39 results on '"D. Jardin"'
Search Results
2. GATA4 Regulates Developing Endocardium Through Interaction With ETS1
- Author
-
Pingzhu Zhou, Yan Zhang, Isha Sethi, Lincai Ye, Michael A. Trembley, Yangpo Cao, Brynn N. Akerberg, Feng Xiao, Xiaoran Zhang, Kai Li, Blake D. Jardin, Neil Mazumdar, Qing Ma, Aibin He, Bin Zhou, and William T. Pu
- Subjects
Proto-Oncogene Protein c-ets-1 ,Mice ,Physiology ,NIH 3T3 Cells ,Animals ,Myocytes, Cardiac ,Cardiology and Cardiovascular Medicine ,Chromatin ,Endocardium ,GATA4 Transcription Factor - Abstract
Background: The pioneer transcription factor (TF) GATA4 (GATA Binding Protein 4) is expressed in multiple cardiovascular lineages and is essential for heart development. GATA4 lineage-specific occupancy in the developing heart underlies its lineage specific activities. Here, we characterized GATA4 chromatin occupancy in cardiomyocyte and endocardial lineages, dissected mechanisms that control lineage specific occupancy, and analyzed GATA4 regulation of endocardial gene expression. Methods: We mapped GATA4 chromatin occupancy in cardiomyocyte and endocardial cells of embryonic day 12.5 (E12.5) mouse heart using lineage specific, Cre-activated biotinylation of GATA4. Regulation of GATA4 pioneering activity was studied in cell lines stably overexpressing GATA4. GATA4 regulation of endocardial gene expression was analyzed using single cell RNA sequencing and luciferase reporter assays. Results: Cardiomyocyte-selective and endothelial-selective GATA4 occupied genomic regions had features of lineage specific enhancers. Footprints within cardiomyocyte- and endothelial-selective GATA4 regions were enriched for NKX2-5 (NK2 homeobox 5) and ETS1 (ETS Proto-Oncogene 1) motifs, respectively, and both of these TFs interacted with GATA4 in co-immunoprecipitation assays. In stable NIH3T3 cell lines expressing GATA4 with or without NKX2-5 or ETS1, the partner TFs re-directed GATA4 pioneer binding and augmented its ability to open previously inaccessible regions, with ETS1 displaying greater potency as a pioneer partner than NKX2-5. Single-cell RNA sequencing of embryonic hearts with endothelial cell–specific Gata4 inactivation identified Gata4 -regulated endocardial genes, which were adjacent to GATA4-bound, endothelial regions enriched for both GATA4 and ETS1 motifs. In reporter assays, GATA4 and ETS1 cooperatively stimulated endothelial cell enhancer activity. Conclusions: Lineage selective non-pioneer TFs NKX2-5 and ETS1 guide the activity of pioneer TF GATA4 to bind and open chromatin and create active enhancers and mechanistically link ETS1 interaction to GATA4 regulation of endocardial development.
- Published
- 2023
3. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor
- Author
-
Yuxuan Guo, Blake D. Jardin, Pingzhu Zhou, Isha Sethi, Brynn N. Akerberg, Christopher N Toepfer, Yulan Ai, Yifei Li, Qing Ma, Silvia Guatimosim, Yongwu Hu, Grigor Varuzhanyan, Nathan J. VanDusen, Donghui Zhang, David C. Chan, Guo-Cheng Yuan, Christine E. Seidman, Jonathan G. Seidman, and William T. Pu
- Subjects
Science - Abstract
The processes regulating cardiomyocyte (CM) maturation are unclear. Here, the authors show that serum response factor regulates CM maturation only in neonatal CMs through stage-specific chromatin occupancy that affects cell size, sarcomere and transverse-tubule organization, and mitochondria
- Published
- 2018
- Full Text
- View/download PDF
4. Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation
- Author
-
Yuxuan Guo, Yangpo Cao, Blake D Jardin, Xiaoran Zhang, Pingzhu Zhou, Silvia Guatimosim, Junsen Lin, Zhan Chen, Yueyang Zhang, Neil Mazumdar, Fujian Lu, Qing Ma, Yao-Wei Lu, Mingming Zhao, Da-Zhi Wang, Erdan Dong, and William T Pu
- Subjects
Physiology ,Physiology (medical) ,Original Article ,Cardiology and Cardiovascular Medicine - Abstract
Calcium handling capacity is a major gauge of cardiomyocyte maturity. Ryanodine receptor 2 (RYR2) is the predominant calcium channel that releases calcium from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) to activate cardiomyocyte contraction. Although RYR2 was previously implied as a key regulator of cardiomyocyte maturation, the mechanisms remain unclear. The aim of this study is to solve this problem.We performed Cas9/AAV9-mediated somatic mutagenesis (CASAAV) to knockout RYR2 specifically in cardiomyocytes in mice. We conducted a genetic mosaic analysis to dissect the cell-autonomous function of RYR2 during cardiomyocyte maturation. We found that RYR2 depletion triggered ultrastructural and transcriptomic defects relevant to cardiomyocyte maturation. These phenotypes were associated with the drastic activation of ER stress pathways. The ER stress alleviator tauroursodeoxycholic acid (TUDCA) partially rescued the defects in RYR2-depleted cardiomyocytes. Overexpression of ATF4, a key ER stress transcription factor, recapitulated defects in RYR2-depleted cells. Integrative analysis of RNA-Seq and bioChIP-Seq data revealed that protein biosynthesis-related genes are the major direct downstream targets of ATF4.RYR2-regulated ER homeostasis is essential for cardiomyocyte maturation. Severe ER stress perturbs cardiomyocyte maturation primarily through ATF4 activation. The major downstream effector genes of ATF4 are related to protein biosynthesis.Dysfunctional calcium handling is a major factor contributing to cardiac pathogenesis, but the molecular mechanisms remain unclear. This study uncovered RYR2 as a new regulator of ER stress and cardiomyocyte maturation, providing significant insights to guide the development of therapeutic approaches to control cardiac pathogenesis. Because cardiomyocyte maturation is a major bottleneck in translational medicine using stem cell-derived cardiomyocytes, this study also pointed out RYR2 and ER homeostasis as potential targets to manipulate the maturity of stem cell-derived cardiomyocytes.
- Published
- 2022
5. CMYA5 establishes cardiac dyad architecture and positioning
- Author
-
Fujian Lu, Qing Ma, Wenjun Xie, Carter L. Liou, Donghui Zhang, Mason E. Sweat, Blake D. Jardin, Francisco J. Naya, Yuxuan Guo, Heping Cheng, and William T. Pu
- Subjects
Sarcoplasmic Reticulum ,Multidisciplinary ,Sarcolemma ,education ,General Physics and Astronomy ,Muscle Proteins ,Calcium ,Myocytes, Cardiac ,General Chemistry ,human activities ,General Biochemistry, Genetics and Molecular Biology ,Excitation Contraction Coupling - Abstract
Cardiac excitation-contraction coupling requires dyads, the nanoscopic microdomains formed adjacent to Z-lines by apposition of transverse tubules and junctional sarcoplasmic reticulum. Disruption of dyad architecture and function are common features of diseased cardiomyocytes. However, little is known about the mechanisms that modulate dyad organization during cardiac development, homeostasis, and disease. Here, we use proximity proteomics in intact, living hearts to identify proteins enriched near dyads. Among these proteins is CMYA5, an under-studied striated muscle protein that co-localizes with Z-lines, junctional sarcoplasmic reticulum proteins, and transverse tubules in mature cardiomyocytes. During cardiac development, CMYA5 positioning adjacent to Z-lines precedes junctional sarcoplasmic reticulum positioning or transverse tubule formation. CMYA5 ablation disrupts dyad architecture, dyad positioning at Z-lines, and junctional sarcoplasmic reticulum Ca2+ release, leading to cardiac dysfunction and inability to tolerate pressure overload. These data provide mechanistic insights into cardiomyopathy pathogenesis by demonstrating that CMYA5 anchors junctional sarcoplasmic reticulum to Z-lines, establishes dyad architecture, and regulates dyad Ca2+ release.
- Published
- 2021
6. Effect on dark matter exclusion limits from new silicon photoelectric absorption measurements
- Author
-
D. Jardin, M. J. Wilson, Chih-Pan Wu, R. Calkins, Fernando Ponce, Blas Cabrera, Noah Kurinsky, C. Stanford, and B. von Krosigk
- Subjects
Physics ,Silicon ,010308 nuclear & particles physics ,Band gap ,Physics::Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,chemistry.chemical_element ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Cross section (physics) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,chemistry ,0103 physical sciences ,Thermal ,Particle ,Sensitivity (control systems) ,Atomic physics ,010306 general physics ,Energy (signal processing) - Abstract
Recent breakthroughs in cryogenic silicon detector technology allow for the observation of single electron-hole pairs released via particle interactions within the target material. This implies sensitivity to energy depositions as low as the smallest band gap, which is $\sim1.2$ eV for silicon, and therefore sensitivity to eV/$c^2$-scale bosonic dark matter and to thermal dark matter at masses below 100 MeV/$c^2$. Various interaction channels that can probe the lowest currently accessible masses in direct searches are related to standard photoelectric absorption. In any of these respective dark matter signal models any uncertainty on the photoelectric absorption cross section is propagated into the resulting exclusion limit or into the significance of a potential observation. Using first-time precision measurements of the photoelectric absorption cross section in silicon recently performed at Stanford University, this article examines the importance having accurate knowledge of this parameter at low energies and cryogenic temperatures for these dark matter searches., 9 pages, 8 figures, suppl. material
- Published
- 2021
7. First operation of transition-edge sensors in space with the Micro-X sounding rocket
- Author
-
Peter J. Serlemitsos, Gene C. Hilton, Sarah N. T. Heine, Megan E. Eckart, N. Bastidon, Carl D. Reintsema, J. S. Adams, Richard L. Kelley, M. E. Danowski, J. Fuhrman, Stephen J. Smith, R. E. Manzagol-Harwood, Robert G. Baker, D. C. Goldfinger, D. Jardin, Frederick S. Porter, Dan McCammon, Antonia Hubbard, Enectali Figueroa-Feliciano, William B. Doriese, Takashi Okajima, Caroline A. Kilbourne, P. Wikus, and Simon R. Bandler
- Subjects
Cryostat ,Physics ,Physics - Instrumentation and Detectors ,business.product_category ,Sounding rocket ,business.industry ,Detector ,FOS: Physical sciences ,Synchronizing ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics - Experiment ,law.invention ,SQUID ,Cassiopeia A ,High Energy Physics - Experiment (hep-ex) ,Rocket ,law ,Calibration ,Aerospace engineering ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
With its first flight in 2018, Micro-X became the first program to fly Transition-Edge Sensors and their SQUID readouts in space. The science goal was a high-resolution, spatially resolved X-ray spectrum of the Cassiopeia A Supernova Remnant. While a rocket pointing error led to no time on target, the data was used to demonstrate the flight performance of the instrument. The detectors observed X-rays from the on-board calibration source, but a susceptibility to external magnetic fields limited their livetime. Accounting for this, no change was observed in detector response between ground operation and flight operation. This paper provides an overview of the first flight performance and focuses on the upgrades made in preparation for reflight. The largest changes have been upgrading the SQUIDs to mitigate magnetic susceptibility, synchronizing the clocks on the digital electronics to minimize beat frequencies, and replacing the mounts between the cryostat and the rocket skin to improve mechanical integrity. As the first flight performance was consistent with performance on the ground, reaching the instrument goals in the laboratory is considered a strong predictor of future flight performance.
- Published
- 2021
8. Modeling a Three-Stage SQUID System in Space with the First Micro-X Sounding Rocket Flight
- Author
-
J. S. Adams, S. R. Bandler, N. Bastidon, M. E. Eckart, E. Figueroa-Feliciano, J. Fuhrman, D. C. Goldfinger, A. J. F. Hubbard, D. Jardin, R. L. Kelley, C. A. Kilbourne, R. E. Manzagol-Harwood, D. McCammon, T. Okajima, F. S. Porter, C. D. Reintsema, and S. J. Smith
- Subjects
FOS: Physical sciences ,General Materials Science ,Astrophysics - Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Atomic and Molecular Physics, and Optics - Abstract
The Micro-X sounding rocket is a NASA funded X-ray telescope payload that completed its first flight on July 22, 2018. This event marked the first operation of Transition Edge Sensors (TESs) and their SQUID-based multiplexing readout system in space. Unfortunately, due to an ACS pointing failure, the rocket was spinning during its five minute observation period and no scientific data was collected. However, data collected from the internal calibration source marked a partial success for the payload and offers a unique opportunity to study the response of TESs and SQUIDs in space. Of particular interest is the magnetic field response of the NIST MUX06a SQUID readout system to tumbling through Earth's magnetic field. We present a model to explain the baseline response of the SQUIDs, which lead to a subset of pixels failing to "lock" for the full observational period. Future flights of the Micro-X rocket will include the NIST MUX18b SQUID system with dramatically reduced magnetic susceptibility., Comment: 6 pages, 6 figures, LTD19 conference proceedings
- Published
- 2021
- Full Text
- View/download PDF
9. Micro-X Sounding Rocket Payload Re-flight Progress
- Author
-
J. S. Adams, S. R. Bandler, N. Bastidon, M. E. Eckart, E. Figueroa-Feliciano, J. Fuhrman, D. C. Goldfinger, A. J. F. Hubbard, D. Jardin, R. L. Kelley, C. A. Kilbourne, R. E. Manzagol-Harwood, D. McCammon, T. Okajima, F. S. Porter, C. D. Reintsema, and S. J. Smith
- Subjects
Physics - Instrumentation and Detectors ,FOS: Physical sciences ,General Materials Science ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Atomic and Molecular Physics, and Optics - Abstract
Micro-X is an X-ray sounding rocket payload that had its first flight on July 22, 2018. The goals of the first flight were to operate a transition edge sensor (TES) X-ray microcalorimeter array in space and take a high-resolution spectrum of the Cassiopeia A supernova remnant. The first flight was considered a partial success. The array and its time-division multiplexing readout system were successfully operated in space, but due to a failure in the attitude control system, no time on-target was acquired. A re-flight has been scheduled for summer 2022. Since the first flight, modifications have been made to the detector systems to improve noise and reduce the susceptibility to magnetic fields. The three-stage SQUID circuit, NIST MUX06a, has been replaced by a two-stage SQUID circuit, NIST MUX18b. The initial laboratory results for the new detector system will be presented in this paper., Comment: LTD proceedings, 6 pages, 3 figures, 1 table
- Published
- 2021
- Full Text
- View/download PDF
10. Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling
- Author
-
Guo-Cheng Yuan, Yuxuan Guo, Eric M. Small, Qing Ma, Michael A. Trembley, Alan H. Beggs, Behzad Moghadaszadeh, Emily C Troiano, Blake D. Jardin, Yangpo Cao, Isha Sethi, Neil Mazumdar, and William T. Pu
- Subjects
Sarcomeres ,Serum Response Factor ,Mutant ,Mitochondrion ,Biology ,medicine.disease_cause ,Sarcomere ,Mice ,Serum response factor ,medicine ,Morphogenesis ,Animals ,Actinin ,Myocytes, Cardiac ,Sarcomere organization ,Transcription factor ,Cytoskeleton ,Cell Nucleus ,Mutation ,Multidisciplinary ,Biological Sciences ,Cell biology ,Mitochondria ,Gene Expression Regulation ,Trans-Activators ,Signal transduction ,Signal Transduction ,Transcription Factors - Abstract
The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.
- Published
- 2020
11. Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge sensitive detector
- Author
-
K. Fouts, W. Rau, D. A. Bauer, S. S. Poudel, N. Chott, M. L. di Vacri, Ruth Lawrence, Fernando Ponce, H. E. Rogers, S. Scorza, Xingbo Zhao, R. Germond, John Wilson, Bruno Serfass, M. H. Kelsey, A. N. Villano, S. M. Oser, C. Stanford, E. Lopez Asamar, A. Sattari, Matthew Fritts, A. J. Mayer, Vuk Mandic, I. J. Arnquist, B. A. Hines, N. Herbert, M. Michaud, H. R. Harris, Tarek Saab, N. Mast, P. Cushman, D. Barker, H. G. Zhang, L. Zheng, E. Zhang, Douglas Wright, Sunil Golwala, Seema Verma, M. Stein, T. Reynolds, To Chin Yu, Betty A. Young, R. A. Cameron, John L. Orrell, D. MacDonell, L. Hsu, Yu Kai Chang, S. L. Watkins, Martin E. Huber, D. Toback, Jodi Cooley, C. Cartaro, P. Pakarha, N. Mirabolfathi, Bedangadas Mohanty, Amy Roberts, A. Li, J. D. Morales Mendoza, M. A. Bowles, R. Chen, D. Jardin, D. W. P. Amaral, B. von Krosigk, A. Jastram, C. W. Fink, Matt Pyle, S. Nagorny, E. Fascione, R. Underwood, H. Coombes, T. Aralis, R. W. Schnee, D. B. MacFarlane, E. Azadbakht, T. Binder, David G. Cerdeño, Ben Loer, Blas Cabrera, R. Mahapatra, R. Calkins, J. Corbett, R. Bhattacharyya, Noah Kurinsky, E. Michielin, J. Winchell, J. K. Nelson, L. Wills, S. J. Yellin, Tsuguo Aramaki, L. V. S. Bezerra, W. A. Page, M. I. Hollister, J. Sander, D. J. Sincavage, M. Ghaith, F. De Brienne, G. Gerbier, R. Bunker, J. Street, E. Reid, Enectali Figueroa-Feliciano, R. Ren, A. Kubik, P. L. Brink, Bernard Sadoulet, A. E. Robinson, V. Iyer, R. Podviianiuk, R. Partridge, P. Lukens, M. Diamond, Ziqing Hong, M. J. Wilson, V. Novati, S. Banik, Eric W. Hoppe, H. Neog, and C. Bathurst
- Subjects
Coupling constant ,Physics ,Physics - Instrumentation and Detectors ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Dark matter ,FOS: Physical sciences ,Charge (physics) ,Instrumentation and Detectors (physics.ins-det) ,Electron ,Kinetic energy ,01 natural sciences ,Dark photon ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Absorption (logic) ,Atomic physics ,010306 general physics ,Light dark matter ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This article presents an analysis and the resulting limits on light dark matter inelastically scattering off of electrons, and on dark photon and axion-like particle absorption, using a second-generation SuperCDMS high-voltage eV-resolution detector. The 0.93 gram Si detector achieved a 3 eV phonon energy resolution; for a detector bias of 100 V, this corresponds to a charge resolution of 3% of a single electron-hole pair. The energy spectrum is reported from a blind analysis with 1.2 gram-days of exposure acquired in an above-ground laboratory. With charge carrier trapping and impact ionization effects incorporated into the dark matter signal models, the dark matter-electron cross section $\bar{\sigma}_{e}$ is constrained for dark matter masses from 0.5--$10^{4} $MeV$/c^{2}$; in the mass range from 1.2--50 eV$/c^{2}$ the dark photon kinetic mixing parameter $\varepsilon$ and the axioelectric coupling constant $g_{ae}$ are constrained. The minimum 90% confidence-level upper limits within the above mentioned mass ranges are $\bar{\sigma}_{e}\,=\,8.7\times10^{-34}$ cm$^{2}$, $\varepsilon\,=\,3.3\times10^{-14}$, and $g_{ae}\,=\,1.0\times10^{-9}$., Comment: 5 pages + title and references, 3 figures and 1 table
- Published
- 2020
12. Abstract MP120: Ryanodine Receptor 2 Prevents Endoplasmic Reticulum Stress-induced Defects in Cardiomyocyte Maturation
- Author
-
Blake D. Jardin, Yuxuan Guo, Silvia Guatimosim, and William T. Pu
- Subjects
Physiology ,Chemistry ,Endoplasmic reticulum ,Stress induced ,Cardiology and Cardiovascular Medicine ,Ryanodine receptor 2 ,Cell biology - Abstract
Cardiomyocyte (CM) maturation is an essential step in heart development that prepares the organ for robust and sustainable contractions. However, very little is known about the contribution of CM maturation to cardiac pathogenesis, partly due to the paucity of basic knowledge about maturation. For example, although calcium plays well-established roles in cardiac stress responses, whether normal calcium oscillations are required for CM maturation has not been examined. To address this question, we created mice with mosaic inactivation of ryanodine receptor 2 (RYR2), the central channel that mediates calcium release from sarcoplasmic/endoplasmic reticulum (SR/ER), in CMs. RYR2 was depleted in a small fraction of neonatal CMs by adeno-associated virus (AAV)-mediated Cas9-based somatic mutagenesis (CASAAV). The majority of CMs intentionally retained RYR2 expression, which circumvented cardiac dysfunction and death that would result from widespread calcium transient ablation. In RYR2-depleted CMs, sarcomere expansion, transverse-tubule formation, mitochondrial metabolism and maturational hypertrophy were impaired. Strikingly, these maturation defects were associated with unfolded protein response, with the activation of three major ER stress effectors: spliced Xbp1 (XBP1s), ATF6 N-terminus (ATF6N), and ATF4. Tauroursodeoxycholic acid, an ER stress-relieving drug, partially rescued the maturation defects in RYR2-depleted CMs. Over expression (OE) of XBP1s, ATF6N or ATF4 each impaired CM maturation, with phenotypic severity ranked as ATF4>XBP1s>ATF6N. ATF4 OE in neonatal CMs triggered both ultrastructural and transcriptomic changes highly correlated with RYR2 depletion phenotypes. Interestingly, ATF4 OE altered distinct transcriptomic programs in neonatal vs. adult CMs and caused ultrastructural defects only at the neonatal stage. No terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was detected upon RYR2 depletion or ATF4 OE, excluding the contribution of apoptosis to maturation defects. Collectively, these data indicate that RYR2-mediated calcium handling prevents an adverse and stage-specific impact of ER stress on CM maturation, which lead to CM dysfunction.
- Published
- 2020
13. Constraints on dark photons and axionlike particles from the SuperCDMS Soudan experiment
- Author
-
É. M. Michaud, R. Mahapatra, C. W. Fink, R. Underwood, R. A. Cameron, N. Herbert, John L. Orrell, N. Mirabolfathi, D. MacDonell, Ben Loer, D. A. Bauer, S. S. Poudel, C. Cartaro, W. Baker, H. R. Harris, Fernando Ponce, Bedangadas Mohanty, A. Li, Yu Kai Chang, Betty A. Young, Amy Roberts, A. Jastram, C. Stanford, D. J. Sincavage, D. Jardin, A. N. Villano, P. Lukens, M. Diamond, Matthew Fritts, Vuk Mandic, S. M. Oser, K. Fouts, L. Zheng, J. Street, M. Stein, M. I. Hollister, John Wilson, M. E. Huber, E. Azadbakht, A. Kennedy, Ziqing Hong, Xingbo Zhao, T. Reynolds, H. Coombes, F. De Brienne, G. Gerbier, D. B. MacFarlane, Emily Z. Zhang, H. E. Rogers, J. D. Morales Mendoza, L. V. S. Bezerra, Emanuele Michielin, Blas Cabrera, M. J. Wilson, Ruth Lawrence, P. Cushman, T. Binder, Bruno Serfass, S. Banik, Eric W. Hoppe, S. J. Yellin, Tsuguo Aramaki, D. H. Wright, J. Corbett, Noah Kurinsky, H. Neog, C. Bathurst, M. A. Bowles, R. Germond, W. A. Page, Matt Pyle, W. Rau, V. Iyer, R. Podviianiuk, Kartik Senapati, M. Ghaith, Sunil Golwala, S. Nagorny, B. Cornell, E. Fascione, R. Bunker, J. K. Nelson, A. Kubik, M. L. di Vacri, A. E. Robinson, I. J. Arnquist, R. W. Schnee, L. Hsu, S. Scorza, R. Partridge, Tarek Saab, N. Mast, L. Wills, R. Bhattacharyya, D. Toback, B. von Krosigk, J. Sander, Jodi Cooley, M. H. Kelsey, David G. Cerdeño, S. L. Watkins, P. Pakarha, R. Calkins, Enectali Figueroa-Feliciano, R. Ren, D. Barker, J. Winchell, T. Aralis, Bernard Sadoulet, To Chin Yu, E. Lopez Asamar, Seema Verma, Bruce A. Hines, and P. L. Brink
- Subjects
Physics ,Range (particle radiation) ,Photon ,010308 nuclear & particles physics ,Dark matter ,chemistry.chemical_element ,Germanium ,Electron ,Parameter space ,Kinetic energy ,01 natural sciences ,Nuclear physics ,chemistry ,0103 physical sciences ,Particle ,010306 general physics - Abstract
We present an analysis of electron recoils in cryogenic germanium detectors operated during the SuperCDMS Soudan experiment. The data are used to set new constraints on the axioelectric coupling of axionlike particles and the kinetic mixing parameter of dark photons, assuming the respective species constitutes all of the galactic dark matter. This study covers the mass range from 40 eV/c2 to 500 keV/c2 for both candidates, excluding previously untested parameter space for masses below ∼1 keV/c2. For the kinetic mixing of dark photons, values below 10−15 are reached for particle masses around 100 eV/c2; for the axioelectric coupling of axionlike particles, values below 10−12 are reached for particles with masses in the range of a few-hundred eV/c2.
- Published
- 2020
14. Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated Above Ground
- Author
-
E. Azadbakht, C. W. Fink, C. Cartaro, R. Mahapatra, M. A. Bowles, S. Banik, Eric W. Hoppe, H. Neog, R. A. Cameron, John L. Orrell, C. Bathurst, R. Calkins, D. A. Bauer, S. S. Poudel, D. MacDonell, V. Novati, M. H. Kelsey, M. Diamond, P. Cushman, P. Lukens, Yu Kai Chang, P. Pakarha, J. K. Nelson, Tarek Saab, N. Mast, L. Wills, J. Winchell, R. Partridge, L. V. S. Bezerra, Fernando Ponce, Ziqing Hong, H. G. Zhang, N. Herbert, H. R. Harris, P. L. Brink, D. W. P. Amaral, L. Zheng, M. J. Wilson, D. J. Sincavage, W. A. Page, Bernard Sadoulet, M. Chaudhuri, Blas Cabrera, J. Street, Martin E. Huber, A. E. Robinson, E. Lopez Asamar, N. Mirabolfathi, É. M. Michaud, Bedangadas Mohanty, A. J. Mayer, A. Li, H. Coombes, Noah Kurinsky, I. J. Arnquist, L. Hsu, J. Sander, T. C. Yu, Sunil Golwala, K. Fouts, A. Jastram, J. D. Morales Mendoza, R. W. Schnee, M. Ghaith, Amy Roberts, D. Toback, Ruth Lawrence, T. Binder, Bruno Serfass, A. Kubik, Matt Pyle, T. Aralis, J. Corbett, J. Camilleri, D. Jardin, Matthew Fritts, H. Meyer Zu Theenhausen, V. K. S. Kashyap, C. Stanford, M. I. Hollister, R. Bhattacharyya, Vuk Mandic, E. Michielin, D. H. Wright, A. Sattari, E. Reid, S. J. Yellin, Tsuguo Aramaki, Enectali Figueroa-Feliciano, R. Ren, F. De Brienne, G. Gerbier, R. Germond, I. Alkhatib, B. A. Hines, S. Zuber, Betty A. Young, Seema Verma, B. von Krosigk, Yu. G. Kolomensky, S. L. Watkins, S. Nagorny, E. Fascione, John Wilson, D. B. MacFarlane, David G. Cerdeño, R. Bunker, Emily Z. Zhang, V. Iyer, R. Chen, R. Podviianiuk, R. Underwood, Ben Loer, Jodi Cooley, A. N. Villano, S. M. Oser, Xingbo Zhao, T. Reynolds, I. Ataee Langroudy, D. Barker, M. L. di Vacri, S. Scorza, W. Rau, N. Chott, and UAM. Departamento de Física Teórica
- Subjects
Physics - Instrumentation and Detectors ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Above Grounds ,Phonon ,Dark matter ,General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cryogenic Detectors ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Light Dark Matter ,Scattering Cross Section ,0103 physical sciences ,Energy Resolutions ,Dark Matter Searches ,010306 general physics ,Light dark matter ,Physics ,Dark Matter Particles ,010308 nuclear & particles physics ,Scattering ,Detector ,Resolution (electron density) ,Física ,Instrumentation and Detectors (physics.ins-det) ,Particle ,High Energy Physics::Experiment ,Energy (signal processing) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present limits on spin-independent dark matter-nucleon interactions using a $10.6$ $\mathrm{g}$ Si athermal phonon detector with a baseline energy resolution of $\sigma_E=3.86 \pm 0.04$ $(\mathrm{stat.})^{+0.19}_{-0.00}$ $(\mathrm{syst.})$ $\mathrm{eV}$. This exclusion analysis sets the most stringent dark matter-nucleon scattering cross-section limits achieved by a cryogenic detector for dark matter particle masses from $93$ to $140$ $\mathrm{MeV}/c^2$, with a raw exposure of $9.9$ $\mathrm{g}\cdot\mathrm{d}$ acquired at an above-ground facility. This work illustrates the scientific potential of detectors with athermal phonon sensors with eV-scale energy resolution for future dark matter searches., Comment: 7 pages, 4 figures, this version includes ancillary files from official data release
- Published
- 2020
- Full Text
- View/download PDF
15. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor
- Author
-
Yongwu Hu, Yuxuan Guo, Pingzhu Zhou, Yifei Li, Christopher N. Toepfer, Nathan J. VanDusen, Blake D. Jardin, Silvia Guatimosim, Isha Sethi, Jonathan G. Seidman, Brynn N. Akerberg, David C. Chan, Yulan Ai, Christine E. Seidman, Qing Ma, William T. Pu, Grigor Varuzhanyan, Donghui Zhang, and Guo-Cheng Yuan
- Subjects
0301 basic medicine ,Male ,Serum Response Factor ,genetic structures ,Science ,Regulator ,General Physics and Astronomy ,Biology ,Sarcomere ,General Biochemistry, Genetics and Molecular Biology ,Transcriptome ,03 medical and health sciences ,Mice ,Serum response factor ,Transcriptional regulation ,Animals ,Myocytes, Cardiac ,lcsh:Science ,Regulation of gene expression ,Mice, Knockout ,Multidisciplinary ,General Chemistry ,Chromatin ,Cell biology ,030104 developmental biology ,Mitochondrial biogenesis ,Animals, Newborn ,Gene Expression Regulation ,Mutagenesis ,embryonic structures ,cardiovascular system ,Female ,lcsh:Q ,CRISPR-Cas Systems - Abstract
After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal’s lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly.
- Published
- 2018
16. Dynamic Kerr Effect: The Use and Limits of the Smoluchowski Equation and Nonlinear Inertial Responses
- Author
-
J-L D??jardin
- Published
- 1995
17. Analysis of Cardiac Myocyte Maturation Using CASAAV, a Platform for Rapid Dissection of Cardiac Myocyte Gene Function In Vivo
- Author
-
Silvia Guatimosim, Nathan J. VanDusen, Yuxuan Guo, Blake D. Jardin, Guo-Cheng Yuan, Lina Zhang, Yulan Ai, Long-Sheng Song, Ang Guo, Donghui Zhang, Qing Ma, Biyi Chen, Isha Sethi, William T. Pu, and Weiliang Gu
- Subjects
0301 basic medicine ,Physiology ,Cardiac myocyte ,Mutagenesis (molecular biology technique) ,Context (language use) ,Biology ,Bioinformatics ,Ryanodine receptor 2 ,Cell biology ,03 medical and health sciences ,030104 developmental biology ,JPH2 ,Conditional gene knockout ,CRISPR ,Gene silencing ,Cardiology and Cardiovascular Medicine - Abstract
Rationale: Loss-of-function studies in cardiac myocytes (CMs) are currently limited by the need for appropriate conditional knockout alleles. The factors that regulate CM maturation are poorly understood. Previous studies on CM maturation have been confounded by heart dysfunction caused by whole organ gene inactivation. Objective: To develop a new technical platform to rapidly characterize cell-autonomous gene function in postnatal murine CMs and apply it to identify genes that regulate transverse tubules (T-tubules), a hallmark of mature CMs. Methods and Results: We developed CRISPR/Cas9/AAV9-based somatic mutagenesis, a platform in which AAV9 delivers tandem guide RNAs targeting a gene of interest and cardiac troponin-T promoter–driven Cre to Rosa Cas9GFP/Cas9GFP neonatal mice. When directed against junctophilin-2 ( Jph2 ), a gene previously implicated in T-tubule maturation, we achieved efficient, rapid, and CM-specific JPH2 depletion. High-dose AAV9 ablated JPH2 in 64% CMs and caused lethal heart failure, whereas low-dose AAV9 ablated JPH2 in 22% CMs and preserved normal heart function. In the context of preserved heart function, CMs lacking JPH2 developed T-tubules that were nearly morphologically normal, indicating that JPH2 does not have a major, cell-autonomous role in T-tubule maturation. However, in hearts with severe dysfunction, both adeno-associated virus–transduced and nontransduced CMs exhibited T-tubule disruption, which was more severe in the transduced subset. These data indicate that cardiac dysfunction disrupts T-tubule structure and that JPH2 protects T-tubules in this context. We then used CRISPR/Cas9/AAV9-based somatic mutagenesis to screen 8 additional genes for required, cell-autonomous roles in T-tubule formation. We identified RYR2 (Ryanodine Receptor-2) as a novel, cell-autonomously required T-tubule maturation factor. Conclusions: CRISPR/Cas9/AAV9-based somatic mutagenesis is a powerful tool to study cell-autonomous gene functions. Genetic mosaics are invaluable to accurately define cell-autonomous gene function. JPH2 has a minor role in normal T-tubule maturation but is required to stabilize T-tubules in the failing heart. RYR2 is a novel T-tubule maturation factor.
- Published
- 2017
18. Sarcomeres regulate cardiomyocyte maturation through MRTF-SRF signaling
- Author
-
Blake D. Jardin, Emily C Troiano, Behzad Moghadaszadeh, Yuxuan Guo, Isha Sethi, William T. Pu, Michael A. Trembley, Eric M. Small, Guo-Cheng Yuan, Qing Ma, and Alan H. Beggs
- Subjects
0303 health sciences ,Mutation ,Mutant ,Regulator ,Biology ,medicine.disease_cause ,Sarcomere ,Cell biology ,03 medical and health sciences ,0302 clinical medicine ,Serum response factor ,medicine ,030217 neurology & neurosurgery ,Actin ,Nuclear localization sequence ,030304 developmental biology - Abstract
Cardiomyocyte maturation is essential for robust heart contraction throughout life. The signaling networks governing cardiomyocyte maturation remain poorly defined. Our prior studies established the transcription factor SRF as a key regulator of the assembly of sarcomeres, the contractile unit of cardiomyocytes. Whether sarcomeres regulate other aspects of maturation remains unclear. Here we generated mice with cardiomyocyte specific, mosaic mutation of α-actinin-2 (Actn2), a key organizer of sarcomeres, to study its cell-autonomous role in cardiomyocyte maturation. In addition to the expected structural defects,Actn2mutation triggered dramatic transcriptional dysregulation, which strongly correlated with transcriptional changes observed in SRF-depleted cardiomyocytes.Actn2mutation increased monomeric actin, which perturbed the nuclear localization of the SRF cofactor MRTFA. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the transcriptional and morphological defects inActn2andSrfmutant cardiomyocytes. Together, we demonstrate that ACTN2-based sarcomere assembly and MRTF-SRF signaling establish a positive feedback loop that promotes cardiomyocyte maturation.
- Published
- 2019
19. Abstract 920: Mutual Potentiation Between Myofibril Assembly and Serum Response Factor in Cardiomyocyte Maturation
- Author
-
William T. Pu, Behzad Moghadaszadeh, Alan H. Beggs, Yuxuan Guo, Blake D. Jardin, and Isha Sethi
- Subjects
Myofilament ,Myofibril assembly ,Heart development ,Physiology ,Chemistry ,Serum response factor ,Long-term potentiation ,Signal transduction ,Cardiology and Cardiovascular Medicine ,Cell biology - Abstract
Cardiomyocyte (CM) maturation is characterized by transcriptional, morphological and functional specializations that are essential for robust and sustained CM contractions throughout lifetime. The signal networks that govern CM maturation remain poorly defined, which obscures the role of CM maturation in inherited cardiomyopathies and myocardial regeneration and impairs efforts to engineer mature cardiac tissues in vitro . Our prior studies established the transcription factor serum response factor (SRF) as a key regulator of CM maturation: SRF regulates major CM maturation events including myofibril expansion, mitochondria biogenesis, transverse-tubule formation, and cellular hypertrophy. Myofibrillar genes were identified as direct SRF downstream targets that are required for other aspects of CM maturation. To further understand the role of myofibrils in CM maturation, here we report the generation and investigation of a floxed allele of Actn2 in mice, which encodes a central component of sarcomere Z-lines. We applied to these mice a low dose of adeno-associated virus that expressed Cre recombinase specifically in neonatal CMs to generate hearts with mosaic Actn2 mutation. This approach circumvented the confounding secondary effects of cardiac dysfunction in Actn2 mutants and revealed cell-autonomous gene functions. Strikingly, Actn2 ablation triggered dramatic transcriptional dysregulation in addition to the expected myofibrillar disassembly phenotypes in CMs, which strongly correlated with observations in SRF-depleted CMs. Actn2 mutation increased the amount of monomeric actin in CMs, which perturbed the nuclear localization of SRF cofactors MRTF-A/-B. Overexpression of a dominant-negative MRTF-A isoform was sufficient to recapitulate the transcriptional and morphological defects in Actn2 or Srf mutant CMs. Together, these data demonstrate mutual potentiation between myofibril assembly and MRTF-A/B-SRF signaling in CM maturation. This positive feedback loop underlies a novel mechanism by which mechanical forces regulate CM maturation, disruption of which likely contributes to cardiomyopathies caused by sarcomere gene mutations.
- Published
- 2019
20. Erratum: First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector [Phys. Rev. Lett. 121 , 051301 (2018)]
- Author
-
Betty A. Young, C. Cartaro, A. Kennedy, A. Phipps, Blas Cabrera, Chitrasen Jena, E. Fascione, D. H. Wright, Jodi Cooley, J. V. Leyva, Noah Kurinsky, R. Mahapatra, M. H. Kelsey, W. Rau, T. Binder, C. Stanford, Xingbo Zhao, E. Azadbakht, S. Scorza, E. H. Miller, P. L. Brink, Danielle Speller, J. Street, Amy Roberts, S. J. Yellin, Tsuguo Aramaki, P. Di Stefano, A. N. Villano, Matthew Fritts, S. M. Oser, R. Calkins, B. von Krosigk, Vuk Mandic, H. E. Rogers, R. Agnese, H. R. Harris, M. A. Bowles, T. Reynolds, H. Qiu, A. E. Robinson, V. Iyer, P. Lukens, W. A. Page, C. W. Fink, J. Sander, M. Stein, Martin E. Huber, Bruno Serfass, S. L. Watkins, John Wilson, D. Barker, I. J. Arnquist, D. Jardin, D. A. Bauer, S. Banik, Eric W. Hoppe, J. K. Nelson, S. S. Poudel, W. Baker, B. Cornell, T. Doughty, Fernando Ponce, A. Reisetter, L. Hsu, Ziqing Hong, J. D. Morales Mendoza, John L. Orrell, J. So, X. Zhang, N. Mirabolfathi, D. MacDonell, R. Underwood, Bedangadas Mohanty, A. Scarff, D. Toback, Tarek Saab, N. Mast, G. Gerbier, M. J. Wilson, Ben Loer, Hiromasa Tanaka, R. K. Romani, M. Pepin, David G. Cerdeño, T. Aralis, Matt Pyle, M. Ghaith, A. Kubik, Kartik Senapati, R. Partridge, Sunil Golwala, Yen-Yung Chang, J. Winchell, Bernard Sadoulet, Enectali Figueroa-Feliciano, E. Lopez Asamar, Ruth Lawrence, R. Germond, R. Bunker, R. W. Schnee, and P. Cushman
- Subjects
Nuclear physics ,Physics ,Detector ,Dark matter ,General Physics and Astronomy ,Charge (physics) - Abstract
This corrects the article DOI: 10.1103/PhysRevLett.121.051301.
- Published
- 2019
21. Nuclear-recoil energy scale in CDMS II silicon dark-matter detectors
- Author
-
X. Zhao, T. Binder, G.L. Godfrey, J. D. Morales Mendoza, R. Underwood, Martin E. Huber, Tarek Saab, K. Schneck, N. Mast, E. H. Miller, M. Pepin, R. Germond, Yi Chen, B. Welliver, J. Hall, A. W. Borgland, H. R. Harris, W. A. Page, Amy Roberts, Yu Kai Chang, S. Fallows, A. N. Villano, Betty A. Young, M. Ghaith, A. Kubik, R. W. Schnee, V. Iyer, S. M. Oser, R. Basu Thakur, Miguel Daal, H. A. Tanaka, S. J. Yellin, Tsuguo Aramaki, A. Phipps, Hassan Chagani, David G. Cerdeño, K. L. Page, T. Doughty, P. Lukens, S. Banik, R. Partridge, Robert A. Moffatt, Kevin A. McCarthy, John Wilson, B. Cornell, R. Calkins, E. Fascione, Sunil Golwala, P. Redl, Ziqing Hong, P. L. Brink, M. Stein, David Moore, M. Peñalver Martinez, Adam Anderson, M. J. Wilson, E. M. Dragowsky, J. K. Nelson, Donald J. Holmgren, C. Cartaro, W. Rau, David O. Caldwell, H. E. Rogers, M. A. Bowles, P. Cushman, J. Sander, S. Scorza, Danielle Speller, H. Qiu, P. Di Stefano, R. Agnese, J. Street, D. Balakishiyeva, L. Hsu, D. Toback, Matt Pyle, Bruno Serfass, Kartik Senapati, D. Jardin, R. Mahapatra, A. Leder, R. Bunker, A. Reisetter, D. MacDonell, C. Jena, G. Gerbier, L. Esteban, D. Barker, Jodi Cooley, M. H. Kelsey, D. A. Bauer, S. S. Poudel, W. Baker, J. J. Yen, Matthew Fritts, Vuk Mandic, X. Zhang, N. Mirabolfathi, Bedangadas Mohanty, A. Jastram, A. Kennedy, Blas Cabrera, Enectali Figueroa-Feliciano, E. Lopez Asamar, Noah Kurinsky, B. von Krosigk, Bernard Sadoulet, A. E. Robinson, and Douglas Wright
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,Electron ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Recoil ,Ionization ,0103 physical sciences ,Neutron ,Physics::Atomic Physics ,010306 general physics ,Nuclear Experiment ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Physics ,Elastic scattering ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,3. Good health ,Semiconductor detector ,Cryogenic Dark Matter Search ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small., Comment: 22 pages, 17 figures, 1 table, 1 appendix
- Published
- 2018
22. Production Rate Measurement of Tritium and Other Cosmogenic Isotopes in Germanium with CDMSlite
- Author
-
H. R. Harris, B. Loer, B. Serfass, W. A. Page, S. Scorza, E. Azadbakht, David G. Cerdeño, John L. Orrell, D. MacDonell, C. Cartaro, M. A. Bowles, Enectali Figueroa-Feliciano, R. Calkins, R. Ren, N. Mirabolfathi, Yu Kai Chang, A. N. Villano, S. M. Oser, Jodi Cooley, John Wilson, B. von Krosigk, G. Gerbier, Xingbo Zhao, T. Reynolds, Betty A. Young, J. Winchell, S. J. Yellin, Tsuguo Aramaki, H. E. Rogers, M. Ghaith, A. Kubik, S. L. Watkins, P. Cushman, J. D. Morales Mendoza, A. Kennedy, Blas Cabrera, Chitrasen Jena, H. A. Tanaka, P. L. Brink, Bernard Sadoulet, A. Scarff, H. Qiu, A. E. Robinson, R. Partridge, Matt Pyle, E. Lopez Asamar, Noah Kurinsky, B. Cornell, R. Underwood, D. Barker, T. Aralis, Kartik Senapati, D. Jardin, R. Agnese, Danielle Speller, I. J. Arnquist, Ruth Lawrence, Tarek Saab, N. Mast, P. Lukens, L. Hsu, T. Binder, Sunil Golwala, D. Toback, M. H. Kelsey, D. H. Wright, Ziqing Hong, R. Bunker, M. Stein, C. W. Fink, M. J. Wilson, S. Banik, Eric W. Hoppe, A. Reisetter, Martin E. Huber, W. Rau, Matthew Fritts, R. Germond, Vuk Mandic, J. K. Nelson, J. Sander, R. W. Schnee, M. Pepin, X. Zhang, Bedangadas Mohanty, A. Jastram, D. A. Bauer, S. S. Poudel, W. Baker, Fernando Ponce, E. Fascione, Amy Roberts, T. Doughty, J. Street, R. Mahapatra, V. Iyer, and E. H. Miller
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,Dark matter ,chemistry.chemical_element ,FOS: Physical sciences ,Germanium ,Radiation ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Ionization ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Nuclear Experiment ,Physics ,Radionuclide ,Isotope ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Semiconductor detector ,chemistry ,Tritium ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Future direct searches for low-mass dark matter particles with germanium detectors, such as SuperCDMS SNOLAB, are expected to be limited by backgrounds from radioactive isotopes activated by cosmogenic radiation inside the germanium. There are limited experimental data available to constrain production rates and a large spread of theoretical predictions. We examine the calculation of expected production rates, and analyze data from the second run of the CDMS low ionization threshold experiment (CDMSlite) to estimate the rates for several isotopes. We model the measured CDMSlite spectrum and fit for contributions from tritium and other isotopes. Using the knowledge of the detector history, these results are converted to cosmogenic production rates at sea level. The production rates in atoms/(kg$\cdot$day) are 74$\pm$9 for $^3$H, 1.5$\pm$0.7 for $^{55}$Fe, 17$\pm$5 for $^{65}$Zn, and 30$\pm$18 for $^{68}$Ge., 14 pages, 10 figures, 5 tables. v5 contains the extended data release (and documentation) of the CDMSlite Run 2 data as ancillary files
- Published
- 2018
23. Relaxin Family Member Insulin‐Like Peptide 6 Ameliorates Cardiac Fibrosis and Prevents Cardiac Remodeling in Murine Heart Failure Models
- Author
-
Pei Hsuan Li, Chia-Ling Wu, Rouan Yao, Ronald E. Law, Richard Di Marchi, Sumiko Yoshida, Kenneth Walsh, Fangzhou Wu, Joel P Berger, Dongying Zhang, Sonomi Maruyama, Blake D. Jardin, Jennifer Parker Duffen, and Ibrahim M. Adham
- Subjects
Male ,0301 basic medicine ,medicine.medical_specialty ,anti–cardiac remodeling ,Cardiac fibrosis ,medicine.medical_treatment ,030204 cardiovascular system & hematology ,Retinoid X receptor ,Ventricular Function, Left ,Ventricular Dysfunction, Left ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,medicine ,Animals ,anti‐fibrosis ,Liver X receptor ,Original Research ,Liver X Receptors ,Heart Failure ,Mice, Knockout ,Relaxin ,Ventricular Remodeling ,business.industry ,Myocardium ,Insulin ,relaxin family protein ,Intracellular Signaling Peptides and Proteins ,medicine.disease ,Fibrosis ,Angiotensin II ,Mice, Inbred C57BL ,Disease Models, Animal ,Retinoid X Receptors ,030104 developmental biology ,Endocrinology ,Heart failure ,cardiovascular system ,Intercellular Signaling Peptides and Proteins ,Hypertrophy, Left Ventricular ,Cardiology and Cardiovascular Medicine ,business ,Relaxin/insulin-like family peptide receptor 2 ,Signal Transduction - Abstract
Background The insulin/insulin‐like growth factor/relaxin family represents a group of structurally related but functionally diverse proteins. The family member relaxin‐2 has been evaluated in clinical trials for its efficacy in the treatment of acute heart failure. In this study, we assessed the role of insulin‐like peptide 6 (INSL6), another member of this protein family, in murine heart failure models using genetic loss‐of‐function and protein delivery methods. Methods and Results Insl6‐deficient and wild‐type (C57 BL /6N) mice were administered angiotensin II or isoproterenol via continuous infusion with an osmotic pump or via intraperitoneal injection once a day, respectively, for 2 weeks. In both models, Insl6‐knockout mice exhibited greater cardiac systolic dysfunction and left ventricular dilatation. Cardiac dysfunction in the Insl6‐knockout mice was associated with more extensive cardiac fibrosis and greater expression of fibrosis‐associated genes. The continuous infusion of chemically synthesized INSL 6 significantly attenuated left ventricular systolic dysfunction and cardiac fibrosis induced by isoproterenol infusion. Gene expression profiling suggests liver X receptor/retinoid X receptor signaling is activated in the isoproterenol‐challenged hearts treated with INSL 6 protein. Conclusions Endogenous Insl6 protein inhibits cardiac systolic dysfunction and cardiac fibrosis in angiotensin II – and isoproterenol‐induced cardiac stress models. The administration of recombinant INSL 6 protein could have utility for the treatment of heart failure and cardiac fibrosis.
- Published
- 2018
24. First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector
- Author
-
C. Stanford, A. N. Villano, S. M. Oser, T. Reynolds, John L. Orrell, R. Underwood, D. MacDonell, B. Cornell, H. R. Harris, J. Street, W. A. Page, John Wilson, A. Scarff, C. Cartaro, P. L. Brink, Hiromasa Tanaka, Ruth Lawrence, E. Fascione, M. Pepin, N. Mirabolfathi, M. Ghaith, A. Kubik, D. Jardin, D. A. Bauer, J. D. Morales Mendoza, Sunil Golwala, S. S. Poudel, T. Doughty, W. Baker, Xingbo Zhao, Tarek Saab, N. Mast, S. Scorza, C. W. Fink, J. K. Nelson, R. Mahapatra, Fernando Ponce, R. Germond, R. W. Schnee, X. Zhang, M. H. Kelsey, B. Loer, B. Serfass, J. V. Leyva, M. Stein, D. Barker, Bedangadas Mohanty, J. Sander, T. Aralis, Amy Roberts, R. Agnese, Martin E. Huber, Betty A. Young, David G. Cerdeño, B. von Krosigk, E. H. Miller, P. Cushman, D. H. Wright, A. Phipps, Yu Kai Chang, R. K. Romani, Jodi Cooley, M. A. Bowles, S. Banik, Eric W. Hoppe, A. Kennedy, Matt Pyle, Blas Cabrera, Chitrasen Jena, T. Binder, S. J. Yellin, Tsuguo Aramaki, Matthew Fritts, Kartik Senapati, E. Azadbakht, Noah Kurinsky, Vuk Mandic, Enectali Figueroa-Feliciano, R. Partridge, R. Calkins, E. Lopez Asamar, V. Iyer, S. L. Watkins, J. Winchell, Bernard Sadoulet, A. E. Robinson, Danielle Speller, P. Lukens, P. Di Stefano, Ziqing Hong, M. J. Wilson, H. E. Rogers, H. Qiu, R. Bunker, A. Reisetter, W. Rau, J. So, G. Gerbier, I. J. Arnquist, L. Hsu, and D. Toback
- Subjects
Physics ,Photon ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Detector ,Dark matter ,General Physics and Astronomy ,FOS: Physical sciences ,Charge (physics) ,Instrumentation and Detectors (physics.ins-det) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Dark photon ,Semiconductor detector ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Excited state ,0103 physical sciences ,010306 general physics ,Absorption (electromagnetic radiation) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/$\mathrm{c^2}$. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations., 6 pages + title and references, 6 figures, includes erratum submitted to PRL and data release
- Published
- 2018
25. Results from the Super Cryogenic Dark Matter Search Experiment at Soudan
- Author
-
Tarek Saab, N. Mast, A. N. Villano, S. M. Oser, P. L. Brink, C. Cartaro, T. Reynolds, H. R. Harris, D. A. Bauer, W. A. Page, B. Welliver, S. S. Poudel, W. Baker, N. Mirabolfathi, Enectali Figueroa-Feliciano, R. Partridge, A. Kennedy, J. J. Yen, Jodi Cooley, Blas Cabrera, Betty A. Young, B. Cornell, Chitrasen Jena, D. H. Wright, D. Balakishiyeva, A. Phipps, S. Banik, Eric W. Hoppe, J. D. Morales Mendoza, Noah Kurinsky, Xingbo Zhao, A. E. Robinson, Yu Kai Chang, T. Binder, S. Scorza, Matthew Fritts, D. Barker, Bernard Sadoulet, Vuk Mandic, Sunil Golwala, I. J. Arnquist, G. Godfrey, Amy Roberts, P. Di Stefano, Martin E. Huber, M. H. Kelsey, S. J. Yellin, Tsuguo Aramaki, D. Jardin, John Wilson, M. Stein, D. O. Caldwell, L. Hsu, P. Cushman, E. Lopez Asamar, R. Agnese, R. Underwood, D. Toback, J. Hall, Miguel Daal, J. K. Nelson, X. Zhang, M. Peñalver Martinez, Bedangadas Mohanty, Matt Pyle, M. A. Bowles, B. von Krosigk, A. Jastram, Kartik Senapati, J. Sander, Hiromasa Tanaka, John L. Orrell, D. MacDonell, K. Schneck, E. Fascione, M. Pepin, V. Iyer, R. W. Schnee, R. Basu Thakur, K. L. Page, R. Calkins, T. Doughty, H. E. Rogers, H. Qiu, P. Redl, B. Loer, B. Serfass, E. H. Miller, R. Germond, Yi Chen, P. Lukens, Ziqing Hong, M. J. Wilson, Danielle Speller, M. Ghaith, A. Kubik, R. Mahapatra, J. Street, David G. Cerdeño, G. Gerbier, R. Bunker, A. Reisetter, and W. Rau
- Subjects
Physics ,Particle physics ,010308 nuclear & particles physics ,Weakly interacting massive particles ,0103 physical sciences ,General Physics and Astronomy ,Cryogenic Dark Matter Search ,010306 general physics ,01 natural sciences ,Event (particle physics) - Abstract
We report the result of a blinded search for weakly interacting massive particles (WIMPs) using the majority of the SuperCDMS Soudan data set. With an exposure of 1690 kg d, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP–nucleon cross section of 1.4×10−44 (1.0×10−44) cm2 at 46 GeV/c2. These results set the strongest limits for WIMP–germanium-nucleus interactions for masses >12 GeV/c2.
- Published
- 2018
26. Projected sensitivity of the SuperCDMS SNOLAB experiment
- Author
-
Xingbo Zhao, C. Cartaro, M. A. Bowles, R. Agnese, A. N. Villano, S. M. Oser, B. Welliver, John L. Orrell, Jodi Cooley, H. R. Harris, W. A. Page, David G. Cerdeño, G. Gerbier, Tarek Saab, N. Mast, I. J. Arnquist, Sunil Golwala, M. H. Kelsey, R. Underwood, D. Jardin, John Wilson, Bernard Sadoulet, L. Hsu, Hiromasa Tanaka, P. Di Stefano, M. Pepin, E. Lopez Asamar, N. Mirabolfathi, D. Toback, P. Redl, R. Basu Thakur, K. L. Page, R. Mahapatra, A. Leder, R. Calkins, H. E. Rogers, B. Cornell, Donald J. Holmgren, H. Qiu, A. W. Borgland, J. Street, D. Barker, J. D. Morales Mendoza, Danielle Speller, R. Bunker, J. J. Yen, S. Fallows, A. Reisetter, S. J. Yellin, Tsuguo Aramaki, M. Ghaith, Matt Pyle, W. Rau, V. Iyer, T. Doughty, A. Kubik, D. A. Bauer, Amy Roberts, S. S. Poudel, Enectali Figueroa-Feliciano, W. Baker, J. Sander, L. Esteban, P. Lukens, H. Chagani, Ziqing Hong, R. Partridge, Adam Anderson, Matthew Fritts, A. E. Robinson, Vuk Mandic, Yi Chen, Betty A. Young, T. Hofer, A. Phipps, M. Stein, X. Zhang, Miguel Daal, Robert A. Moffatt, A. Jastram, P. L. Brink, David O. Caldwell, D. H. Wright, Eric W. Hoppe, A. Kennedy, Blas Cabrera, Noah Kurinsky, K. Schneck, B. von Krosigk, B. Loer, B. Serfass, R. W. Schnee, P. Cushman, G.L. Godfrey, Martin E. Huber, and J. Hall
- Subjects
Particle physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Solar neutrino ,Dark matter ,FOS: Physical sciences ,Atomic ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,Recoil ,0103 physical sciences ,Nuclear ,010306 general physics ,physics.ins-det ,Physics ,Quantum Physics ,hep-ex ,010308 nuclear & particles physics ,Detector ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Orders of magnitude (time) ,Weakly interacting massive particles ,astro-ph.CO ,High Energy Physics::Experiment ,Cryogenic Dark Matter Search ,Neutrino ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background., SuperCDMS SNOLAB Projected sensitivity reach
- Published
- 2017
27. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment
- Author
-
B. Welliver, B. Shank, Matt Pyle, J. J. Yen, D. Barker, B. Loer, J. Hall, T. Doughty, B. Serfass, G. L. Godfrey, D. Jardin, R. Agnese, R. Basu Thakur, K. L. Page, Jodi Cooley, R. Calkins, H. R. Harris, N. Mirabolfathi, W. A. Page, Yi Chen, David G. Cerdeño, T. Hofer, D. Balakishiyeva, Y. Ricci, L. Esteban, R. Bunker, J. Zhang, J. D. Morales Mendoza, A. Jastram, M. Asai, A. Reisetter, Miguel Daal, S. Fallows, W. Rau, H. E. Rogers, P. Redl, Sunil Golwala, A. Kennedy, Martin E. Huber, D. A. Bauer, S. J. Yellin, Tsuguo Aramaki, H. Qiu, W. Baker, John Wilson, Blas Cabrera, Tarek Saab, N. Mast, Bernard Sadoulet, Robert A. Moffatt, E. Lopez Asamar, Amy Roberts, A. Borgland, Vuk Mandic, O. Kamaev, K. Prasad, A. Leder, B. Cornell, S. Upadhyayula, R. Underwood, J. Billard, M. Pepin, R. Partridge, Enectali Figueroa-Feliciano, R. W. Schnee, P. Cushman, M. H. Kelsey, Betty A. Young, A. Phipps, J. Sander, L. Hsu, D. Toback, M. Ghaith, P. Lukens, B. Kara, Adam Anderson, R. Mahapatra, H. Chagani, Donald J. Holmgren, Danielle Speller, M. A. Bowles, K. Schneck, D. H. Wright, P. L. Brink, David O. Caldwell, A. N. Villano, S. M. Oser, S. Scorza, and P. Di Stefano
- Subjects
Physics ,Particle physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Phonon ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Electron ,Parameter space ,01 natural sciences ,Semiconductor detector ,Nuclear physics ,WIMP ,Weakly interacting massive particles ,Ionization ,0103 physical sciences ,High Energy Physics::Experiment ,Nuclear Experiment ,010306 general physics ,Low Mass - Abstract
© 2016 American Physical Society. The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c2.
- Published
- 2016
28. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system
- Author
-
M. Kos, A. S. Tenney, R. Bunker, D. Jardin, G. Ghulam, and R. W. Schnee
- Subjects
Physics ,Radon mitigation ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Nuclear engineering ,FOS: Physical sciences ,chemistry.chemical_element ,020206 networking & telecommunications ,Radon ,Instrumentation and Detectors (physics.ins-det) ,02 engineering and technology ,Vacuum swing adsorption ,01 natural sciences ,7. Clean energy ,Particle detector ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,chemistry ,Cleanroom ,Double beta decay ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Decay chain ,Radioactive decay - Abstract
Long-lived alpha and beta emitters in the $^{222}$Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double-beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the BetaCage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ~20$\times$ reduction at its output, from 7.47$\pm$0.56 to 0.37$\pm$0.12 Bq/m$^3$, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m$^3$., 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013
- Published
- 2013
29. Comment on 'Thermal fluctuations of magnetic nanoparticles' [arXiv:1209.0298]
- Author
-
D��jardin, J. -L., Kachkachi, H., and Martinez, J. -M.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences - Abstract
We comment on some misleading and biased statements appearing in the manuscript arXiv:1209.0298 ("Thermal fluctuations of magnetic nanoparticles") about the use of the damped Landau-Lifshitz equation and the kinetic Langer theory for the calculation of the relaxation rate of magnetic nanoclusters. We reiterate simple scientific arguments, part of which is well known to the whole community, demonstrating that the authors' criticisms are unfounded and that they overstate the issue of damping in the Landau-Lifshitz equation with no unanimous experimental evidence., 3 pages
- Published
- 2012
30. Purification, characterization and physiological role of sucrose synthase in the pea seed coat (Pisum sativum L.)
- Author
-
D�jardin, A., primary, Rochat, C., additional, Maugenest, S., additional, and Boutin, J. -P., additional
- Published
- 1997
- Full Text
- View/download PDF
31. Adsorption of an amphipatic copolymer on a kidney dialysis membrane
- Author
-
Yan, F., primary, D�jardin, P., additional, Galin, J. C., additional, and Schmitt, A., additional
- Published
- 1991
- Full Text
- View/download PDF
32. Anomalous rotational diffusion in the vicinity of the isotropic to nematic phase transition.
- Author
-
Jadżyn, Jan, Czechowski, Grzegorz, D�jardin, Jean-Louis, and Ginovska, Margarita
- Published
- 2005
- Full Text
- View/download PDF
33. Expressions de la fluidit� d'un liquide en fonction de son volume molaire
- Author
-
D�jardin, J. L., primary, Marrony, R., additional, Delseny, C., additional, and Brunet, S., additional
- Published
- 1977
- Full Text
- View/download PDF
34. Constraints on Lightly Ionizing Particles from CDMSlite.
- Author
-
Alkhatib I, Amaral DWP, Aralis T, Aramaki T, Arnquist IJ, Ataee Langroudy I, Azadbakht E, Banik S, Barker D, Bathurst C, Bauer DA, Bezerra LVS, Bhattacharyya R, Bowles MA, Brink PL, Bunker R, Cabrera B, Calkins R, Cameron RA, Cartaro C, Cerdeño DG, Chang YY, Chaudhuri M, Chen R, Chott N, Cooley J, Coombes H, Corbett J, Cushman P, De Brienne F, di Vacri ML, Diamond MD, Fascione E, Figueroa-Feliciano E, Fink CW, Fouts K, Fritts M, Gerbier G, Germond R, Ghaith M, Golwala SR, Harris HR, Hines BA, Hollister MI, Hong Z, Hoppe EW, Hsu L, Huber ME, Iyer V, Jardin D, Jastram A, Kashyap VKS, Kelsey MH, Kubik A, Kurinsky NA, Lawrence RE, Li A, Loer B, Lopez Asamar E, Lukens P, MacFarlane DB, Mahapatra R, Mandic V, Mast N, Mayer AJ, Meyer Zu Theenhausen H, Michaud ÉM, Michielin E, Mirabolfathi N, Mohanty B, Morales Mendoza JD, Nagorny S, Nelson J, Neog H, Novati V, Orrell JL, Oser SM, Page WA, Partridge R, Podviianiuk R, Ponce F, Poudel S, Pradeep A, Pyle M, Rau W, Reid E, Ren R, Reynolds T, Roberts A, Robinson AE, Saab T, Sadoulet B, Sander J, Sattari A, Schnee RW, Scorza S, Serfass B, Sincavage DJ, Stanford C, Street J, Toback D, Underwood R, Verma S, Villano AN, von Krosigk B, Watkins SL, Wilson JS, Wilson MJ, Winchell J, Wright DH, Yellin S, Young BA, Yu TC, Zhang E, Zhang HG, Zhao X, and Zheng L
- Abstract
The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) achieved efficient detection of very small recoil energies in its germanium target, resulting in sensitivity to lightly ionizing particles (LIPs) in a previously unexplored region of charge, mass, and velocity parameter space. We report first direct-detection limits calculated using the optimum interval method on the vertical intensity of cosmogenically produced LIPs with an electric charge smaller than e/(3×10^{5}), as well as the strongest limits for charge ≤e/160, with a minimum vertical intensity of 1.36×10^{-7} cm^{-2} s^{-1} sr^{-1} at charge e/160. These results apply over a wide range of LIP masses (5 MeV/c^{2} to 100 TeV/c^{2}) and cover a wide range of βγ values (0.1-10^{6}), thus excluding nonrelativistic LIPs with βγ as small as 0.1 for the first time.
- Published
- 2021
- Full Text
- View/download PDF
35. Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated above Ground.
- Author
-
Alkhatib I, Amaral DWP, Aralis T, Aramaki T, Arnquist IJ, Ataee Langroudy I, Azadbakht E, Banik S, Barker D, Bathurst C, Bauer DA, Bezerra LVS, Bhattacharyya R, Binder T, Bowles MA, Brink PL, Bunker R, Cabrera B, Calkins R, Cameron RA, Cartaro C, Cerdeño DG, Chang YY, Chaudhuri M, Chen R, Chott N, Cooley J, Coombes H, Corbett J, Cushman P, De Brienne F, di Vacri ML, Diamond MD, Fascione E, Figueroa-Feliciano E, Fink CW, Fouts K, Fritts M, Gerbier G, Germond R, Ghaith M, Golwala SR, Harris HR, Herbert N, Hines BA, Hollister MI, Hong Z, Hoppe EW, Hsu L, Huber ME, Iyer V, Jardin D, Jastram A, Kashyap VKS, Kelsey MH, Kubik A, Kurinsky NA, Lawrence RE, Li A, Loer B, Lopez Asamar E, Lukens P, MacDonell D, MacFarlane DB, Mahapatra R, Mandic V, Mast N, Mayer AJ, Meyer Zu Theenhausen H, Michaud ÉM, Michielin E, Mirabolfathi N, Mohanty B, Morales Mendoza JD, Nagorny S, Nelson J, Neog H, Novati V, Orrell JL, Oser SM, Page WA, Pakarha P, Partridge R, Podviianiuk R, Ponce F, Poudel S, Pyle M, Rau W, Reid E, Ren R, Reynolds T, Roberts A, Robinson AE, Saab T, Sadoulet B, Sander J, Sattari A, Schnee RW, Scorza S, Serfass B, Sincavage DJ, Stanford C, Street J, Toback D, Underwood R, Verma S, Villano AN, von Krosigk B, Watkins SL, Wills L, Wilson JS, Wilson MJ, Winchell J, Wright DH, Yellin S, Young BA, Yu TC, Zhang E, Zhang HG, Zhao X, Zheng L, Camilleri J, Kolomensky YG, and Zuber S
- Abstract
We present limits on spin-independent dark matter-nucleon interactions using a 10.6 g Si athermal phonon detector with a baseline energy resolution of σ_{E}=3.86±0.04(stat)_{-0.00}^{+0.19}(syst) eV. This exclusion analysis sets the most stringent dark matter-nucleon scattering cross-section limits achieved by a cryogenic detector for dark matter particle masses from 93 to 140 MeV/c^{2}, with a raw exposure of 9.9 g d acquired at an above-ground facility. This work illustrates the scientific potential of detectors with athermal phonon sensors with eV-scale energy resolution for future dark matter searches.
- Published
- 2021
- Full Text
- View/download PDF
36. Erratum: First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector [Phys. Rev. Lett. 121, 051301 (2018)].
- Author
-
Agnese R, Aralis T, Aramaki T, Arnquist IJ, Azadbakht E, Baker W, Banik S, Barker D, Bauer DA, Binder T, Bowles MA, Brink PL, Bunker R, Cabrera B, Calkins R, Cartaro C, Cerdeño DG, Chang YY, Cooley J, Cornell B, Cushman P, Di Stefano PCF, Doughty T, Fascione E, Figueroa-Feliciano E, Fink C, Fritts M, Gerbier G, Germond R, Ghaith M, Golwala SR, Harris HR, Hong Z, Hoppe EW, Hsu L, Huber ME, Iyer V, Jardin D, Jena C, Kelsey MH, Kennedy A, Kubik A, Kurinsky NA, Lawrence RE, Leyva JV, Loer B, Lopez Asamar E, Lukens P, MacDonell D, Mahapatra R, Mandic V, Mast N, Miller EH, Mirabolfathi N, Mohanty B, Morales Mendoza JD, Nelson J, Orrell JL, Oser SM, Page WA, Partridge R, Pepin M, Phipps A, Ponce F, Poudel S, Pyle M, Qiu H, Rau W, Reisetter A, Reynolds T, Roberts A, Robinson AE, Rogers HE, Romani RK, Saab T, Sadoulet B, Sander J, Scarff A, Schnee RW, Scorza S, Senapati K, Serfass B, So J, Speller D, Stanford C, Stein M, Street J, Tanaka HA, Toback D, Underwood R, Villano AN, von Krosigk B, Watkins SL, Wilson JS, Wilson MJ, Winchell J, Wright DH, Yellin S, Young BA, Zhang X, and Zhao X
- Abstract
This corrects the article DOI: 10.1103/PhysRevLett.121.051301.
- Published
- 2019
- Full Text
- View/download PDF
37. First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector.
- Author
-
Agnese R, Aralis T, Aramaki T, Arnquist IJ, Azadbakht E, Baker W, Banik S, Barker D, Bauer DA, Binder T, Bowles MA, Brink PL, Bunker R, Cabrera B, Calkins R, Cartaro C, Cerdeño DG, Chang YY, Cooley J, Cornell B, Cushman P, Di Stefano PCF, Doughty T, Fascione E, Figueroa-Feliciano E, Fink C, Fritts M, Gerbier G, Germond R, Ghaith M, Golwala SR, Harris HR, Hong Z, Hoppe EW, Hsu L, Huber ME, Iyer V, Jardin D, Jena C, Kelsey MH, Kennedy A, Kubik A, Kurinsky NA, Lawrence RE, Leyva JV, Loer B, Lopez Asamar E, Lukens P, MacDonell D, Mahapatra R, Mandic V, Mast N, Miller EH, Mirabolfathi N, Mohanty B, Morales Mendoza JD, Nelson J, Orrell JL, Oser SM, Page WA, Partridge R, Pepin M, Phipps A, Ponce F, Poudel S, Pyle M, Qiu H, Rau W, Reisetter A, Reynolds T, Roberts A, Robinson AE, Rogers HE, Romani RK, Saab T, Sadoulet B, Sander J, Scarff A, Schnee RW, Scorza S, Senapati K, Serfass B, So J, Speller D, Stanford C, Stein M, Street J, Tanaka HA, Toback D, Underwood R, Villano AN, von Krosigk B, Watkins SL, Wilson JS, Wilson MJ, Winchell J, Wright DH, Yellin S, Young BA, Zhang X, and Zhao X
- Abstract
We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 g CDMS high-voltage device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/c^{2}. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 g d). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.
- Published
- 2018
- Full Text
- View/download PDF
38. Results from the Super Cryogenic Dark Matter Search Experiment at Soudan.
- Author
-
Agnese R, Aramaki T, Arnquist IJ, Baker W, Balakishiyeva D, Banik S, Barker D, Basu Thakur R, Bauer DA, Binder T, Bowles MA, Brink PL, Bunker R, Cabrera B, Caldwell DO, Calkins R, Cartaro C, Cerdeño DG, Chang Y, Chen Y, Cooley J, Cornell B, Cushman P, Daal M, Di Stefano PCF, Doughty T, Fascione E, Figueroa-Feliciano E, Fritts M, Gerbier G, Germond R, Ghaith M, Godfrey GL, Golwala SR, Hall J, Harris HR, Hong Z, Hoppe EW, Hsu L, Huber ME, Iyer V, Jardin D, Jastram A, Jena C, Kelsey MH, Kennedy A, Kubik A, Kurinsky NA, Loer B, Lopez Asamar E, Lukens P, MacDonell D, Mahapatra R, Mandic V, Mast N, Miller EH, Mirabolfathi N, Mohanty B, Morales Mendoza JD, Nelson J, Orrell JL, Oser SM, Page K, Page WA, Partridge R, Penalver Martinez M, Pepin M, Phipps A, Poudel S, Pyle M, Qiu H, Rau W, Redl P, Reisetter A, Reynolds T, Roberts A, Robinson AE, Rogers HE, Saab T, Sadoulet B, Sander J, Schneck K, Schnee RW, Scorza S, Senapati K, Serfass B, Speller D, Stein M, Street J, Tanaka HA, Toback D, Underwood R, Villano AN, von Krosigk B, Welliver B, Wilson JS, Wilson MJ, Wright DH, Yellin S, Yen JJ, Young BA, Zhang X, and Zhao X
- Abstract
We report the result of a blinded search for weakly interacting massive particles (WIMPs) using the majority of the SuperCDMS Soudan data set. With an exposure of 1690 kg d, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP-nucleon cross section of 1.4×10^{-44} (1.0×10^{-44}) cm^{2} at 46 GeV/c^{2}. These results set the strongest limits for WIMP-germanium-nucleus interactions for masses >12 GeV/c^{2}.
- Published
- 2018
- Full Text
- View/download PDF
39. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment.
- Author
-
Agnese R, Anderson AJ, Aramaki T, Asai M, Baker W, Balakishiyeva D, Barker D, Basu Thakur R, Bauer DA, Billard J, Borgland A, Bowles MA, Brink PL, Bunker R, Cabrera B, Caldwell DO, Calkins R, Cerdeno DG, Chagani H, Chen Y, Cooley J, Cornell B, Cushman P, Daal M, Di Stefano PC, Doughty T, Esteban L, Fallows S, Figueroa-Feliciano E, Ghaith M, Godfrey GL, Golwala SR, Hall J, Harris HR, Hofer T, Holmgren D, Hsu L, Huber ME, Jardin D, Jastram A, Kamaev O, Kara B, Kelsey MH, Kennedy A, Leder A, Loer B, Lopez Asamar E, Lukens P, Mahapatra R, Mandic V, Mast N, Mirabolfathi N, Moffatt RA, Morales Mendoza JD, Oser SM, Page K, Page WA, Partridge R, Pepin M, Phipps A, Prasad K, Pyle M, Qiu H, Rau W, Redl P, Reisetter A, Ricci Y, Roberts A, Rogers HE, Saab T, Sadoulet B, Sander J, Schneck K, Schnee RW, Scorza S, Serfass B, Shank B, Speller D, Toback D, Underwood R, Upadhyayula S, Villano AN, Welliver B, Wilson JS, Wright DH, Yellin S, Yen JJ, Young BA, and Zhang J
- Abstract
The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^{2}.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.