer, Friedrich Klein, B. P. Quinn, Brian Raue, V. S. Serov, L. Casey, F. X. Girod, Susan Taylor, Marco A. Huertas, M. Lowry, V. Sapunenko, D. P. Watts, L. C. Dennis, B. E. Bonner, Hartmuth Arenhövel, Dinko Pocanic, H. Egiyan, R. G. Fersch, H. Avakian, D. Doughty, B. B. Niczyporuk, G. S. Adams, S. Park, D. Sharov, N. Kalantarians, P. L. Cole, Sylvain Bouchigny, Sabine Jeschonnek, R. C. Minehart, Kei Moriya, D. Heddle, P. Rossi, J. Lachniet, H. G. Juengst, C. A. Meyer, N. Pivnyuk, K. Joo, W. J. Briscoe, B. L. Berman, A. Tkabladze, G. V. Fedotov, E. Pasyuk, D. Rowntree, A. Coleman, L. M. Qin, M. Y. Gabrielyan, S. E. Kuhn, S. A. Dytman, V. Crede, Y. Ilieva, J. R. Calarco, T. Mineeva, J. W. Price, M. J. Amaryan, C. Paterson, S. Strauch, M. MacCormick, A.V. Stavinsky, M. Klusman, I. Hleiqawi, V. P. Kubarovsky, K. P. Adhikari, S. L. Careccia, A. Empl, L. El Fassi, O. Pogorelko, B. Moreno, D. P. Weygand, J. Salamanca, R. Suleiman, M. E. McCracken, Elton Smith, K. L. Giovanetti, B. Asavapibhop, G. V. O'Rielly, Tsutomu Mibe, Larry Weinstein, Z. W. Zhao, J. W C McNabb, D. J. Tedeschi, D. Protopopescu, D. G. Jenkins, Barry Ritchie, M. Anghinolfi, James Mueller, S. Malace, S. A. Morrow, P. Rubin, I. Bedlinskiy, G. S. Mutchler, Konstantin Stopani, S. Pozdniakov, V. Gyurjyan, M. M. Ito, C. Djalali, Y. G. Sharabian, G. Rosner, T. Kageya, K. Livingston, D. S. Dale, X. Wei, R. Dickson, V. Kuznetsov, C. E. Hyde-Wright, H. Denizli, N. Guler, N. A. Baltzell, P. Mattione, K. A. Griffioen, M. S. Saini, A. V. Skabelin, P. Dragovitsch, J. Zhang, S. Barrow, E. De Sanctis, S. Niccolai, J. T. Goetz, E. Polli, H. Bagdasaryan, R. A. Miskimen, J. D. Kellie, B. McKinnon, Sergey Kuleshov, M. Bektasoglu, J. Hardie, M. Nozar, W. Kim, Laird Kramer, G. Niculescu, D. I. Sober, D. Branford, M. Guidal, R. A. Schumacher, H. Hakobyan, M. Mirazita, P. Khetarpal, C. Hanretty, J. M. Laget, M. Holtrop, Victor Mokeev, L. Graham, J. R. Johnstone, N. Gevorgyan, L. Guo, M. Ungaro, M. Osipenko, F. Sabatié, A. Daniel, K. Beard, Kalvir S. Dhuga, S. Bültmann, A. I. Ostrovidov, J. Yun, D. Cords, V. Batourine, T. A. Forest, A. Yegneswaran, A. C S Lima, A. Sandorfi, K. Park, R. Fatemi, S. Stepanyan, A. V. Vlassov, D. G. Ireland, Volker D. Burkert, A. S. Biselli, J. Pierce, Avraham Klein, B. Zhao, J. Langheinrich, R. De Vita, A. Fradi, S. S. Stepanyan, S. A. Philips, William Brooks, N. Markov, P. Konczykowski, B. E. Stokes, J. J. Manak, S. Anefalos Pereira, G. E. Dodge, H. Y. Lu, N. Dashyan, Maryam Moteabbed, P. V. Degtyarenko, K. V. Dharmawardane, I. Niculescu, D. Lawrence, D. Schott, F. W. Hersman, M. Battaglieri, N. Baillie, P. Stoler, K. Hicks, G. Asryan, O. P. Dzyubak, R. A. Niyazov, P. Corvisiero, R. Bradford, B. A. Mecking, K. Lukashin, E. Wolin, Gerard Gilfoyle, M. Guillo, D. Sokhan, W. Gohn, N. Hassall, M. Bellis, E. Golovatch, J. P. Ball, J. Hu, Y. Prok, D. S. Carman, S. Dhamija, M. D. Mestayer, L. Elouadrhiri, I. I. Strakovsky, E. L. Isupov, R. W. Gothe, G. Gavalian, S. Tkachenko, A. Deur, Michael L. Williams, J. Kuhn, N. Benmouna, J. P. Santoro, Andrei Afanasev, M. Ripani, D. G. Crabb, K. Y. Kim, Roy Thompson, Cynthia Marie Hadjidakis, S. Boiarinov, Michael Dugger, B. M. Preedom, Douglas Higinbotham, M. Yurov, Lorenzo Zana, H. S. Jo, C. Bookwalter, C. Salgado, Kwangsoo Kim, G. Riccardi, P. Eugenio, A. Starostin, M. Taiuti, Michael Vineyard, and P. Collins
- Subjects
Physics ,010308 nuclear & particles physics ,Scattering ,Nuclear Theory ,General Physics and Astronomy ,Scintillator ,7. Clean energy ,01 natural sciences ,Nuclear physics ,Dipole ,Deuterium ,0103 physical sciences ,Magnetic form factor ,Neutron detection ,High Energy Physics::Experiment ,Neutron ,Nuclear Experiment ,010306 general physics ,Electron scattering - Abstract
The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.
- Published
- 2009
36. Measurement of Directf0(980)Photoproduction on the Proton
- Author
-
S. Park, Sylvain Bouchigny, V. Crede, J. R. Calarco, E. Wolin, C. E. Hyde, R. A. Schumacher, V. Sapunenko, Dinko Pocanic, P. Nadel-Turonski, L. Casey, V. Mokeev, D. Lawrence, J. P. Cummings, H. G. Juengst, B. E. Stokes, Cynthia Marie Hadjidakis, J. P. Ball, D. S. Carman, A. Fradi, A. V. Vlassov, P. Konczykowski, M. J. Amaryan, S. Dhamija, Michael Dugger, K. Livingston, D. S. Dale, T. Lee, Maryam Moteabbed, M. Kossov, S. E. Kuhn, L. Graham, Ashot Gasparian, B. B. Niczyporuk, C. I O Gordon, M. MacCormick, R. W. Gothe, Z. W. Zhao, R. Dickson, N. Gevorgyan, T. Kageya, H. Avakian, I. Hleiqawi, K. V. Dharmawardane, A.V. Stavinsky, J. Donnelly, G. Asryan, N. Pivnyuk, D. G. Crabb, J. Kuhn, M. E. McCracken, R. De Vita, S. Strauch, E. Clinton, S. Bültmann, S. L. Careccia, D. G. Jenkins, O. P. Dzyubak, D. P. Watts, H. Egiyan, Gerard Gilfoyle, G. Ricco, Lorenzo Zana, J. P. Santoro, C. Tur, L. Gan, Tsutomu Mibe, W. Gohn, T. A. Forest, D. J. Tedeschi, N. Markov, D. Sokhan, D. Sharov, W. Kim, S. Anefalos Pereira, S. Stepanyan, G. Niculescu, M. Yurov, J. Goett, R. A. Miskimen, I. Bedlinskiy, B. McKinnon, M. Y. Gabrielyan, J. Pierce, K. L. Giovanetti, F. X. Girod, Sergey Kuleshov, Avraham Klein, Shifeng Chen, N. Guler, E. Golovatch, Friedrich Klein, Larry Weinstein, N. A. Baltzell, G. E. Dodge, P. Khetarpal, K. A. Stopani, Brian Raue, D. Keller, H. Y. Lu, M. Nozar, D. Branford, J. Salamanca, H. S. Jo, C. Bookwalter, E. De Sanctis, L. Lesniak, G. Riccardi, J. M. Laget, V. V. Mochalov, P. Mattione, K. A. Griffioen, M. Aghasyan, X. Wei, V. Kuznetsov, M. S. Saini, P. V. Degtyarenko, A. I. Ostrovidov, D. I. Sober, A. Sandorfi, K. Park, P. Eugenio, Adam P. Szczepaniak, V. Batourine, C. Hanretty, A. Starostin, M. Guidal, N. Dashyan, M. Taiuti, W. J. Briscoe, E. Pasyuk, H. Hakobyan, S. A. Morrow, G. Rosner, J. T. Goetz, M. Mirazita, C. Djalali, Paolo Rossi, M. Khandaker, L. Bibrzycki, I. Niculescu, J. Lachniet, A. Tkabladze, Y. Ilieva, J. W. Price, M. Holtrop, R. A. Niyazov, Elton Smith, D. G. Ireland, A. Daniel, A. Teymurazyan, I. I. Strakovsky, G. Gavalian, N. Hassall, M. Bellis, P. Ambrozewicz, P. Collins, B. Zhao, R. De Masi, S. Tkachenko, D. Schott, M. Ripani, D. Doughty, P. Stoler, J. J. Melone, S. Niccolai, Z. Krahn, Volker D. Burkert, A. S. Biselli, M. Anghinolfi, C. Salgado, N. Benmouna, J. Langheinrich, S. S. Stepanyan, D. Heddle, J. D. Kellie, A. Deur, N. Baillie, T. Mineeva, S. Malace, Mark W. Paris, J. R. Johnstone, Hall Crannell, M. Osipenko, V. P. Kubarovsky, Y. G. Sharabian, Laird Kramer, L. Cheng, W. K. Brooks, J. Hardie, F. W. Hersman, R. S. Hakobyan, L. Guo, M. Ungaro, B. Moreno, O. Pogorelko, G. S. Mutchler, K. Hicks, Nikolay Shvedunov, D. Protopopescu, B. L. Berman, K. S. Egiyan, L. El Fassi, S. Pozdniakov, M. Garçon, Michael Wood, K. Mikhailov, K. Hafidi, V. S. Serov, M. Battaglieri, N. Kalantarians, R. Bradford, B. A. Mecking, R. Nasseripour, K. Joo, A. Yegneswaran, Michael Vineyard, V. Gyurjyan, J. Zhang, H. Bagdasaryan, L. Todor, R. G. Fersch, C. Paterson, Ji Li, P. L. Cole, M. D. Mestayer, E. L. Isupov, Michael L. Williams, M. M. Ito, S. Boiarinov, F. Sabatié, L. C. Smith, E. Munevar, B. S. Ishkhanov, M. R. Niroula, M. Lowry, Latifa Elouadrhiri, R. C. Minehart, Kei Moriya, C. A. Meyer, G. V. Fedotov, K. P. Adhikari, D. P. Weygand, O. Glamazdin, Alexei V. Klimenko, Y. Prok, Barry Ritchie, and I. Nakagawa
- Subjects
Physics ,Particle physics ,Proton ,Meson ,010308 nuclear & particles physics ,Partial wave analysis ,Hadron ,General Physics and Astronomy ,Resonance ,01 natural sciences ,7. Clean energy ,Nuclear physics ,Particle decay ,Pion ,0103 physical sciences ,010306 general physics ,Nucleon - Abstract
We report on the results of the first measurement of exclusive f{sub 0}(980) meson photoproduction on protons for E{sub {gamma}}=3.0-3.8 GeV and -t=0.4-1.0 GeV{sup 2}. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the {pi}{sup +}{pi}{sup -} channel by performing a partial wave analysis of the reaction {gamma}p{yields}p{pi}{sup +}{pi}{sup -}. Clear evidence of the f{sub 0}(980) meson was found in the interference between P and S waves at M{sub {pi}{sup +}}{sub {pi}{sup -}}{approx}1 GeV. The S-wave differential cross section integrated in the mass range of the f{sub 0}(980) was found to be a factor of about 50 smaller than the cross section for the {rho} meson. This is the first time the f{sub 0}(980) meson has been measured in a photoproduction experiment.
- Published
- 2009
37. Photoproduction of pi+pi- meson pairs on the proton
- Author
-
A. V. Vlassov, M. J. Amaryan, S. L. Careccia, E. Golovatch, W. Kim, R. De Vita, K. L. Giovanetti, D. Protopopescu, Martin K. Mayer, Larry Weinstein, D. P. Watts, H. Egiyan, S. Pozdniakov, M. Garçon, P. Khetarpal, Lorenzo Zana, G. E. Dodge, H. Y. Lu, Adam P. Szczepaniak, A. D'Angelo, I. Niculescu, C. S. Nepali, J. T. Goetz, K. Livingston, D. S. Dale, H. Hakobyan, L. Gan, M. Battaglieri, E. De Sanctis, Saini, Diane Schott, A. Deur, C. Hanretty, I. Nakagawa, A. I. Ostrovidov, B. Zhao, S. Fegan, D. I. Sober, K. Park, M. Y. Gabrielyan, L. Bibrzycki, A.V. Stavinsky, M. Khandaker, C. Bookwalter, D. G. Ireland, K. Moriya, P. Stoler, D. J. Tedeschi, Volker D. Burkert, A. S. Biselli, E. Wolin, Sergey Kuleshov, M. Osipenko, K. A. Griffioen, D. Doughty, Y. Prok, Gerard Gilfoyle, D. S. Carman, P. Eugenio, M. Taiuti, O. Glamazdin, K. Hicks, I. Bedlinskiy, A. Fradi, A. Gasparian, M. Kossov, Andreas Klein, D. Sokhan, N. Dashyan, J. Goett, B. McKinnon, Mokeev, M. Guidal, Barry Ritchie, Yordanka Ilieva, N. Hassall, M. Bellis, S. Park, K. Mikhailov, W. Gohn, S. Dhamija, D. Branford, S. Pisano, P. Collins, M. Mirazita, A. Teymurazyan, H. Baghdasaryan, R. W. Gothe, Leonard Lesniak, F. Sabatié, P. Rossi, J. M. Laget, Niroula, M. Holtrop, A. Daniel, E. L. Isupov, Crede, SA Pereira, Michael L. Williams, C. A. Meyer, G. V. Fedotov, S. Niccolai, S. Tkachenko, Mark W. Paris, M. Ripani, Carlos A. Salgado, Mochalov, M. Anghinolfi, K. P. Adhikari, Kuznetsov, D. P. Weygand, N. Pivnyuk, Michael Vineyard, C. Djalali, Drozdov, H. Seraydaryan, Y. G. Sharabian, P. L. Cole, Z. W. Zhao, M. E. McCracken, P. Nadel-Turonski, L. Guo, M. Ungaro, K. Joo, S. S. Stepanyan, C. E. Hyde, G. Rosner, J. Zhang, J. W. Price, R. A. Schumacher, G. Ricco, S. Stepanyan, W. J. Briscoe, E. Pasyuk, Brian Raue, Frank Klein, E. Munevar, Dustin Keller, A. Kubarovsky, Johnstone, Strakovsky, E. Clinton, Michael Wood, K. Hafidi, T. Mineeva, O. Pogorelko, Kubarovsky, F. X. Girod, S. Strauch, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), CLAS, and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
PI-PI-DYNAMICS, COUPLED-CHANNEL, DIFFRACTION DISSOCIATION, POLARIZED PHOTONS, HIGH-STATISTICS, GEV-C, SYSTEM, MODEL, CLAS, CHAMBER ,Nuclear and High Energy Physics ,Particle physics ,Meson ,Proton ,PI-PI-DYNAMICS ,Photon energy ,01 natural sciences ,7. Clean energy ,POLARIZED PHOTONS ,High Energy Physics - Experiment ,Settore FIS/04 - Fisica Nucleare e Subnucleare ,Nuclear physics ,Particle decay ,Pion ,CLAS ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Nuclear Experiment ,Physics ,Luminosity (scattering theory) ,010308 nuclear & particles physics ,DIFFRACTION DISSOCIATION ,Momentum transfer ,COUPLED-CHANNEL ,HIGH-STATISTICS ,GEV-C ,SYSTEM ,MODEL ,CHAMBER ,Production (computer science) ,High Energy Physics::Experiment - Abstract
The exclusive reaction $$\gamma p \to p \pi^+ \pi^-$$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4
- Published
- 2009
38. Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles
- Author
-
Seigo Kato, H. Ueno, K. Wijesooriya, R. Di Salvo, L. C. Alexa, G. W. Miller, H. Voskanyan, C. Jutier, J. Jardillier, E. Voutier, J. A. Templon, G. Rutledge, B. Frois, D. G. Zainea, C. C. Chang, E. Chudakov, David L. Prout, G. Laveissière, T. Terasawa, Vincent Breton, Mauro Iodice, Bogdan Wojtsekhowski, K. S. Kumar, Latifa Elouadrhiri, J. O. Hansen, A. Gasparian, K. Arundell, Pavel Sorokin, Sebastien Incerti, Larry Weinstein, P. Grenier, R. W. Lourie, W. Kahl, J. Berthot, G. Audit, L. B. Auerbach, T. Pussieux, G. Fournier, William Bertozzi, A. Deur, P. Vernin, Pierre A.M. Guichon, Ronald Ransome, Kazushige Maeda, K. Kino, N. Degrande, Pete Markowitz, D. Rowntree, Z. Papandreou, R. L.J. van der Meer, A. T. Katramatou, T. Saito, Richard Madey, Paul Souder, P. M. Rutt, S. K. Nanda, Roberto Perrino, R. De Leo, D. S. Dale, S. Mehrabyan, S. Kerhoas, J. M. Finn, W. U. Boeglin, D. J. Margaziotis, R. I. Pomatsalyuk, A. Ketikyan, L. Todor, A. Leone, M. Baylac, S. Jaminion, Nilanga Liyanage, S. Malov, E. Burtin, M. Holtrop, Thomas E. Smith, Richard Wilson, G. E. Dodge, R. Holmes, J. Marroncle, D. Marchand, E. Tomasi-Gustaffson, S. Platchkov, J. S. Real, J. Martino, Raphael Noel Tieulent, G.I. Smirnov, J. P. Chen, R. Van de Vyver, G. M. Urciuoli, Branislav Vlahovic, R. A. Lindgren, J. J. LeRose, C. R. Howell, Justin I. McIntyre, J. R. Calarco, L. Tiator, L. Bimbot, Arijit Saha, K. Soldi, O. Ravel, Hiroaki Tsubota, A. Serdarevic, C. E. Hyde, Y. Roblin, J. Y. Mougey, G. M. Huber, F. Garibaldi, E. Cisbani, J. Gomez, V. Gorbenko, J. W. Watson, F. Renard, L. Cardman, B. D. Anderson, G. J. Lolos, M. B. Epstein, F. T. Baker, F. Merchez, P. Y. Bertin, Haiyan Gao, M. Liang, G. Quéméner, D. Neyret, N. d'Hose, S. Frullani, Charles Glashausser, M. Khayat, H. Breuer, D. M. Manley, J. Gao, L. Van Hoorebeke, G. G. Petratos, Z. E. Meziani, V. A. Punjabi, L. A. Ewell, Ronald Gilman, K. McCormick, H. Fonvieille, Z. L. Zhou, A. V. Glamazdin, S. Kox, Jing Zhao, C. F. Perdrisat, R. Michaels, C. Marchand, M. K. Jones, C. Furget, P. E. Ulmer, Kevin Fissum, M. Kuss, James J. Kelly, E. J. Brash, Laird Kramer, Shalev Gilad, C. W. de Jager, K. A. Aniol, E. A.J.M. Offermann, C. Cavata, S.S. Kamalov, G. J. Kumbartzki, A. J. Sarty, W. M. Zhang, R. Suleiman, J. Domingo, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), HALL A, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Elastic scattering ,Physics ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Scattering ,Compton scattering ,Resonance ,FOS: Physical sciences ,Inelastic scattering ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Deep inelastic scattering ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Pion ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nucleon ,Nuclear Experiment - Abstract
We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,e'p)\gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,e'p)\gamma$ to H$(e,e'p)\pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest $W$ (1.8-1.9 GeV) show a striking $Q^2$- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level., Comment: 20 pages, 8 figures. To appear in Phys.Rev.C
- Published
- 2009
39. Statistical and nonstatistical neutron decay of the giant electric dipole resonance ofPb208
- Author
-
L.J. Morford, D. S. Dale, P. L. Cole, Ricardo Alarcon, and P. T. Debevec
- Subjects
Nuclear reaction ,Physics ,Nuclear and High Energy Physics ,Dipole ,Isotope ,Stable isotope ratio ,Computer Science::Information Retrieval ,Giant resonance ,Neutron ,Atomic physics ,Photon energy ,Spectral line - Abstract
The neutron decay of the giant electric dipole resonance of {sup 208}Pb has been determined by a measurement of the differential cross section, {ital d}{sigma}({ital E}{sub {gamma}},{ital E}{sub {ital n}})/{ital dE}{sub {ital n}} of the {sup 208}Pb({gamma},{ital n}) reaction for 20 contiguous photon energy bands between 11.2 and 15.7 MeV. The statistical component of the decay was calculated in the Hauser-Feshbach formalism. A nonstatistical component of the decay to low-lying hole states is unambiguously identified. The magnitude of this component is strongly energy dependent.
- Published
- 1991
40. Nuclear Targets for a Precision Measurement of the Neutral Pion Radiative Width
- Author
-
A. Kolarkar, V. Gyurjyan, D. Lawrence, S. Overby, P. L. Cole, M. Wood, R.S. Pedroni, I. Nakagawa, D. S. Dale, V. Matveev, O. Glamazdin, A. Sitnikov, Brian D. Milbrath, V. Goryachev, E. Clinton, K. Baker, A. Deur, A. Evdokimov, Sekazi K. Mtingwa, K. Hardy, G. Dzyubenko, I. Larin, Y. Prok, Barry Ritchie, Aron M. Bernstein, M. A. Kubantsev, P. P. Martel, P. Collins, L. Gan, W. A. Stephens, A. Teymurazyan, M. Khandaker, S. Danagoulian, G. Davidenko, J. Feng, D. McNulty, M. Gabrielyan, Ashot Gasparian, A. Dolgolenko, P. Ambrozewicz, J. Underwood, R. C. Minehart, S. Kowalski, M. Konchatnyi, Wolfgang Korsch, L. Benton, R. S. McWilliams, V. Vishnyakov, M. Payen, D. I. Sober, M. M. Ito, R. Demirchyan, C. Salgado, A. Asratyan, V. V. Mochalov, A. Ahmidouch, Andrey Vasiliev, O. Korchin, R. A. Miskimen, V. Verebryusov, E. Pasyuk, P. Kingsberry, and V. P. Kubarovsky
- Subjects
Physics ,Nuclear and High Energy Physics ,Meson ,Attenuation ,FOS: Physical sciences ,Particle accelerator ,Radiation length ,Linear particle accelerator ,law.invention ,Nuclear physics ,Pion ,law ,Radiative transfer ,Area density ,Nuclear Experiment (nucl-ex) ,Instrumentation ,Nuclear Experiment - Abstract
A technique is presented for precision measurements of the area densities, ρT , of approximately 5% radiation length carbon and 208 Pb targets used in an experiment at Jefferson Laboratory to measure the neutral pion radiative width. The precision obtained in the area density for the carbon target is ±0.050%, and that obtained for the lead target through an X-ray attenuation technique is ±0.43%.
- Published
- 2008
41. Electroexcitation of the Roper resonance for1.7<Q2<4.5GeV2ine→p→enπ+
- Author
-
B. Zhao, F. W. Hersman, Marco Ripani, S. Dhamija, R. W. Gothe, K. Y. Kim, J. Kuhn, J. P. Santoro, E. De Sanctis, Latifa Elouadrhiri, B. M. Preedom, P. Eugenio, R. C. Minehart, Kei Moriya, D. I. Sober, M. Taiuti, G. Rosner, C. A. Meyer, M. Battaglieri, G. V. Fedotov, P. Collins, J. J. Melone, Lorenzo Zana, R. Bradford, K. Lukashin, J. Shaw, V. Batourine, D. P. Weygand, H. Hakobyan, Friedrich Klein, H. S. Jo, Michael Wood, K. Hafidi, Brian Raue, Gerald Feldman, Elton Smith, R. Fatemi, V. S. Serov, A. V. Vlassov, T. Lee, M. Anghinolfi, P. Coltharp, James Mueller, I. I. Strakovsky, N. A. Baltzell, R. De Vita, P. D. Rubin, A. Cazes, Maryam Moteabbed, C. Salgado, Bernhard Mecking, Y. G. Sharabian, A. Deur, K. A. Griffioen, K. S. Egiyan, K. V. Dharmawardane, Baile Zhang, Alexei V. Klimenko, S. Anefalos Pereira, Z. Krahn, W. K. Brooks, Shifeng Chen, J. D. Kellie, Y. Prok, N. Hassall, M. Bellis, J. Langheinrich, Barry Ritchie, N. Baillie, P. Mattione, M. S. Saini, L. C. Dennis, B. E. Bonner, S. S. Stepanyan, S. A. Philips, R. A. Miskimen, B. McKinnon, H. Avakian, J. T. Goetz, E. Polli, B. L. Berman, D. Sharov, M. Mirazita, D. Branford, K. Livingston, D. S. Dale, Ji Li, L. M. Qin, J. M. Laget, H. Denizli, N. Gevorgyan, C. Paterson, G. Gavalian, W. J. Briscoe, E. Pasyuk, S. Tkachenko, M. D. Mestayer, S. A. Dytman, J. Donnelly, G. Asryan, A. V. Skabelin, N. Benmouna, Gerard Gilfoyle, O. P. Dzyubak, R. A. Niyazov, E. L. Isupov, A. Fradi, D. Sokhan, M. Guillo, V. Crede, Michael L. Williams, W. Gohn, N. Markov, V. Sapunenko, Dinko Pocanic, J. R. Calarco, P. Corvisiero, E. Golovatch, S. Boiarinov, S. E. Kuhn, Charles Hyde, V. P. Kubarovsky, O. Pogorelko, C. Tur, M. J. Amaryan, M. MacCormick, I. Hleiqawi, R. Nasseripour, S. L. Careccia, S. McAleer, F. X. Girod, Laird Kramer, B. E. Stokes, G. S. Adams, J. P. Cummings, Cynthia Marie Hadjidakis, G. E. Dodge, H. Y. Lu, K. L. Giovanetti, L. Blaszczyk, P. V. Degtyarenko, M. Kossov, V. Gyurjyan, K. Joo, I. Popa, Sergey Kuleshov, M. Bektasoglu, Michael Dugger, D. Heddle, M. Nozar, P. Stoler, I. Niculescu, D. Lawrence, J. Zhang, R. De Masi, D. Schott, S. A. Morrow, C. Djalali, R. A. Schumacher, M. Guidal, Larry Weinstein, K. Hicks, M. Holtrop, L. Graham, H. Bagdasaryan, C. I O Gordon, P. Ambrozewicz, S. Bültmann, L. Morand, T. A. Forest, S. Stepanyan, J. Pierce, Avraham Klein, K. Mikhailov, L. Cheng, Nikolay Shvedunov, A. I. Ostrovidov, L. Casey, A. C S Lima, K. Park, N. Kalantarians, B. B. Niczyporuk, D. G. Ireland, Michael Vineyard, N. Pivnyuk, Giovanni Ricco, Atilla Gonenc, E. Wolin, Volker D. Burkert, A. S. Biselli, J. P. Ball, D. S. Carman, D. G. Crabb, J. Salamanca, J. W C McNabb, M. Yurov, J. W. Price, S. Mehrabyan, C. Bookwalter, G. Riccardi, H. Funsten, P. Nadel-Turonski, C. Butuceanu, Tsutomu Mibe, N. Dashyan, K. Hafnaoui, C. Hanretty, G. V. O'Rielly, J. R. Johnstone, Z. W. Zhao, D. Keller, Paolo Rossi, D. G. Jenkins, J. Lachniet, A. Tkabladze, S. Park, Sylvain Bouchigny, D. Rowntree, M. M. Ito, R. S. Hakobyan, L. El Fassi, M. Khandaker, H. G. Juengst, A.V. Stavinsky, D. J. Tedeschi, V. Mokeev, I. Bedlinskiy, L. C. Smith, E. Munevar, B. S. Ishkhanov, M. R. Niroula, V. Kuznetsov, S. Strauch, R. Suleiman, L. Guo, G. S. Mutchler, M. Ungaro, S. Niccolai, J. Hardie, D. Doughty, W. Kim, D. P. Watts, G. Niculescu, J. Yun, D. Cords, H. Egiyan, T. Takeuchi, A. Yegneswaran, M. Osipenko, F. Sabatié, Kalvir S. Dhuga, M. Y. Gabrielyan, R. Dickson, R. J. Feuerbach, N. Guler, Inna Aznauryan, P. L. Cole, S. Barrow, L. Todor, D. Protopopescu, S. Pozdniakov, M. Garçon, Y. Ilieva, and B. Moreno
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Roper resonance ,Meson production ,010308 nuclear & particles physics ,State (functional analysis) ,01 natural sciences ,Helicity ,Baryon ,0103 physical sciences ,Pi ,Isobar ,010306 general physics ,Ground state - Abstract
The helicity amplitudes of the electroexcitation of the Roper resonance are extracted for $1.7l{Q}^{2}l4.5\phantom{\rule{0.3em}{0ex}}{\mathrm{GeV}}^{2}$ from recent high precision JLab-CLAS cross section and longitudinally polarized beam asymmetry data for ${\ensuremath{\pi}}^{+}$ electroproduction on protons at $W=1.15\ensuremath{-}1.69$ GeV. The analysis is made using two approaches, dispersion relations and a unitary isobar model, which give consistent ${Q}^{2}$ behavior of the helicity amplitudes for the ${\ensuremath{\gamma}}^{*}p\ensuremath{\rightarrow}$N(1440)P${}_{11}$ transition. It is found that the transverse helicity amplitude ${A}_{1/2}$, which is large and negative at ${Q}^{2}=0$, becomes large and positive at ${Q}^{2}\ensuremath{\simeq}2\phantom{\rule{0.3em}{0ex}}{\mathrm{GeV}}^{2}$, and then drops slowly with ${Q}^{2}$. The longitudinal helicity amplitude ${S}_{1/2}$, which was previously found from CLAS $\stackrel{\ensuremath{\rightarrow}}{e}p\ensuremath{\rightarrow}\mathit{ep}{\ensuremath{\pi}}^{0},\mathit{en}{\ensuremath{\pi}}^{+}$ data to be large and positive at ${Q}^{2}=0.4,0.65\phantom{\rule{0.3em}{0ex}}{\mathrm{GeV}}^{2}$, drops with ${Q}^{2}$. Available model predictions for ${\ensuremath{\gamma}}^{*}p\ensuremath{\rightarrow}$N(1440)P${}_{11}$ allow us to conclude that these results provide strong evidence in favor of N(1440)P${}_{11}$ as a first radial excitation of the $3q$ ground state. The results of the present paper also confirm the conclusion of our previous analysis for ${Q}^{2}l1$ GeV${}^{2}$ that the presentation of N(1440)P${}_{11}$ as a q$^{3}\mathrm{G}$ hybrid state is ruled out.
- Published
- 2008
42. First measurement of target and double spin asymmetries fore→p→→epπ0in the nucleon resonance region above theΔ(1232)
- Author
-
F. X. Girod, L. Blaszczyk, Lorenzo Zana, N. Dashyan, H. Hakobyan, E. Munevar, B. Zhao, H. S. Jo, B. S. Ishkhanov, D. Keller, V. Crede, J. W. Price, William Brooks, C. Salgado, J. Kuhn, J. P. Santoro, E. Wolin, J. R. Calarco, J. P. Ball, Y. Prok, D. S. Carman, M. Yurov, G. Gavaliann, D. G. Crabb, J. Langheinrich, S. S. Stepanyan, C. Bookwalter, C. Butuceanu, Shifeng Chen, W. Kim, M. Khandaker, M. R. Niroula, H. Avakian, V. Gyurjyan, R. A. Schumacher, Barry Ritchie, S. A. Morrow, H. G. Juengst, M. Kossov, C. Djalali, D. Sharov, A. Fradi, S. Tkachenko, Maryam Moteabbed, L. Graham, F. Sabatié, P. Eugenio, J. Zhang, Bernhard Mecking, N. Benmouna, S. Dhamija, M. Ripani, I. I. Strakovsky, D. P. Watts, H. Bagdasaryan, A. Tkabladze, M. Taiuti, G. Niculescu, H. Egiyan, S. Bültmann, L. Todor, M. S. Saini, S. Strauch, M. D. Mestayer, A.V. Stavinsky, K. Mikhailov, Z. W. Zhao, T. A. Forest, R. W. Gothe, J. T. Goetz, M. J. Amaryan, G. Ricco, D. J. Tedeschi, E. L. Isupov, D. G. Jenkins, D. Protopopescu, S. Stepanyan, P. Collins, V. Sapunenko, M. MacCormick, I. Hleiqawi, A. Deur, Latifa Elouadrhiri, Michael L. Williams, N. Hassall, M. Bellis, J. Pierce, Kei Moriya, Avraham Klein, Michael Dugger, S. L. Careccia, I. Bedlinskiy, S. Park, C. A. Meyer, N. Markov, L. Casey, W. J. Briscoe, S. Pozdniakov, M. Garçon, G. S. Mutchler, G. V. Fedotov, C. Hanretty, S. Boiarinov, N. A. Baltzell, G. Rosner, B. L. Berman, S. E. Kuhn, E. Pasyuk, K. L. Giovanetti, P. Rossi, V. Kuznetsov, Friedrich Klein, G. E. Dodge, H. Y. Lu, B. B. Niczyporuk, Larry Weinstein, K. A. Griffioen, Brian Raue, E. De Sanctis, P. V. Degtyarenko, M. Battaglieri, Victor Mokeev, J. R. Johnstone, D. Doughty, N. Pivnyuk, L. Guo, P. Mattione, R. J. Feuerbach, L. Cheng, C. Paterson, M. Ungaro, Nikolay Shvedunov, L. El Fassi, I. Niculescu, R. A. Niyazov, D. P. Weygand, R. Bradford, D. Lawrence, Elton Smith, J. D. Kellie, J. Lachniet, D. I. Sober, R. De Masi, D. Schott, S. Niccolai, M. F. Vineyard, P. Stoler, R. Nasseripour, N. Kalantarians, J. Salamanca, K. Joo, Y. G. Sharabian, P. Coltharp, J. W C McNabb, A. V. Vlassov, W. Gohn, Z. Krahn, V. P. Kubarovsky, B. E. Stokes, R. G. Fersch, K. Hicks, A. Yegneswaran, M. M. Ito, O. Pogorelko, Y. Ilieva, N. Baillie, R. De Vita, B. McKinnon, P. L. Cole, D. Branford, S. Anefalos Pereira, G. Asryan, O. P. Dzyubak, M. Osipenko, M. Mirazita, J. M. Laget, N. Gevorgyan, P. Nadel-Turonski, Tsutomu Mibe, Michael Wood, K. Hafidi, P. Bosted, Gerard Gilfoyle, B. Moreno, D. Sokhan, V. S. Serov, K. Livingston, D. S. Dale, R. Dickson, A. I. Ostrovidov, K. Park, N. Guler, D. G. Ireland, Volker D. Burkert, A. S. Biselli, M. Guidal, M. Holtrop, C. E. Hyde-Wright, Sergey Kuleshov, and M. Nozar
- Subjects
Physics ,Nuclear and High Energy Physics ,Roper resonance ,Particle physics ,Proton ,010308 nuclear & particles physics ,media_common.quotation_subject ,Coupling (probability) ,01 natural sciences ,Resonance (particle physics) ,Asymmetry ,Nuclear physics ,0103 physical sciences ,Invariant mass ,010306 general physics ,Nucleon ,Spin (physics) ,media_common - Abstract
DOI: http://dx.doi.org/10.1103/PhysRevC.78.045204 The exclusive channel polarized proton(polarized e,e prime p)pi0 was studied in the first and second nucleon resonance regions in the Q2 range from 0.187 to 0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the pi0 and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A_{1/2} and S_{1/2} for the Roper resonance N(1400)P11, and the N(1535)S11 and N(1520)D13 states.
- Published
- 2008
43. Electroproduction ofϕ(1020)mesons at1.4⩽Q2⩽3.8GeV2measured with the CLAS spectrometer
- Author
-
M. Guidal, R. Nasseripour, M. Holtrop, I. I. Strakovsky, R. J. Feuerbach, G. V. O'Rielly, Cynthia Marie Hadjidakis, B. Zhao, Z. W. Zhao, D. G. Jenkins, Alexei V. Klimenko, R. De Masi, A. Deur, Michael Dugger, H. O. Funsten, Michael Wood, K. Hafidi, N. Dashyan, B. E. Stokes, G. S. Adams, Barry Ritchie, P. L. Cole, B. M. Preedom, V. S. Serov, C. E. Hyde-Wright, S. McAleer, J. Langheinrich, S. S. Stepanyan, S. A. Philips, L. Blaszczyk, G. Ricco, J. Ball, F. W. Hersman, Sergey Kuleshov, Lorenzo Zana, J. P. Santoro, M. Bektasoglu, M. Nozar, M. Garçon, Elton Smith, M. Battaglieri, J. Salamanca, J. Lachniet, A. Tkabladze, Latifa Elouadrhiri, P. Coltharp, H. Hakobyan, F. Sabatié, H. S. Jo, K. Livingston, D. S. Dale, J. W C McNabb, J. R. Ficenec, N. A. Baltzell, V. Kuznetsov, R. Bradford, R. C. Minehart, Kei Moriya, C. A. Meyer, J. W. Price, M. M. Ito, S. Strauch, V. Mokeev, C. Salgado, L. Cheng, B. L. Berman, L. M. Qin, D. P. Watts, H. Egiyan, K. A. Griffioen, J. P. Cummings, V. Gyurjyan, G. V. Fedotov, S. A. Morrow, M. Anghinolfi, E. De Sanctis, V. P. Kubarovsky, D. Keller, Nikolay Shvedunov, Friedrich Klein, R. Dickson, James Mueller, C. Paterson, D. I. Sober, O. Pogorelko, C. Djalali, E. Munevar, D. P. Weygand, L. C. Smith, M. Kossov, L. C. Dennis, J. Zhang, B. E. Bonner, H. Avakian, Ji Li, M. Guillo, Brian Raue, S. Niccolai, I. Popa, S. Dhamija, N. Hassall, M. Bellis, H. Bagdasaryan, F. X. Girod, B. S. Ishkhanov, S. Park, R. Fatemi, N. Kalantarians, W. Gohn, A. V. Vlassov, J. R. Johnstone, D. Sharov, M. D. Mestayer, Y. G. Sharabian, Sylvain Bouchigny, J. Hardie, H. G. Juengst, J. Kuhn, L. El Fassi, C. Marchand, G. Audit, E. Wolin, H. Denizli, E. L. Isupov, R. De Vita, J. D. Kellie, L. Morand, Michael L. Williams, P. Rossi, N. Guler, William Brooks, Christian Weiss, A.V. Stavinsky, M. R. Niroula, R. W. Gothe, S. Boiarinov, W. Kim, M. Mirazita, W. J. Briscoe, L. Casey, G. Gavalian, C. Hanretty, S. Tkachenko, S. Anefalos Pereira, G. Niculescu, P. Nadel-Turonski, N. Benmouna, J. P. Ball, Tsutomu Mibe, Y. Prok, D. S. Carman, A. V. Skabelin, A. Cazes, Maryam Moteabbed, Hall Crannell, Bernhard Mecking, D. J. Tedeschi, M. Ripani, E. Pasyuk, V. Crede, Shifeng Chen, G. Rosner, K. V. Dharmawardane, J. R. Calarco, S. A. Dytman, I. Bedlinskiy, B. B. Niczyporuk, L. Guo, M. Ungaro, N. Pivnyuk, D. G. Crabb, R. A. Schumacher, M. Khandaker, S. Barrow, P. Mattione, M. S. Saini, P. Eugenio, M. Taiuti, K. Joo, G. S. Mutchler, Michael Vineyard, D. Cords, L. Graham, C. I O Gordon, A. Yegneswaran, M. Yurov, J. T. Goetz, S. Mehrabyan, S. Bültmann, V. Sapunenko, P. Collins, Dinko Pocanic, J. J. Melone, M. Osipenko, S. Procureur, T. A. Forest, C. Bookwalter, G. Riccardi, S. Stepanyan, S. E. Kuhn, Kalvir S. Dhuga, C. Butuceanu, J. Pierce, Avraham Klein, C. Tur, G. E. Dodge, L. Todor, H. Y. Lu, P. V. Degtyarenko, M. J. Amaryan, D. Protopopescu, M. MacCormick, I. Hleiqawi, S. Pozdniakov, I. Niculescu, D. Lawrence, S. L. Careccia, D. Schott, K. L. Giovanetti, Larry Weinstein, D. Doughty, D. Heddle, Y. Ilieva, B. Moreno, R. A. Miskimen, B. McKinnon, D. Branford, J. M. Laget, N. Gevorgyan, A. I. Ostrovidov, K. Park, D. G. Ireland, Volker D. Burkert, A. S. Biselli, Z. Krahn, N. Baillie, Laird Kramer, Gerard Gilfoyle, D. Sokhan, A. Fradi, N. Markov, G. Asryan, O. P. Dzyubak, R. A. Niyazov, P. Corvisiero, K. S. Egiyan, K. Mikhailov, P. Stoler, and K. Hicks
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Meson ,010308 nuclear & particles physics ,Vector meson dominance ,01 natural sciences ,Helicity ,Gluon ,0103 physical sciences ,Exponent ,Vector meson ,010306 general physics ,Nucleon ,Exchange model - Abstract
Electroproduction of exclusive \ensuremath{\phi} vector mesons has been studied with the CLAS detector in the kinematic range $1.4\ensuremath{\leqslant}{Q}^{2}\ensuremath{\leqslant}3.8$ GeV${}^{2},0.0\ensuremath{\leqslant}{t}^{'}\ensuremath{\leqslant}3.6$ GeV${}^{2}$, and $2.0\ensuremath{\leqslant}W\ensuremath{\leqslant}3.0$ GeV. The scaling exponent for the total cross section as $1/({Q}^{2}+{M}_{\ensuremath{\phi}}^{2}){}^{n}$ was determined to be $n=2.49\ifmmode\pm\else\textpm\fi{}0.33$. The slope of the four-momentum transfer ${t}^{'}$ distribution is ${b}_{\ensuremath{\phi}}=0.98\ifmmode\pm\else\textpm\fi{}0.17$ GeV${}^{\ensuremath{-}2}$. Under the assumption of $s$-channel helicity conservation, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86\ifmmode\pm\else\textpm\fi{}0.24$. A two-gluon exchange model is able to reproduce the main features of the data.
- Published
- 2008
44. Measurements of theγ*p→Δreaction at lowQ2: Probing the mesonic contribution
- Author
-
Michael Seimetz, M. Potokar, P. Achenbach, L. Nungesser, Th. Walcher, Simon Širca, A. Karabarbounis, I. Nakagawa, M. Ding, C. Ayerbe Gayoso, Costas N. Papanicolas, Damir Bosnar, Tancredi Botto, U. Müller, J.M. Friedrich, J. Pochodzalla, A. Piegsa, Aron M. Bernstein, A. Christopoulou, S. Stave, Harald Merkel, Mihael Makek, M. O. Distler, D. Baumann, Jan C. Bernauer, Nikos Sparveris, D. S. Dale, Luca Doria, M. Weis, R. Neuhausen, R. Böhm, and S. Stiliaris
- Subjects
Physics ,Nuclear and High Energy Physics ,Angular momentum ,010308 nuclear & particles physics ,01 natural sciences ,7. Clean energy ,Nuclear physics ,Dipole ,Amplitude ,0103 physical sciences ,Quadrupole ,Effective field theory ,Atomic physics ,Nuclear Experiment ,010306 general physics ,Nucleon ,Magnetic dipole ,Microtron - Abstract
The determination of nonspherical angular momentum amplitudes in nucleons at long ranges (low Q{sup 2}) was accomplished through the p(e-vector,e{sup '}p){pi}{sup 0} reaction in the {delta} region at Q{sup 2}=0.060, 0.127, and 0.200 (GeV/c){sup 2} at the Mainz Microtron with an accuracy for the cross sections of 4%. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios have been obtained with an estimated model uncertainty that is approximately the same as the experimental uncertainty. Lattice and effective field theory predictions agree with our data within the relatively large estimated theoretical uncertainties. Phenomenological models are in good agreement with experiment when the resonant amplitudes are adjusted to the data. To check reaction model calculations additional data were taken for center-of-mass energies below resonance and for the {sigma}{sub LT{sup '}} structure function. These results confirm the dominance, and general Q{sup 2} variation, of the pionic contribution at large distances.
- Published
- 2008
45. Virtual Compton scattering measurements in theγ*N→Δtransition
- Author
-
L. Nungesser, Tancredi Botto, Jan C. Bernauer, D. Baumann, M. Ding, U. Müller, A. Piegsa, S. Stiliaris, Luca Doria, A. Christopoulou, A. Karabarbounis, S. Stave, Michael Seimetz, M. Potokar, Th. Walcher, I. Nakagawa, M. Weis, R. Böhm, Nikos Sparveris, P. Achenbach, J.M. Friedrich, D. S. Dale, Simon Širca, Mihael Makek, Barbara Pasquini, R. Neuhausen, J. Pochodzalla, C. Ayerbe Gayoso, M. O. Distler, Costas N. Papanicolas, Damir Bosnar, Aron M. Bernstein, and Harald Merkel
- Subjects
Physics ,Nuclear and High Energy Physics ,Meson production ,010308 nuclear & particles physics ,Scattering ,Compton scattering ,7. Clean energy ,01 natural sciences ,Crystallography ,Angular distribution ,Amplitude ,Dispersion relation ,0103 physical sciences ,Atomic physics ,010306 general physics ,Multipole expansion ,Magnetic dipole - Abstract
We report on new H(e,e{sup '}p){gamma} measurements in the {delta}(1232) resonance at Q{sup 2}=0.06 (GeV/c){sup 2} carried out simultaneously with H(e,e{sup '}p){pi}{sup 0}. It is the lowest Q{sup 2} for which the virtual Compton scattering (VCS) reaction has been studied in the first resonance region. The VCS measured cross sections are well described by dispersion-relation calculations in which the multipole amplitudes derived from H(e,e{sup '}p){pi}{sup 0} data are used as input, thus confirming the compatibility of the results. The derived resonant magnetic dipole amplitude M{sub 1+}{sup 3/2}=(40.60{+-}0.70{sub stat+sys})(10{sup -3}/m{sub {pi}{sup +}}) at W=1232 MeV is in excellent agreement with the value extracted from H(e,e{sup '}p){pi}{sup 0} measurements.
- Published
- 2008
46. η→γγ Decay width via the Primakoff cross section
- Author
-
D. S. Dale, T. E. Rodrigues, J. D. T. Arruda-Neto, Carmen García, P. L. Cole, K. Shtejer, J. Mesa, I. Nakagawa, Universidade de São Paulo (USP), FESP-São Paulo Engineering College, Universidade Estadual Paulista (UNESP), Center of Applied Studies for Nuclear Developments (CEADEN), Idaho State University, and RIKEN
- Subjects
Nuclear physics ,Physics ,Particle decay ,Photon ,Amplitude ,Scattering ,Monte Carlo method ,Coulomb ,General Physics and Astronomy ,High Energy Physics::Experiment ,Vector meson dominance ,Particle Data Group - Abstract
Made available in DSpace on 2022-04-28T20:42:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-07-03 Incoherent η photoproduction in nuclei is evaluated at forward angles within 4 to 9GeV using a multiple scattering MonteCarlo cascade calculation with full η-nucleus final-state interactions. The Primakoff, nuclear coherent and nuclear incoherent components of the cross sections fit remarkably well previous measurements for Be and Cu from Cornell, suggesting a destructive interference between the Coulomb and nuclear coherent amplitudes for Cu. The inelastic background of the data is consistently attributed to the nuclear incoherent part, which is clearly not isotropic as previously considered in Cornell's analysis. The respective Primakoff cross sections from Be and Cu give Γη→γγ=0.476(62)keV, where the quoted error is only statistical. This result is consistent with the Particle Data Group average of 0.510(26)keV and in sharp contrast (∼50%) with the value of 0.324(46)keV obtained at Cornell. © 2008 The American Physical Society. Physics Institute University of São Paulo, P. O. Box 66318, CEP 05315-970, São Paulo FESP-São Paulo Engineering College, São Paulo, 66318 Department of Physics and Biophysics UNESP, Botucatu, 66318 Center of Applied Studies for Nuclear Developments (CEADEN), Havana, 66318 Department of Physics Idaho State University, Pocatello, ID 83209 RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Department of Physics and Biophysics UNESP, Botucatu, 66318
- Published
- 2008
47. Polarized structure functionσLT'forH1(e→,e'K+)Λin the nucleon resonance region
- Author
-
L. C. Dennis, B. E. Bonner, S. McAleer, F. X. Girod, L. Blaszczyk, H. Avakian, D. Sharov, D. Lawrence, P. Stoler, K. Hicks, K. S. Egiyan, Laird Kramer, D. Doughty, L. C. Smith, E. Munevar, V. Mokeev, K. Mikhailov, Elton Smith, J. Langheinrich, S. S. Stepanyan, S. A. Philips, W. J. Briscoe, E. Pasyuk, B. S. Ishkhanov, D. P. Watts, S. A. Dytman, R. A. Schumacher, P. Eugenio, D. Heddle, H. Egiyan, J. W. Price, M. F. Vineyard, G. Asryan, O. P. Dzyubak, R. A. Niyazov, P. Nadel-Turonski, Tsutomu Mibe, H. G. Juengst, P. Corvisiero, E. Wolin, M. Taiuti, M. Anghinolfi, M. Kossov, James Mueller, E. De Sanctis, M. R. Niroula, J. P. Ball, M. Battaglieri, Y. Ilieva, P. D. Rubin, Y. G. Sharabian, A.V. Stavinsky, D. S. Carman, Patrick Girard, W. Kim, T. A. Forest, G. Niculescu, J. Lachniet, D. I. Sober, R. J. Feuerbach, Michael Wood, A. I. Ostrovidov, V. Sapunenko, L. Casey, Dinko Pocanic, R. Bradford, K. Lukashin, D. J. Tedeschi, K. Park, C. Hanretty, S. Stepanyan, K. Hafidi, D. G. Crabb, J. Pierce, V. S. Serov, S. E. Kuhn, Avraham Klein, E. Anciant, B. E. Stokes, B. B. Niczyporuk, I. Bedlinskiy, G. Ricco, D. G. Ireland, B. Moreno, G. E. Dodge, H. Y. Lu, P. V. Degtyarenko, N. Pivnyuk, Volker D. Burkert, A. S. Biselli, G. Audit, C. E. Hyde-Wright, R. Fatemi, A. V. Vlassov, R. De Vita, Z. W. Zhao, V. Kuznetsov, K. Joo, S. Procureur, Maryam Moteabbed, B. Zhao, D. G. Jenkins, Bernhard Mecking, Z. Krahn, Shifeng Chen, D. Sayre, S. Strauch, P. Collins, D. Protopopescu, I. Niculescu, M. Khandaker, S. Pozdniakov, Sylvain Bouchigny, J. J. Manak, P. Rossi, N. Baillie, S. Anefalos Pereira, A. Fradi, C. Cetina, A. Shafi, P. Dragovitsch, P. Mattione, Friedrich Klein, Kwangsoo Kim, R. A. Miskimen, B. McKinnon, V. P. Kubarovsky, G. Riccardi, J. Salamanca, Sergey Kuleshov, M. Osipenko, R. De Masi, Brian Raue, D. Branford, M. Mirazita, J. M. Laget, J. W C McNabb, S. A. Morrow, C. Djalali, G. S. Mutchler, M. Bektasoglu, S. Niccolai, F. Sabatié, N. Gevorgyan, C. Butuceanu, K. Beard, F. W. Hersman, N. A. Baltzell, J. T. Goetz, K. Livingston, D. S. Dale, N. Markov, O. Pogorelko, P. Coltharp, V. Crede, K. A. Griffioen, R. Dickson, J. Hardie, M. J. Amaryan, Kalvir S. Dhuga, P. Ambrozewicz, Gerard Gilfoyle, M. Nozar, D. Sokhan, M. MacCormick, M. Bellis, I. Hleiqawi, M. M. Ito, S. L. Careccia, J. Kuhn, R. W. Gothe, G. Gavalian, N. Guler, J. R. Calarco, G. A. Peterson, S. Simionatto, J. D. Kellie, S. Taylor, S. Tkachenko, K. Y. Kim, K. L. Giovanetti, B. Asavapibhop, J. P. Santoro, Roy Thompson, Larry Weinstein, S. Barrow, N. Benmouna, M. Ripani, M. Guidal, M. Guillo, L. Cheng, M. D. Mestayer, G. Rosner, R. Nasseripour, Nikolay Shvedunov, J. Hu, E. L. Isupov, L. Elouadrhiri, M. Holtrop, Michael L. Williams, S. Boiarinov, I. I. Strakovsky, B. M. Preedom, A. Deur, Lorenzo Zana, N. Kalantarians, H. Hakobyan, H. S. Jo, Gerald Feldman, Michael Dugger, W. K. Brooks, K. Wang, H. O. Funsten, C. Salgado, B. L. Berman, L. M. Qin, C. Paterson, Thierry Auger, M. Garçcon, J. R. Johnstone, V. Gyurjyan, J. Zhang, H. Bagdasaryan, L. Guo, M. Ungaro, A. Tkabladze, J. Yun, D. Cords, L. El Fassi, A. Yegneswaran, P. L. Cole, Y. Prok, Barry Ritchie, R. C. Minehart, Kei Moriya, C. A. Meyer, G. V. Fedotov, D. P. Weygand, A. V. Skabelin, and N. Dashyan
- Subjects
Physics ,Nuclear and High Energy Physics ,Angular range ,010308 nuclear & particles physics ,Hydrogen-1 ,Structure function ,Hyperon ,Sigma ,Resonance ,Lambda ,01 natural sciences ,0103 physical sciences ,Atomic physics ,Nuclear Experiment ,010306 general physics ,Nucleon - Abstract
The first measurements of the polarized structure function {sigma}{sub LT{sup '}} for the reaction {sup 1}H(e-vector,e{sup '}K{sup +}){lambda} in the nucleon resonance region are reported. Measurements are included from threshold up to W=2.05 GeV for central values of Q{sup 2} of 0.65 and 1.00 GeV{sup 2}, and nearly the entire kaon center-of-mass angular range. {sigma}{sub LT{sup '}} is the imaginary part of the longitudinal-transverse response and is expected to be sensitive to interferences between competing intermediate s-channel resonances, as well as resonant and nonresonant processes. The results for {sigma}{sub LT{sup '}} are comparable in magnitude to previously reported results from CLAS for {sigma}{sub LT}, the real part of the same response. An intriguing sign change in {sigma}{sub LT{sup '}} is observed in the high Q{sup 2} data at W{approx_equal}1.9 GeV. Comparisons to several existing model predictions are shown.
- Published
- 2008
48. Cross sections and beam asymmetries fore→p→enπ+in the nucleon resonance region for1.7⩽Q2⩽4.5GeV2
- Author
-
R. Fatemi, A. V. Vlassov, T. Lee, H. G. Juengst, A. Fradi, R. De Vita, A.V. Stavinsky, N. Markov, N. Hassall, B. Zhao, D. J. Tedeschi, S. Park, Sylvain Bouchigny, K. Hafnaoui, K. Livingston, D. S. Dale, G. Rosner, R. Nasseripour, I. Bedlinskiy, S. Anefalos Pereira, P. Rossi, E. Wolin, R. Dickson, Ji Li, J. P. Ball, Y. Prok, F. W. Hersman, V. Kuznetsov, J. P. Cummings, V. Sapunenko, Dinko Pocanic, C. Hanretty, N. Guler, S. McAleer, F. X. Girod, L. Blaszczyk, D. G. Ireland, V. Crede, S. E. Kuhn, M. Osipenko, F. Sabatié, J. Lachniet, H. Denizli, A. Tkabladze, J. R. Johnstone, M. Kossov, J. R. Calarco, D. G. Crabb, D. Rowntree, J. Donnelly, G. Asryan, O. P. Dzyubak, R. A. Niyazov, A. I. Ostrovidov, A. C S Lima, R. Suleiman, I. Popa, G. S. Mutchler, L. Guo, G. E. Dodge, H. Y. Lu, M. Ungaro, D. Doughty, M. D. Mestayer, S. Niccolai, E. De Sanctis, Volker D. Burkert, A. S. Biselli, E. L. Isupov, C. Tur, M. Guillo, D. Heddle, W. Gohn, M. Guidal, J. Hardie, Z. Krahn, J. Kuhn, P. L. Cole, S. Barrow, Elton Smith, Friedrich Klein, M. Yurov, Kalvir S. Dhuga, Michael L. Williams, P. V. Degtyarenko, N. Baillie, M. Anghinolfi, James Mueller, A. V. Skabelin, L. Todor, D. Protopopescu, S. Mehrabyan, D. I. Sober, S. Pozdniakov, M. Garçon, J. Yun, D. Cords, S. S. Stepanyan, S. Boiarinov, P. D. Rubin, Y. G. Sharabian, A. Yegneswaran, R. A. Miskimen, Brian Raue, B. McKinnon, Atilla Gonenc, R. C. Minehart, Kei Moriya, C. A. Meyer, J. W. Price, T. Takeuchi, M. Holtrop, I. Niculescu, C. Bookwalter, G. V. Fedotov, W. Kim, G. Niculescu, G. Gavalian, Laird Kramer, G. Riccardi, D. Lawrence, Baile Zhang, Shifeng Chen, S. Dhamija, J. Shaw, P. Corvisiero, S. Tkachenko, L. El Fassi, D. Branford, Michael Wood, R. De Masi, B. E. Stokes, K. Hafidi, C. Butuceanu, D. Keller, D. Schott, G. S. Adams, N. A. Baltzell, V. Gyurjyan, N. Benmouna, M. Ripani, K. Joo, N. Dashyan, P. Mattione, D. P. Weygand, M. S. Saini, M. Mirazita, J. M. Laget, V. S. Serov, R. W. Gothe, Y. Ilieva, N. Gevorgyan, Michael Vineyard, J. Zhang, P. Nadel-Turonski, Alexei V. Klimenko, L. Cheng, Tsutomu Mibe, B. M. Preedom, L. Elouadrhiri, J. Langheinrich, K. Y. Kim, Nikolay Shvedunov, J. T. Goetz, E. Polli, H. Bagdasaryan, Lorenzo Zana, J. P. Santoro, Barry Ritchie, S. A. Philips, M. Khandaker, P. Eugenio, M. Taiuti, G. V. O'Rielly, Z. W. Zhao, I. I. Strakovsky, P. Stoler, J. D. Kellie, S. A. Morrow, V. P. Kubarovsky, V. Mokeev, R. A. Schumacher, B. Moreno, Gerard Gilfoyle, G. Ricco, C. Djalali, H. Hakobyan, H. S. Jo, Gerald Feldman, K. Hicks, O. Pogorelko, A. Deur, D. G. Jenkins, Federico Ronchetti, L. C. Dennis, L. Graham, P. Collins, B. E. Bonner, J. J. Melone, C. Salgado, D. Sokhan, K. Park, Daniel S. Carman, M. J. Amaryan, K. S. Egiyan, C. I O Gordon, N. Kalantarians, H. Avakian, W. K. Brooks, M. MacCormick, I. Hleiqawi, C. E. Hyde-Wright, D. Sharov, P. Ambrozewicz, K. Mikhailov, S. Bültmann, L. Morand, T. A. Forest, Cynthia Marie Hadjidakis, S. L. Careccia, Sergey Kuleshov, S. Stepanyan, K. L. Giovanetti, J. Pierce, Avraham Klein, Larry Weinstein, M. Bektasoglu, M. Nozar, Michael Dugger, H. O. Funsten, W. J. Briscoe, E. Pasyuk, S. A. Dytman, J. Salamanca, J. W C McNabb, L. Casey, B. B. Niczyporuk, N. Pivnyuk, V. Batourine, M. Battaglieri, L. C. Smith, E. Munevar, B. S. Ishkhanov, B. L. Berman, R. Bradford, B. A. Mecking, K. Lukashin, L. M. Qin, R. S. Hakobyan, K. A. Griffioen, C. Paterson, M. Klusman, D. P. Watts, M. R. Niroula, E. Golovatch, M. Bellis, S. Strauch, H. Egiyan, A. Cazes, Maryam Moteabbed, P. Coltharp, K. V. Dharmawardane, M. Y. Gabrielyan, R. J. Feuerbach, M. M. Ito, and Inna Aznauryan
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Meson ,010308 nuclear & particles physics ,Resonance ,01 natural sciences ,Excited state ,Isospin ,0103 physical sciences ,Production (computer science) ,Invariant mass ,Sensitivity (control systems) ,Atomic physics ,010306 general physics ,Nucleon - Abstract
The exclusive electroproduction process $\stackrel{\ensuremath{\rightarrow}}{e}p\ensuremath{\rightarrow}{e}^{'}n{\ensuremath{\pi}}^{+}$ was measured in the range of the photon virtuality ${Q}^{2}=1.7\text{\ensuremath{-}}4.5 {\mathrm{GeV}}^{2}$, and the invariant mass range for the $n{\ensuremath{\pi}}^{+}$ system of $W=1.15\text{\ensuremath{-}}1.7 \mathrm{GeV}$ using the CEBAF Large Acceptance Spectrometer. For the first time, these kinematics are probed in exclusive ${\ensuremath{\pi}}^{+}$ production from protons with nearly full coverage in the azimuthal and polar angles of the $n{\ensuremath{\pi}}^{+}$ center-of-mass system. The $n{\ensuremath{\pi}}^{+}$ channel has particular sensitivity to the isospin \textonehalf{} excited nucleon states, and together with the $p{\ensuremath{\pi}}^{0}$ final state will serve to determine the transition form factors of a large number of resonances. The largest discrepancy between these results and present modes was seen in the ${\ensuremath{\sigma}}_{{\mathit{LT}}^{'}}$ structure function. In this experiment, 31,295 cross section and 4,184 asymmetry data points were measured. Because of the large volume of data, only a reduced set of structure functions and Legendre polynomial moments can be presented that are obtained in model-independent fits to the differential cross sections.
- Published
- 2008
49. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
- Author
-
L. Lee, G. Batigne, S. Covrig, D. McKee, K. A. Griffioen, R. Kazimi, W. D. Ramsay, L. Bimbot, J. Lachniet, C. Furget, Bryan J. Moffit, Glen A. Warren, K. Johnston, E. Voutier, A. Hawthorne Allen, G. Quéméner, R. Carr, S. E. Williamson, P. Kammel, T. Averett, J. Van de Wiele, S. Stepanyan, B. Guillon, W. Falk, E. Liatard, D. Marchand, P. G. Roos, B. Loupias, M. Morlet, E. J. Beise, K. W. McFarlane, J. S. Real, A. A. Cowley, T. Horn, J. Lenoble, S. Wells, J. Kuhn, Neven Simicevic, V. Sulkosky, T. A. Forest, H. Guler, W. T. H. van Oers, E. Boukobza, Y. C. Chao, K. Nakahara, H. Breuer, J. M. Finn, M. Poelker, R. Neveling, J. Grames, D. T. Spayde, J. Arvieux, J. W. Martin, R. Asaturyan, C. Yan, S. Kox, Douglas H Beck, G. A. Rutledge, A. Kolarkar, J. Yun, R. D. McKeown, Raphael Noel Tieulent, L. Hannelius, P. M. King, S. K. Phillips, A. S. Biselli, D. S. Dale, I. Nakagawa, W. F. Vulcan, Subhasis Chattopadhyay, J. A. Secrest, J. Roche, V. Zeps, M. K. Jones, S. A. Wood, R. Hasty, E. Korkmaz, S. A. Page, Michael Pitt, F. Merchez, S. L. Bailey, C. A. Davis, N. S. Chant, D. S. Armstrong, G. R. Smith, K. Grimm, J. Birchall, S. Ong, S. F. Pate, H. Mkrtchyan, D. Gaskell, R. Clark, T. A. Porcelli, V. Papavassiliou, J. Benesch, A. Lung, M. Stutzman, Jin Liu, P. Bosted, G. B. Franklin, Wolfgang Korsch, A. W. Rauf, R. D. Carlini, B. P. Quinn, V. Tadevosyan, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Thomas Jefferson National Accelerator Facility (Jefferson Lab), and G0
- Subjects
electromagnetic processes and properties ,media_common.quotation_subject ,Elastic electron scattering ,Hadron ,General Physics and Astronomy ,FOS: Physical sciences ,Electron ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Asymmetry ,Nuclear physics ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Spin-½ ,media_common ,Physics ,Elastic scattering ,protons ,010308 nuclear & particles physics ,Scattering ,neutrons ,High Energy Physics - Phenomenology ,Amplitude ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,elastic and compton scattering ,25.30.Bf, 13.60.Fz, 13.40.-f, 14.20.Dh ,High Energy Physics::Experiment ,Atomic physics ,Nucleon - Abstract
We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments., 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comments
- Published
- 2007
50. Mission Health Management for 24/7 Persistent Surveillance Operations
- Author
-
John Vian, Jonathan P. How, Boeing Phantom, Daniela Pucci de Farias, D. S. Dale, and Mario Valenti
- Subjects
Engineering ,Downtime ,Health management system ,business.industry ,Embedded system ,Testbed ,Systems engineering ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,business ,Flight test ,Test (assessment) - Abstract
This paper presents the development and implementation of techniques used to manage autonomous unmanned aerial vehicles (UAVs) performing 24/7 persistent surveillance operations. Using an indoor flight testbed, flight test results are provided to demonstrate the complex issues encountered by operators and mission managers when executing an extended persistent surveillance operation in realtime. This paper presents mission health monitors aimed at identifying and improving mission system performance to avoid down time, increase mission system eciency and reduce operator loading. This paper discusses the infrastructure needed to execute an autonomous persistent surveillance operation and presents flight test results from one of our recent automated UAV recharging experiments. Using the RAVEN at MIT, we present flight test results from a 24 hr, fully-autonomous air vehicle flight-recharge test and an autonomous, multi-vehicle extended mission test using small, electric-powered air vehicles.
- Published
- 2007
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.