4,931 results on '"D., Gonzalez"'
Search Results
2. The ESO SupJup Survey IV. Unveiling the carbon isotope ratio of GQ Lup B and its host star
- Author
-
Picos, D. González, Snellen, I. A. G., de Regt, S., Landman, R., Zhang, Y., Gandhi, S., and Sánchez-López, A.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
The carbon isotope ratio ($^{12}\mathrm{C}/^{13}\mathrm{C}$) is a potential tracer of giant planet and brown dwarf formation. The GQ Lup system, hosting the K7 T Tauri star GQ Lup A and its substellar companion GQ Lup B, offers a unique opportunity to investigate this ratio in a young system. We aim to characterise the atmosphere of GQ Lup B, determining its temperature, chemical composition, spin, surface gravity, and $^{12}\mathrm{C}/^{13}\mathrm{C}$, while also measuring the same ratio for its host star, GQ Lup A. High-resolution K-band spectra of GQ Lup were obtained using CRIRES+ at the VLT. We modelled the starlight contribution from GQ Lup A and fitted GQ Lup B\'s spectrum with atmospheric models from petitRADTRANS. The $^{12}\mathrm{C}/^{13}\mathrm{C}$ ratio for GQ Lup A was derived using isotope-sensitive PHOENIX models. Atmospheric analysis of GQ Lup B revealed abundances of H$_2$O, $^{12}$CO, $^{13}$CO, HF, Na, Ca, and Ti, along with a C/O ratio of $0.50 \pm 0.01$, consistent with the solar value. The carbon isotope ratio was measured as $^{12}\mathrm{C}/^{13}\mathrm{C} = 53^{+7}_{-6}$ for GQ Lup B and $^{12}\mathrm{C}/^{13}\mathrm{C} = 51^{+10}_{-8}$ for GQ Lup A. Strong veiling of the photospheric lines of GQ Lup A was identified and accounted for. The similar $^{12}\mathrm{C}/^{13}\mathrm{C}$ values in GQ Lup A and B suggest a common origin from a shared material reservoir, supporting formation via disc fragmentation or gravitational collapse., Comment: Accepted for publication in A&A, 20 pages, 14 figures
- Published
- 2025
- Full Text
- View/download PDF
3. Quantum Annealing based Power Grid Partitioning for Parallel Simulation
- Author
-
Hartmann, Carsten, Zhang, Junjie, Calaza, Carlos D. Gonzalez, Pesch, Thiemo, Michielsen, Kristel, and Benigni, Andrea
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
Graph partitioning has many applications in powersystems from decentralized state estimation to parallel simulation. Focusing on parallel simulation, optimal grid partitioning minimizes the idle time caused by different simulation times for the sub-networks and their components and reduces the overhead required to simulate the cuts. Partitioning a graph into two parts such that, for example, the cut is minimal and the subgraphs have equal size is an NP-hard problem. In this paper we show how optimal partitioning of a graph can be obtained using quantum annealing (QA). We show how to map the requirements for optimal splitting to a quadratic unconstrained binary optimization (QUBO) formulation and test the proposed formulation using a current D-Wave QPU. We show that the necessity to find an embedding of the QUBO on current D-Wave QPUs limits the problem size to under 200 buses and notably affects the time-to-solution. We finally discuss the implications on near-term implementation of QA in combination to traditional CPU or GPU based simulation., Comment: 13 pages, 7 figures
- Published
- 2024
4. The ESO SupJup Survey II: The 12C/13C ratios of three young brown dwarfs with CRIRES$^+$
- Author
-
Picos, D. González, Snellen, I. A. G., de Regt, S., Landman, R., Zhang, Y., Gandhi, S., Ginski, C., Kesseli, A. Y., Mollière, P., and Stolker, T.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
Young brown dwarfs exhibit atmospheric characteristics similar to those of super-Jupiters, providing a unique opportunity to study planetary atmospheres. The ESO SupJup Survey, utilizing CRIRES$^+$ on the Very Large Telescope, aims to assess the role of $^{12}$C/$^{13}$C as a formation tracer. We present observations of three young brown dwarfs: 2MASS J12003792-7845082, TWA 28, and 2MASS J08561384-1342242, with the goal of constraining their chemical compositions, thermal profiles, surface gravities, spin rotations, and $^{12}$C/$^{13}$C. Atmospheric retrievals of CRIRES$^+$ K-band spectra were conducted using the radiative transfer code petitRADTRANS coupled with the Bayesian inference algorithm MultiNest, resulting in a detailed characterization of the atmospheres of these objects. We report the volume mixing ratios of main molecular and atomic species, including the novel detection of hydrogen fluoride (HF) in a brown dwarf's atmosphere, and determine $^{12}$C/$^{13}$C values of $81^{+28}_{-19}$ and $79^{+20}_{-14}$ in the atmospheres of TWA 28 and J0856, respectively, with strong significance ($>3\sigma$). Tentative evidence ($\sim 2\sigma$) of $^{13}$C in J1200 was found, with $^{12}$C/$^{13}$C = $114^{+69}_{-33}$, along with $^{18}$O detected at moderate significance in J0856 (3.3$\sigma$) and TWA 28 (2.1$\sigma$). The retrieved thermal profiles indicate hot atmospheres (2300-2600 K) with low surface gravities and slow spins, consistent with young objects. The consistent carbon isotope ratios among the three objects, showing no significant deviation from the local ISM, suggest a fragmentation-based formation mechanism similar to star formation. The tentative detection of $^{18}$O in two objects highlights the potential of high-resolution spectroscopy to probe additional isotope ratios, such as $^{16}$O/$^{18}$O, in the atmospheres of brown dwarfs and super-Jupiters., Comment: Published in A&A Volume 689, September 2024
- Published
- 2024
- Full Text
- View/download PDF
5. Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter
- Author
-
Aamir, M., Adamov, G., Adams, T., Adloff, C., Afanasiev, S., Agrawal, C., Ahmad, A., Ahmed, H. A., Akbar, S., Akchurin, N., Akgul, B., Akgun, B., Akpinar, R. O., Aktas, E., Kadhim, A. Al, Alexakhin, V., Alimena, J., Alison, J., Alpana, A., Alshehri, W., Dominguez, P. Alvarez, Alyari, M., Amendola, C., Amir, R. B., Andersen, S. B., Andreev, Y., Antoszczuk, P. D., Aras, U., Ardila, L., Aspell, P., Avila, M., Awad, I., Aydilek, O., Azimi, Z., Pretel, A. Aznar, Bach, O. A., Bainbridge, R., Bakshi, A., Bam, B., Banerjee, S., Barney, D., Bayraktar, O., Beaudette, F., Beaujean, F., Becheva, E., Behera, P. K., Belloni, A., Bergauer, T., Besancon, M., Bylund, O. Bessidskaia, Bhatt, L., Bhattacharya, S., Bhowmil, D., Blekman, F., Blinov, P., Bloch, P., Bodek, A., Boger, a., Bonnemaison, A., Bouyjou, F., Brennan, L., Brondolin, E., Brusamolino, A., Bubanja, I., Perraguin, A. Buchot, Bunin, P., Misura, A. Burazin, Butler-nalin, A., Cakir, A., Callier, S., Campbell, S., Candemir, Y. B., Canderan, K., Cankocak, K., Cappati, A., Caregari, S., Carron, S., Carty, C., Cauchois, A., Ceard, L., Cerci, S., Chang, P. J., Chatterjee, R. M., Chatterjee, S., Chattopadhyay, P., Chatzistavrou, T., Chaudhary, M. S., Chen, J. A., Chen, J., Chen, Y., Cheng, K., Cheung, H., Chhikara, J., Chiron, A., Chiusi, M., Chokheli, D., Chudasama, R., Clement, E., Mendez, S. Coco, Coko, D., Coskun, K., Couderc, F., Crossman, B., Cui, Z., Cuisset, T., Cummings, G., Curtis, E. M., D'Alfonso, M., Döhler-Ball, J., Dadazhanova, O., Damgov, J., Das, I., Gupta, S. Das, Dauncey, P., Mendes, A. David Tinoco, Davies, G., Davignon, O., de Barbaro, P., De La Taille, C., De Silva, M., De Wit, A., Debbins, P., Defranchis, M. M., Delagnes, E., Devouge, P., Di Guglielmo, G., Diehl, L., Dilsiz, K., Dincer, G. G., Dittmann, J., Dragicevic, M., Du, D., Dubinchik, B., Dugad, S., Dulucq, F., Dumanoglu, I., Duran, B., Dutta, S., Dutta, V., Dychkant, A., Dünser, M., Edberg, T., Ehle, I. T., Berni, A. El, Elias, F., Eno, S. C., Erdogan, E. N., Erkmen, B., Ershov, Y., Ertorer, E. Y., Extier, S., Eychenne, L., Fedar, Y. E., Fedi, G., De Almeida, J. P. Figueiredo De Sá Sousa, Alves, B. A. Fontana Santos, Frahm, E., Francis, K., Freeman, J., French, T., Gaede, F., Gandhi, P. K., Ganjour, S., Garcia-Bellido, A., Gastaldi, F., Gazi, L., Gecse, Z., Gerwig, H., Gevin, O., Ghosh, S., Gill, K., Gingu, C., Gleyzer, S., Godinovic, N., Goettlicher, P., Goff, R., Gok, M., Golunov, A., Gonultas, B., Martínez, J. D. González, Gorbounov, N., Gouskos, L., Gray, A., Gray, L., Grieco, C., Groenroos, S., Groner, D., Gruber, A., Grummer, A., Grönroos, S., Guerrero, D., Guilloux, F., Guler, Y., Gungordu, A. D., Guo, J., Guo, K., Guler, E. Gurpinar, Gutti, H. K., Guvenli, A. A., Gülmez, E., Hacisahinoglu, B., Halkin, Y., Machado, G. Hamilton Ilha, Hare, H. S., Hatakeyama, K., Heering, A. H., Hegde, V., Heintz, U., Hinton, N., Hinzmann, A., Hirschauer, J., Hitlin, D., Hoff, J., Hos, İ., Hou, B., Hou, X., Howard, A., Howe, C., Hsieh, H., Hsu, T., Hua, H., Hummer, F., Imran, M., Incandela, J., Iren, E., Isildak, B., Jackson, P. S., Jackson, W. J., Jain, S., Jana, P., Jaroslavceva, J., Jena, S., Jige, A., Jordano, P. P., Joshi, U., Kaadze, K., Kachanov, V., Kafizov, A., Kalipoliti, L., Tharayil, A. Kallil, Kaluzinska, O., Kamble, S., Kaminskiy, A., Kanemura, M., Kanso, H., Kao, Y., Kapic, A., Kapsiak, C., Karjavine, V., Karmakar, S., Karneyeu, A., Kaya, M., Topaksu, A. Kayis, Kaynak, B., Kazhykarim, Y., Khan, F. A., Khudiakov, A., Kieseler, J., Kim, R. S., Klijnsma, T., Kloiber, E. G., Klute, M., Kocak, Z., Kodali, K. R., Koetz, K., Kolberg, T., Kolcu, O. B., Komaragiri, J. R., Komm, M., Kopsalis, I., Krause, H. A., Krawczyk, M. A., Vinayakam, T. R. Krishnaswamy, Kristiansen, K., Kristic, A., Krohn, M., Kronheim, B., Krüger, K., Kudtarkar, C., Kulis, S., Kumar, M., Kumar, N., Kumar, S., Verma, R. Kumar, Kunori, S., Kunts, A., Kuo, C., Kurenkov, A., Kuryatkov, V., Kyre, S., Ladenson, J., Lamichhane, K., Landsberg, G., Langford, J., Laudrain, A., Laughlin, R., Lawhorn, J., Dortz, O. Le, Lee, S. W., Lektauers, A., Lelas, D., Leon, M., Levchuk, L., Li, A. J., Li, J., Li, Y., Liang, Z., Liao, H., Lin, K., Lin, W., Lin, Z., Lincoln, D., Linssen, L., Litomin, A., Liu, G., Liu, Y., Lobanov, A., Lohezic, V., Loiseau, T., Lu, C., Lu, R., Lu, S. Y., Lukens, P., Mackenzie, M., Magnan, A., Magniette, F., Mahjoub, A., Mahon, D., Majumder, G., Makarenko, V., Malakhov, A., Malgeri, L., Mallios, S., Mandloi, C., Mankel, A., Mannelli, M., Mans, J., Mantilla, C., Martinez, G., Massa, C., Masterson, P., Matthewman, M., Matveev, V., Mayekar, S., Mazlov, I., Mehta, A., Mestvirishvili, A., Miao, Y., Milella, G., Mirza, I. R., Mitra, P., Moccia, S., Mohanty, G. B., Monti, F., Moortgat, F., Murthy, S., Music, J., Musienko, Y., Nabili, S., Nelson, J. W., Nema, A., Neutelings, I., Niedziela, J., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Obraztsov, S., Ochando, C., Ogul, H., Olsson, J., Onel, Y., Ozkorucuklu, S., Paganis, E., Palit, P., Pan, R., Pandey, S., Pantaleo, F., Papageorgakis, C., Paramesvaran, S., Paranjpe, M. M., Parolia, S., Parsons, A. G., Parygin, P., Pastika, J., Paulini, M., Paus, C., Castillo, K. Peñaló, Pedro, K., Pekic, V., Peltola, T., Peng, B., Perego, A., Perini, D., Petrilli, A., Pham, H., Podem, S. K., Popov, V., Portales, L., Potok, O., Pradeep, P. B., Pramanik, R., Prosper, H., Prvan, M., Qasim, S. R., Qu, H., Quast, T., Trivio, A. Quiroga, Rabour, L., Raicevic, N., Rao, M. A., Rapacz, K., Redjeb, W., Reinecke, M., Revering, M., Roberts, A., Rohlf, J., Rosado, P., Rose, A., Rothman, S., Rout, P. K., Rovere, M., Roy, A., Rubinov, P., Rumerio, P., Rusack, R., Rygaard, L., Ryjov, V., Sadivnycha, S., Sahin, M. Ö., Sakarya, U., Salerno, R., Saradhy, R., Saraf, M., Sarbandi, K., Sarkisla, M. A., Satyshev, I., Saud, N., Sauvan, J., Schindler, G., Schmidt, A., Schmidt, I., Schmitt, M. H., Sculac, A., Sculac, T., Sedelnikov, A., Seez, C., Sefkow, F., Selivanova, D., Selvaggi, M., Sergeychik, V., Sert, H., Shahid, M., Sharma, P., Sharma, R., Sharma, S., Shelake, M., Shenai, A., Shih, C. W., Shinde, R., Shmygol, D., Shukla, R., Sicking, E., Silva, P., Simsek, C., Simsek, E., Sirasva, B. K., Sirois, Y., Song, S., Song, Y., Soudais, G., Sriram, S., Jacques, R. R. St, Leiton, A. G. Stahl, Steen, A., Stein, J., Strait, J., Strobbe, N., Su, X., Sukhov, E., Suleiman, A., Cerci, D. Sunar, Suryadevara, P., Swain, K., Syal, C., Tali, B., Tanay, K., Tang, W., Tanvir, A., Tao, J., Tarabini, A., Tatli, T., Taylor, R., Taysi, Z. C., Teafoe, G., Tee, C. Z., Terrill, W., Thienpont, D., Thomas, P. E., Thomas, R., Titov, M., Todd, C., Todd, E., Toms, M., Tosun, A., Troska, J., Tsai, L., Tsamalaidze, Z., Tsionou, D., Tsipolitis, G., Tsirigoti, M., Tu, R., Polat, S. N. Tural, Undleeb, S., Usai, E., Uslan, E., Ustinov, V., Uzunian, A., Vernazza, E., Viahin, O., Viazlo, O., Vichoudis, P., Vijay, A., Virdee, T., Voirin, E., Vojinovic, M., Vámi, T. Á., Wade, A., Walter, D., Wang, C., Wang, F., Wang, J., Wang, K., Wang, X., Wang, Y., Wang, Z., Wanlin, E., Wayne, M., Wetzel, J., Whitbeck, A., Wickwire, R., Wilmot, D., Wilson, J., Wu, H., Xiao, M., Yang, J., Yazici, B., Ye, Y., Yerli, B., Yetkin, T., Yi, R., Yohay, R., Yu, T., Yuan, C., Yuan, X., Yuksel, O., YushmanoV, I., Yusuff, I., Zabi, A., Zareckis, D., Zehetner, P., Zghiche, A., Zhang, C., Zhang, D., Zhang, H., Zhang, J., Zhang, Z., Zhao, X., Zhong, J., Zhou, Y., and Zorbilmez, Ç.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Physics - Data Analysis, Statistics and Probability - Abstract
A novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensors and scintillator tiles readout by SiPMs and the absorbers are a combination of lead and Cu/CuW in the electromagnetic section, and steel in the hadronic section. The shower reconstruction method is based on graph neural networks and it makes use of a dynamic reduction network architecture. It is shown that the algorithm is able to capture and mitigate the main effects that normally hinder the reconstruction of hadronic showers using classical reconstruction methods, by compensating for fluctuations in the multiplicity, energy, and spatial distributions of the shower's constituents. The performance of the algorithm is evaluated using test beam data collected in 2018 prototype of the CMS HGCAL accompanied by a section of the CALICE AHCAL prototype. The capability of the method to mitigate the impact of energy leakage from the calorimeter is also demonstrated.
- Published
- 2024
- Full Text
- View/download PDF
6. The ESO SupJup Survey I: Chemical and isotopic characterisation of the late L-dwarf DENIS J0255-4700 with CRIRES$^+$
- Author
-
de Regt, S., Gandhi, S., Snellen, I. A. G., Zhang, Y., Ginski, C., Picos, D. González, Kesseli, A. Y., Landman, R., Mollière, P., Nasedkin, E., Sánchez-López, A., and Stolker, T.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
It has been proposed that the distinct formation and evolution of exoplanets and brown dwarfs may affect the chemical and isotopic content of their atmospheres. Recent work has indeed shown differences in the $^{12}$C/$^{13}$C isotope ratio, provisionally attributed to the top-down formation of brown dwarfs and the core accretion pathway of super-Jupiters. The ESO SupJup Survey aims to disentangle the formation pathways of isolated brown dwarfs and planetary-mass companions using chemical and isotopic tracers. The survey uses high-resolution spectroscopy with the recently upgraded VLT/CRIRES$^+$ spectrograph, covering a total of 49 targets. Here, we present the first results: an atmospheric characterisation of DENIS J0255-4700, an isolated brown dwarf near the L-T transition. We analyse its K-band spectrum using a retrieval framework where the radiative transfer code petitRADTRANS is coupled to PyMultiNest. Gaussian Processes are employed to model inter-pixel correlations and we adopt an updated parameterisation of the PT-profile. Abundances of CO, H$_2$O, CH$_4$, and NH$_3$ are retrieved for this fast-rotating L-dwarf. The ExoMol H$_2$O line list provides a significantly better fit than that of HITEMP. A free-chemistry retrieval is strongly favoured over equilibrium chemistry, caused by an under-abundance of CH$_4$. The free-chemistry retrieval constrains a super-solar C/O-ratio of $\sim0.68$ and a solar metallicity. We find tentative evidence ($\sim3\sigma$) for the presence of $^{13}$CO, with a constraint on the isotope ratio of $\mathrm{^{12}C/^{13}C}=184^{+61}_{-40}$ and a lower limit of $\gtrsim97$, suggesting a depletion of $^{13}$C compared to the interstellar medium ($\sim68$). High-resolution, high signal-to-noise K-band spectra provide an excellent means to constrain the chemistry and isotopic content of sub-stellar objects, as is the main objective of the ESO SupJup Survey., Comment: Submitted to A&A
- Published
- 2024
- Full Text
- View/download PDF
7. Report from the Workshop on Xenon Detector $0\nu\beta\beta$ Searches: Steps Towards the Kilotonne Scale
- Author
-
Anker, A., Avasthi, A., Brodeur, M., Brunner, T., Byrnes, N. K., Catarineu, N. R., Cottle, A., Englezos, P., Fairbank, W., Díaz, D. González, Guenette, R., Haselschwardt, S. J., Hedges, S., Heffner, M., Holt, J. D., Jamil, A., Jones, B. J. P., Kawada, N., Leardini, S., Lenardo, B. G., Marc, A., Masbou, J., Mistry, K., Mong, B., Monreal, B., Moore, D. C., Nygren, D. R., Olcina, I., Orrell, J. L., Pocar, A., Richardson, G., Rogers, L., Saldanha, R., Sangiorgio, S., Wittweg, C., Xia, Q., Yang, L., and Zennamo, J.
- Subjects
Nuclear Experiment - Abstract
These proceedings summarize the program and discussions of the ``Workshop on Xenon Detector $0\nu\beta\beta$ Searches: Steps Towards the Kilotonne Scale'' held on October 25-27 2023 at SLAC National Accelerator Laboratory. This workshop brought together experts from the communities of neutrinoless double-beta decay and dark matter detection, to discuss paths forward for the realization of monolithic experiments with xenon approaching the kilotonne scale., Comment: 7 pages, 2 figures. Proceedings
- Published
- 2024
8. Multi-omics integration and immune profiling identify possible causal networks leading to uterine microbiome dysbiosis in dairy cows that develop metritis
- Author
-
S. Casaro, J. G. Prim, T. D. Gonzalez, F. Cunha, A. C. M. Silva, H. Yu, R. S. Bisinotto, R. C. Chebel, J. E. P. Santos, C. D. Nelson, S. J. Jeon, R. C. Bicalho, J. P. Driver, and Klibs N. Galvão
- Subjects
Microbiome ,Metabolome ,Immune dysregulation ,Multi-omics ,Causal networks ,Veterinary medicine ,SF600-1100 ,Microbiology ,QR1-502 - Abstract
Abstract Background Cows that develop metritis experience dysbiosis of their uterine microbiome, where opportunistic pathogens overtake uterine commensals. An effective immune response is critical for maintaining uterine health. Nonetheless, periparturient cows experience immune dysregulation, which seems to be intensified by prepartum over-condition. Herein, Bayesian networks were applied to investigate the directional correlations between prepartum body weight (BW), BW loss, pre- and postpartum systemic immune profiling and plasma metabolome, and postpartum uterine metabolome and microbiome. Results The Bayesian network analysis showed a positive directional correlation between prepartum BW, prepartum BW loss, and plasma fatty acids at parturition, suggesting that heavier cows were in lower energy balance than lighter cows. There was a positive directional correlation between prepartum BW, prepartum systemic leukocyte death, immune activation, systemic inflammation, and metabolomic changes associated with oxidative stress prepartum and at parturition. Immune activation and systemic inflammation were characterized by increased proportion of circulating polymorphonuclear cells (PMN) prepartum, B-cell activation at parturition, interleukin-8 prepartum and at parturition, and interleukin-1β at parturition. These immune changes together with plasma fatty acids at parturition had a positive directional correlation with PMN extravasation postpartum, which had a positive directional correlation with uterine metabolites associated with tissue damage. These results suggest that excessive PMN migration to the uterus leads to excessive endometrial damage. The aforementioned changes had a positive directional correlation with Fusobacterium, Porphyromonas, and Bacteroides in cows that developed metritis, suggesting that excessive tissue damage may disrupt physical barriers or increase substrate availability for bacterial growth. Conclusions This work provides robust mechanistic hypotheses for how prepartum BW may impact peripartum immune and metabolic profiles, which may lead to uterine opportunistic pathogens overgrowth and metritis development.
- Published
- 2025
- Full Text
- View/download PDF
9. Altermagnetic lifting of Kramers spin degeneracy
- Author
-
Krempaský, J., Šmejkal, L., D'Souza, S. W., Hajlaoui, M., Springholz, G., Uhlířová, K., Alarab, F., Constantinou, P. C., Strokov, V., Usanov, D., Pudelko, W. R., González-Hernández, R., Hellenes, A. Birk, Jansa, Z., Reichlová, H., Šobáň, Z., Betancourt, R. D. Gonzalez, Wadley, P., Sinova, J., Kriegner, D., Minár, J., Dil, J. H., and Jungwirth, T.
- Subjects
Physics - Applied Physics ,Condensed Matter - Materials Science - Abstract
Lifted Kramers spin-degeneracy has been among the central topics of condensed-matter physics since the dawn of the band theory of solids. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology to topological quantum matter. Traditionally, lifted Kramers spin-degeneracy has been considered to originate from two possible internal symmetry-breaking mechanisms. The first one refers to time-reversal symmetry breaking by magnetization of ferromagnets, and tends to be strong due to the non-relativistic exchange-coupling origin. The second mechanism applies to crystals with broken inversion symmetry, and tends to be comparatively weaker as it originates from the relativistic spin-orbit coupling. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic, that allows for lifting the Kramers spin degeneracy without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of lifted Kramers spin degeneracy generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization. Our observation of the altermagnetic lifting of the Kramers spin degeneracy can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors, that have been either identified recently or perceived for many decades as conventional antiferromagnets.
- Published
- 2023
10. Burnout components, perceived stress and hair cortisol in healthcare professionals during the second wave of COVID 19 pandemic
- Author
-
F. Fortuna, D. Gonzalez, A. Fritzler, C. Ibar, G. Nenda, E. D’Isa, P. Otero, J. Jamardo, M. Calvo, F. Funez, F. Minotti, L. Filipuzzi, N. Canellas, S. Casciaro, D. Jacobsen, S. Azzara, S. Iglesias, G. Gutierrez, C. Aranda, G. Berg, and B. Fabre
- Subjects
Medicine ,Science - Abstract
Abstract This study evaluates the impact of the COVID-19 pandemic on healthcare workers in Argentina, during the second wave in 2021. The aim is to assess stress and burnout, incorporating the assessment of hair cortisol levels as a biomarker of chronic stress. A total of 496 healthcare workers from three different hospitals were included in this study. Two of these hospitals depend on the Buenos Aires City Ministry of Health and the third hospital belongs to Buenos Aires University. Hair samples were obtained using scissors from the posterior vertex, as close to the scalp as possible. Each sample was weighed, and cortisol was extracted and then measured using an automated chemiluminescent method. Notably, 10% of the population exhibited hair cortisol levels above 128 pg/mg. Associations were found between high hair cortisol levels and age, workload, emotional exhaustion, and depersonalization. In addition, burnout, identified in 11% of participants, correlated with higher perceived stress and lower social support. Binary logistic regression revealed associations between burnout and perceived stress, and age. Finally, mediation analysis showed depersonalization as a mediating variable in the relationship between hair cortisol concentration and emotional exhaustion. In conclusion, this study highlights the complex relationships between stress, cortisol levels, and burnout. Prioritizing interventions and research is essential to support the well-being of frontline healthcare professionals, ensuring their resilience during challenging times.
- Published
- 2024
- Full Text
- View/download PDF
11. Developing and Assessing a Scalable Digital Health Tool for Pretest Genetic Education in Patients With Early-Onset Colorectal Cancer: Mixed Methods Design
- Author
-
Jessica N Rivera Rivera, Moran Snir, Emilie Simmons, Tara Schmidlen, Misha Sholeh, Melinda Leigh Maconi, Carley Geiss, Hayden Fulton, Laura Barton, Brian D Gonzalez, Jennifer Permuth, and Susan Vadaparampil
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
BackgroundNational guidelines recommend germline genetic testing (GT) for all patients with early-onset colorectal cancer. With recent advances in targeted therapies and GT, these guidelines are expected to expand to include broader groups of patients with colorectal cancer. However, there is a shortage of genetic professionals to provide the necessary education and support for informed consent. As such, there is a pressing need to identify alternative approaches to facilitate and expedite access to GT. ObjectiveThis study describes the development of a pretest education intervention, Nest-CRC, to facilitate the uptake of germline GT among patients with early-onset colorectal cancer. Patients with early-onset colorectal cancer and health care providers reviewed Nest-CRC, and their reactions and recommendations were captured using a nested mixed methods approach. MethodsUsing the learner verification approach, we conducted 2 sequential phases of surveys and interviews with English- and Spanish-speaking patients with early-onset colorectal cancer and health care providers. The surveys assessed participants’ experiences with genetic services and provided immediate feedback on the Nest-CRC genetic education modules. Semistructured interviews evaluated participants’ perceptions of self-efficacy, attraction, comprehension, cultural acceptability, and usability of Nest-CRC. Survey data were analyzed using descriptive statistics (mean, median, and proportions), while interview data were analyzed through line-by-line coding of the transcribed interviews. After each phase, Nest-CRC was refined based on participants’ recommendations. ResultsA total of 52 participants, including 39 patients with early-onset colorectal cancer and 13 providers, participated in the study. Of these, 19 patients and 6 providers participated in phase 1 (N=25), and 20 patients and 7 providers participated in phase 2 (N=27). Most participants (phase 1: 23/25, 92%, to 25/25, 100%; phase 2: 24/27, 89%, to 27/27, 100%) agreed that each of the 5 education modules was easy to understand and helpful; 13 patients reported no history of GT, with 11 (85%) expressing interest in GT and 2 (15%) remaining unsure after completing Nest-CRC. Participants reported that Nest-CRC provided sufficient information to help them decide about GT. The tool was deemed acceptable by individuals from diverse backgrounds, and participants found it visually attractive, easy to comprehend, and user-friendly. ConclusionsThe findings revealed that Nest-CRC is a promising strategy for facilitating pretest education and promoting GT. Nest-CRC has been refined based on participant recommendations and will be re-evaluated.
- Published
- 2025
- Full Text
- View/download PDF
12. Broadband background-free stimulated Raman scattering microspectroscopy with a novel frequency modulation scheme
- Author
-
L. Genchi, S. P. Laptenok, D. Gonzalez-Hernandez, J. Menzies, M. Aranda, and C. Liberale
- Subjects
Applied optics. Photonics ,TA1501-1820 - Abstract
Stimulated Raman scattering (SRS) microspectroscopy is a powerful imaging technique that leverages chemical composition to produce detailed, label-free images in applications such as biomedical and environmental sciences. However, current SRS methods are often limited by background signals from nonlinear optical phenomena, which reduce contrast and sensitivity. This study introduces a broadband frequency-modulated SRS (FM-SRS) system that enhances flexibility, spectral range, resolution, and automation. Utilizing a high-speed acousto-optic tunable filter and an etalon, the system achieves automated, background-free SRS measurements across the fingerprint to CH-stretch regions. Dynamic selection and adjustment of FM wavenumber pairs maintain high spectral resolution, resolving Raman bands with ∼10 cm−1 linewidths over the 400–3600 cm−1 range. We demonstrate effective background cancellation with phantom specimens and photosynthetic microalgae. This new FM-SRS system addresses the limitations of existing methods, paving the way for advanced applications in SRS microspectroscopy.
- Published
- 2024
- Full Text
- View/download PDF
13. Impact of Continuous Glucose Monitoring on Hemoglobin A1c and Height Trends in Latin American Children with Type 1 Diabetes Onset over 3 Years: A Multicenter Study
- Author
-
Valeria Hirschler, MD, Claudia Molinari, Msc, Claudio D. Gonzalez, MD, Maria Eugenia Andres, Angela Figueroa Sobrero, Victoria Femenia, Guadalupe Pietropaolo, Maria L. Major, Edit Scaiola, Sandra Mazzetti, Patricia Pasayo, Amanda J. Benitez, Andrea Escalante Marassi, Laura Pardo, Julie Pelicand, Carlos M. Del Aguila Villar, Alejandra Franchello, Ernesto Bogado, Julieta Pomilio, Rosa Flores, Elizabeth Garcia Rusca, Andrea Soledad Reinoso, Analia Morin, Eduardo Rossi, Veronica Vacarezza, Daniela Rodríguez Fuentes, Paula Paz Povedano, Ana L. Garcia, Teresa Martinez, Fabiola Blanco, Oswaldo Núñez Almache, Ana Parada, Patricia Bocco, M Laura Arzamendia, Carla Mannucci, Patricia Taberner, and Laura Braguinsky
- Subjects
Latin American children ,type 1 diabetes ,height ,CGM ,Pediatrics ,RJ1-570 - Abstract
Objective: To evaluate changes in hemoglobin A1c (HbA1c) levels and z-height over 3 years based on continuous glucose monitoring (CGM) usage among children with new-onset type 1 diabetes (T1DM) from various Latin American centers. Study design: Data on z-height, CGM access, and HbA1c (%) were collected for Latin American children aged 6 months to 18 years with T1DM onset from 19 centers in a retrospective analysis of medical records, from 2020 to 2023. A 2-way ANOVA method with repeated measures and multiple regression analyses were performed. Results: We included 433 children (46.0% female) aged 8.7 ± 3.7 years; 199 (45.9%) used CGM. The mean HbA1c was significantly lower in years 1, 2, and 3 than at baseline in children with CGM, but not those without CGM. The z-height decreased significantly with the years in both groups. However, the CGM users showed a significantly greater height in years 2 and 3 than the nonusers. Multiple linear regression analysis showed that CGM users exhibited a significantly lower incremental area under the curve (AUC) for HbA1c during follow-up than nonusers. Furthermore, a lower incremental AUC for HbA1c was associated with a smaller decremental AUC for z-height (R2 = 0.19). Multiple logistic regression analysis revealed that children with CGM were 80% more likely (OR, 0.22; 95% CI, 0.1-0.6) to achieve an HbA1c of
- Published
- 2024
- Full Text
- View/download PDF
14. Spanish women’s perceptions of empowerment during the reproductive process
- Author
-
María del Carmen Martín-Bellido and Juan D. Gonzalez-Sanz
- Subjects
Empowerment ,perinatal care ,pregnant women ,midwifery ,perceptions ,Komalsingh Rambaree, Social Work and Criminology, University of Gävle, Gävle, Sweden ,Social Sciences - Abstract
AbstractDissatisfaction among women and health professionals regarding the health care provided during the perinatal period has led to the development of another style of care, oriented towards encouraging and respecting the autonomy of women during the reproductive process, what has called ‘women’s empowerment’. The aim of this paper is to describe women’s perceptions of empowerment during the perinatal period and its relationship to the humanization of childbirth, individualized care, and a dignified treatment of their bodies. Study was carried with a descriptive qualitative exploratory methodology using six focus groups of between 5 and 8 participants (June 2020–June 2022). The groups were guided by a semi-structured questionnaire. Data analysis was performed according to the Taylor-Bodgan methodology. The number of participants was 39 (29 pregnant; the rest were less than 12 months postpartum). From the analysis of the data, nine categories arose: definition, benefits, harms, role of the midwife, relationship, essential aspects, knowledge, feelings, and improvements. As concluding remarks, participants perceive women’s empowerment in the perinatal period as something beneficial, although this is a term with which they are unfamiliar. They consider that the role of the midwife and the information received are fundamental elements in this empowerment. Finally, a close relationship is established between this term and others such as individualized care and the humanization of childbirth.
- Published
- 2024
- Full Text
- View/download PDF
15. A general algorithm for convex fair partitions of convex polygons
- Author
-
Mathilda Campillo, Maria D. Gonzalez-Lima, and Bernardo Uribe
- Subjects
Convex equipartition ,Fair partition ,Lloyd’s algorithm ,Voronoi partition ,Centroidal Voronoi partition ,Applied mathematics. Quantitative methods ,T57-57.97 ,Analysis ,QA299.6-433 - Abstract
Abstract A convex fair partition of a convex polygonal region is defined as a partition on which all regions are convex and have equal area and equal perimeter. The existence of such a partition for any number of regions remains an open question. In this paper, we address this issue by developing an algorithm to find such a convex fair partition without restrictions on the number of regions. Our approach utilizes the normal flow algorithm (a generalization of Newton’s method) to find a zero for the excess areas and perimeters of the convex hulls of the regions. The initial partition is generated by applying Lloyd’s algorithm to a randomly selected set of points within the polygon, after appropriate scaling. We performed extensive experimentation, and our algorithm can find a convex fair partition for 100% of the tested problem. Our findings support the conjecture that a convex fair partition always exists.
- Published
- 2024
- Full Text
- View/download PDF
16. Determining critical monitoring periods for accurate wearable step counts in patients with degenerative spine disorders
- Author
-
Aneysis D. Gonzalez-Suarez, Nicolai Maldaner, Megan Tang, Parastou Fatemi, Chris Leung, Atman Desai, Christy Tomkins-Lane, Summer S. Han, and Corinna Zygourakis
- Subjects
Medicine ,Science - Abstract
Abstract Longitudinal physical activity monitoring is a novel and promising objective outcome measure for patients with degenerative spine disorder (DSD) that currently lacks established standards for data collection and interpretation. Here, we monitored 100 patients with DSD with the Apple Watch to establish the optimal duration and pattern of step count monitoring needed to estimate their weekly physical activity before their elective surgery. Participants were predominantly female (65.3%), had an average age of 61.5 years, and showed consistent step counts between preoperative days, as well as across weekends and weekdays. Intraclass correlations (ICC) analysis showed that a step count average over 2 days achieved an ICC of 0.92 when compared to a 7-day average before surgery, while 4 days were required for a similar agreement of 0.93 with a 14-day average. Sequential linear regression demonstrated that incorporating additional preoperative days improved the model’s ability to predict 7- and 14-days step count averages. We conclude that, while daily preoperative step counts remain relatively stable, longer activity monitoring is necessary to account for the variance in step count over an increasing time frame, and the full extent of data fluctuation may only become apparent with long-term trend analysis.
- Published
- 2024
- Full Text
- View/download PDF
17. Application of behavior data to predictive exploratory models of metritis self-cure and treatment failure in dairy cows
- Author
-
Jessica G. Prim, Segundo Casaro, Ahmadreza Mirzaei, Tomas D. Gonzalez, Eduardo B. de Oliveira, Anderson Veronese, Ricardo C. Chebel, J.E.P. Santos, K.C. Jeong, F.S. Lima, Paulo R. Menta, Vinicius S. Machado, and Klibs N. Galvão
- Subjects
metritis ,cure ,prediction ,dairy cow ,Dairy processing. Dairy products ,SF250.5-275 ,Dairying ,SF221-250 - Abstract
ABSTRACT: The objective was to evaluate the performance of exploratory models containing routinely available on-farm data, behavior data, and the combination of both to predict metritis self-cure (SC) and treatment failure (TF). Holstein cows (n = 1,061) were fitted with a collar-mounted automated-health monitoring device (AHMD) from −21 ± 3 to 60 ± 3 d relative to calving to monitor rumination time and activity. Cows were examined for diagnosis of metritis at 4 ± 1, 7 ± 1, and 9 ± 1 d in milk (DIM). Cows diagnosed with metritis (n = 132), characterized by watery, fetid, reddish/brownish vaginal discharge (VD), were randomly allocated to 1 of 2 treatments: control (CON; n = 62), no treatment at the time of metritis diagnosis (d 0); or ceftiofur (CEF; n = 70), subcutaneous injection of 6.6 mg/kg of ceftiofur crystalline-free acid on d 0 and 3 relative to diagnosis. Cure was determined 12 d after diagnosis and was considered when VD became mucoid and not fetid. Cows in CON were used to determine SC, and cows in CEF were used to determine TF. Univariable analyses were performed using farm-collected data (parity, calving season, calving-related disorders, body condition score, rectal temperature, and DIM at metritis diagnosis) and behavior data (i.e., daily averages of rumination time, activity generated by AHMD, and derived variables) to assess their association with metritis SC or TF. Variables with P-values ≤0.20 were included in the multivariable logistic regression exploratory models. To predict SC, the area under the curve (AUC) for the exploratory model containing only data routinely available on-farm was 0.75. The final exploratory model to predict SC combining routinely available on-farm data and behavior data increased the AUC to 0.87, with sensitivity (Se) of 89% and specificity (Sp) of 77%. To predict TF, the AUC for the exploratory model containing only data routinely available on-farm was 0.90. The final exploratory model combining routinely available on-farm data and behavior data increased the AUC to 0.93, with Se of 93% and Sp of 87%. Cross-validation analysis revealed that generalizability of the exploratory models was poor, which indicates that the findings are applicable to the conditions of the present exploratory study. In summary, the addition of behavior data contributed to increasing the prediction of SC and TF. Developing and validating accurate prediction models for SC could lead to a reduction in antimicrobial use, whereas accurate prediction of cows that would have TF may allow for better management decisions.
- Published
- 2024
- Full Text
- View/download PDF
18. Using Machine Learning Models to Identify Factors Associated With 30-Day Readmissions After Posterior Cervical Fusions: A Longitudinal Cohort Study
- Author
-
Aneysis D. Gonzalez-Suarez, Paymon G. Rezaii, Daniel Herrick, Seth Stravers Tigchelaar, John K. Ratliff, Mirabela Rusu, David Scheinker, Ikchan Jeon, and Atman M. Desai
- Subjects
machine learning ,predictive modeling ,readmission ,spine ,costs ,posterior cervical fusion ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Objective Readmission rates after posterior cervical fusion (PCF) significantly impact patients and healthcare, with complication rates at 15%–25% and up to 12% 90-day readmission rates. In this study, we aim to test whether machine learning (ML) models that capture interfactorial interactions outperform traditional logistic regression (LR) in identifying readmission-associated factors. Methods The Optum Clinformatics Data Mart database was used to identify patients who underwent PCF between 2004–2017. To determine factors associated with 30-day readmissions, 5 ML models were generated and evaluated, including a multivariate LR (MLR) model. Then, the best-performing model, Gradient Boosting Machine (GBM), was compared to the LACE (Length patient stay in the hospital, Acuity of admission of patient in the hospital, Comorbidity, and Emergency visit) index regarding potential cost savings from algorithm implementation. Results This study included 4,130 patients, 874 of which were readmitted within 30 days. When analyzed and scaled, we found that patient discharge status, comorbidities, and number of procedure codes were factors that influenced MLR, while patient discharge status, billed admission charge, and length of stay influenced the GBM model. The GBM model significantly outperformed MLR in predicting unplanned readmissions (mean area under the receiver operating characteristic curve, 0.846 vs. 0.829; p < 0.001), while also projecting an average cost savings of 50% more than the LACE index. Conclusion Five models (GBM, XGBoost [extreme gradient boosting], RF [random forest], LASSO [least absolute shrinkage and selection operator], and MLR) were evaluated, among which, the GBM model exhibited superior predictive performance, robustness, and accuracy. Factors associated with readmissions impact LR and GBM models differently, suggesting that these models can be used complementarily. When analyzing PCF procedures, the GBM model resulted in greater predictive performance and was associated with higher theoretical cost savings for readmissions associated with PCF complications.
- Published
- 2024
- Full Text
- View/download PDF
19. Analyzing Large Language Models’ Responses to Common Lumbar Spine Fusion Surgery Questions: A Comparison Between ChatGPT and Bard
- Author
-
Siegmund Philipp Lang, Ezra Tilahun Yoseph, Aneysis D. Gonzalez-Suarez, Robert Kim, Parastou Fatemi, Katherine Wagner, Nicolai Maldaner, Martin N. Stienen, and Corinna Clio Zygourakis
- Subjects
artificial intelligence ,large language models ,patient education ,lumbar spine fusion ,chatgpt ,bard ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Objective In the digital age, patients turn to online sources for lumbar spine fusion information, necessitating a careful study of large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) for patient education. Methods Our study aims to assess the response quality of Open AI (artificial intelligence)’s ChatGPT 3.5 and Google’s Bard to patient questions on lumbar spine fusion surgery. We identified 10 critical questions from 158 frequently asked ones via Google search, which were then presented to both chatbots. Five blinded spine surgeons rated the responses on a 4-point scale from ‘unsatisfactory’ to ‘excellent.’ The clarity and professionalism of the answers were also evaluated using a 5-point Likert scale. Results In our evaluation of 10 questions across ChatGPT 3.5 and Bard, 97% of responses were rated as excellent or satisfactory. Specifically, ChatGPT had 62% excellent and 32% minimally clarifying responses, with only 6% needing moderate or substantial clarification. Bard’s responses were 66% excellent and 24% minimally clarifying, with 10% requiring more clarification. No significant difference was found in the overall rating distribution between the 2 models. Both struggled with 3 specific questions regarding surgical risks, success rates, and selection of surgical approaches (Q3, Q4, and Q5). Interrater reliability was low for both models (ChatGPT: k = 0.041, p = 0.622; Bard: k = -0.040, p = 0.601). While both scored well on understanding and empathy, Bard received marginally lower ratings in empathy and professionalism. Conclusion ChatGPT3.5 and Bard effectively answered lumbar spine fusion FAQs, but further training and research are needed to solidify LLMs’ role in medical education and healthcare communication.
- Published
- 2024
- Full Text
- View/download PDF
20. Snowmass Instrumentation Frontier IF08 Topical Group Report: Noble Element Detectors
- Author
-
Dahl, Carl Eric, Guenette, Roxanne, Raaf, Jennifer L., Akerib, D., Asaadi, J., Caratelli, D., Church, E., Del Tutto, M., Fava, A., Gaitskell, R., Giovanetti, G. K., Giroux, G., Diaz, D. Gonzalez, Gramellini, E., Haselschwardt, S., Jackson, C., Jones, B. J. P., Kopec, A., Kravitz, S., Lippincott, H., Liu, J., Martoff, C. J., Mastbaum, A., Montanari, C., Mooney, M., Ni, K., Pagani, L., Palamara, O., Pandola, L., Patterson, R., Pereverzev, S., Qian, X., Savarese, C., Sorensen, P., Stanford, C., Szelc, A., Szydagis, M., Westerdale, S., Xu, J., Zennamo, J., Zettlemoyer, J., and Zhang, C.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Particle detectors making use of noble elements in gaseous, liquid, or solid phases are prevalent in neutrino and dark matter experiments and are also used to a lesser extent in collider-based particle physics experiments. These experiments take advantage of both the very large, ultra-pure target volumes achievable and the multiple observable signal pathways possible in noble-element based particle detectors. As these experiments seek to increase their sensitivity, novel and improved technologies will be needed to enhance the precision of their measurements and to broaden the reach of their physics programs. The areas of R&D in noble element instrumentation that have been identified by the HEP community in the Snowmass process are highlighted by five key messages: IF08-1) Enhance and combine existing modalities (scintillation and electron drift) to increase signal-to-noise and reconstruction fidelity; IF08-2) Develop new modalities for signal detection in noble elements, including methods based on ion drift, metastable fluids, solid-phase detectors and dissolved targets. Collaborative and blue-sky R&D should also be supported to enable advances in this area; IF08-3) Improve the understanding of detector microphysics and calibrate detector response in new signal regimes; IF08-4) Address challenges in scaling technologies, including material purification, background mitigation, large-area readout, and magnetization; and IF08-5) Train the next generation of researchers, using fast-turnaround instrumentation projects to provide the design-through-result training no longer possible in very-large-scale experiments. This topical group report identifies and documents recent developments and future needs for noble element detector technologies. In addition, we highlight the opportunity that this area of research provides for continued training of the next generation of scientists., Comment: 20 pages, 1 figure
- Published
- 2022
21. The eclipse of the V773 Tau B circumbinary disk
- Author
-
Kenworthy, M. A., Picos, D. González, Elizondo, E., Martin, R. G., van Dam, D. M., Rodriguez, J. E., Kennedy, G. M., Ginski, C., Mugrauer, M., Vogt, N., Adam, C., and Oelkers, R. J.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
A deep (~70%) and extended (~150 days) eclipse was seen towards the young multiple stellar system V773 Tau in 2010. We interpret it as due to the passage of a circumbinary disk around the B components moving in front of the A components. Our aim is to characterise the orientation and structure of the disk, to refine the orbits of the subcomponents, and to predict when the next eclipse will occur. We combine the photometry from several ground based surveys, construct a model for the light curve of the eclipse, and use high angular resolution imaging to refine the orbits of the three components of the system, A, B and C. Frequency analysis of the light curves, including from the TESS satellite, enables characterisation of the rotational periods of the Aa and Ab stars. A toy model of the circumbinary disk shows that it extends out to approximately 5 au around the B binary and has an inclination of 73 degrees with respect to the orbital plane of AB, where the lower bound of the radius of the disk is constrained by the geometry of the AB orbit and the upper bound is set by the stability of the disk. We identify several frequencies in the photometric data that we attribute to rotational modulation of the Aa and Ab stellar companions. We produce the first determination of the orbit of the more distant C component around the AB system and limit its inclination to 93 degrees. The high inclination and large diameter of the disk, together with the match from theory suggest that B is an almost equal mass, moderately eccentric binary. We identify the rotational periods of the Aa and Ab stars, identify a third frequency in the light curve that we attribute to the orbital period of the stars in the B binary. We predict that the next eclipse will be around 2037, during which both detailed photometric and spectroscopic monitoring will characterise the disk in greater detail., Comment: 13 pages, 15 figures, 5 tables, A&A in press. All data and reduction scripts available at https://github.com/mkenworthy/V773TauBdisk
- Published
- 2022
- Full Text
- View/download PDF
22. Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Ahmad, Z., Ahmed, J., Aimard, B., Akbar, F., Ali-Mohammadzadeh, B., Allison, K., Monsalve, S. Alonso, AlRashed, M., Alt, C., Alton, A., Alvarez, R., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Antusch, S., Aranda-Fernandez, A., Arellano, L., Arnold, L. O., Arroyave, M. A., Asaadi, J., Asquith, L., Aurisano, A., Aushev, V., Autiero, D., Lara, V. Ayala, Ayala-Torres, M., Azfar, F., Back, A., Back, H., Back, J. J., Backhouse, C., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baller, B., Bambah, B., Barao, F., Barenboim, G., Barker, G., Barkhouse, W., Barnes, C., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Battat, J., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Chagas, E. Belchior Batista das, Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Neves, F. Bento, Berger, J., Berkman, S., Bernardini, P., Berner, R. M., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhardwaj, A., Bhatnagar, V., Bhattacharjee, M., Bhattarai, D., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biassoni, M., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. d. M., Blazey, G. C., Blucher, E., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Borkum, A., Bostan, N., Bour, P., Boyden, D., Bracinik, J., Braga, D., Brailsford, D., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Butorov, I., Cagnoli, I., Cai, T., Caiulo, D., Calabrese, R., Calafiura, P., Calcutt, J., Calin, M., Calvez, S., Calvo, E., Caminata, A., Benitez, A. Campos, Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carroll, T., Forero, J. F. Castaño, Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavallaro, G., Cavanna, F., Centro, S., Cerati, G., Cervelli, A., Villanueva, A. Cervera, Chalifour, M., Chappell, A., Chardonnet, E., Charitonidis, N., Chatterjee, A., Chattopadhyay, S., Neyra, M. S. Chavarry, Chen, H., Chen, M., Chen, Y., Chen, Z., Chen-Wishart, Z., Cheon, Y., Cherdack, D., Chi, C., Childress, S., Chirco, R., Chiriacescu, A., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Christensen, A., Christian, D., Christodoulou, G., Chukanov, A., Chung, M., Church, E., Cicero, V., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J., Collot, J., Colton, N., Conley, E., Conley, R., Conrad, J., Convery, M., Copello, S., Cova, P., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Cussans, D., Dai, J., Dalager, O., Da Motta, H., Peres, L. Da Silva, David, C., David, Q., Davies, G. S., Davini, S., Dawson, J., De, K., De, S., Debbins, P., De Bonis, I., Decowski, M., De Gouvea, A., De Holanda, P. C., Astiz, I. L. De Icaza, Deisting, A., De Jong, P., Delbart, A., De Leo, V., Delepine, D., Delgado, M., Dell'Acqua, A., Delmonte, N., De Lurgio, P., Neto, J. R. De Mello, DeMuth, D. M., Dennis, S., Densham, C., Deptuch, G. W., De Roeck, A., De Romeri, V., De Souza, G., Devi, R., Dharmapalan, R., Dias, M., Diaz, J., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Giulio, L., Ding, P., Di Noto, L., Dirkx, G., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M., Domine, L., Donon, Y., Douglas, D., Dragone, A., Drake, G., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dunne, P., Dutta, B., Duyang, H., Dvornikov, O., Dwyer, D., Dyshkant, A., Eads, M., Earle, A., Edmunds, D., Eisch, J., Emberger, L., Emery, S., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C., Sanchez, L. Escudero, Eurin, G., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Falcone, A., Fani', M., Farnese, C., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Menendez, P. Fernandez, Ferraro, F., Fields, L., Filip, P., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fischer, V., Fitzpatrick, R. S., Flanagan, W., Fleming, B., Flight, R., Fogarty, S., Foreman, W., Fowler, J., Fox, W., Franc, J., Francis, K., Franco, D., Freeman, J., Freestone, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gabrielli, A., Gago, A., Gallagher, H., Gallas, A., Gallego-Ros, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardiner, S., Gastler, D., Gauvreau, J., Gauzzi, P., Ge, G., Geffroy, N., Gelli, B., Gendotti, A., Gent, S., Ghorbani-Moghaddam, Z., Giammaria, P., Giammaria, T., Giangiacomi, N., Gibin, D., Gil-Botella, I., Gilligan, S., Girerd, C., Giri, A., Gnani, D., Gogota, O., Gold, M., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Caamaño, D. González, Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goodwin, O., Goswami, S., Gotti, C., Goudzovski, E., Grace, C., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D., Green, P., Green, S., Greenberg, S., Greenler, L., Greer, J., Grenard, J., Griffith, C., Groh, M., Grudzinski, J., Grzelak, K., Gu, W., Guardincerri, E., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Gupta, A., Gupta, V., Guthikonda, K., Guzowski, P., Guzzo, M. M., Gwon, S., Ha, C., Haaf, K., Habig, A., Hadavand, H., Haenni, R., Hahn, A., Haiston, J., Hamacher-Baumann, P., Hamernik, T., Hamilton, P., Han, J., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hatfield, K. W., Hatzikoutelis, A., Hayes, C., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. Hernandez, Herner, K., Hewes, V, Hilgenberg, C., Hill, T., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Hoppe, E., Horton-Smith, G. A., Hostert, M., Hourlier, A., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Hulcher, Z., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jediny, F., Jena, D., Jeong, Y., Jesús-Valls, C., Ji, X., Jiang, J., Jiang, L., Jiménez, S., Jipa, A., Joaquim, F., Johnson, W., Johnston, N., Jones, B., Judah, M., Jung, C., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kamiya, F., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karolak, M., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Kazaryan, N., Kearns, E., Keener, P., Kelly, K. J., Kemp, E., Kemularia, O., Ketchum, W., Kettell, S. H., Khabibullin, M., Khotjantsev, A., Khvedelidze, A., Kim, D., King, B., Kirby, B., Kirby, M., Klein, J., Klustova, A., Kobilarcik, T., Koehler, K., Koerner, L. W., Koh, D. H., Kohn, S., Koller, P. P., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecky, V., Kothekar, K., Kralik, R., Kreczko, L., Krennrich, F., Kreslo, I., Kropp, W., Kroupova, T., Kubota, S., Kudenko, Y., Kudryavtsev, V. A., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kunze, P., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Kwak, D., Lambert, A., Land, B., Lane, C. E., Lang, K., Langford, T., Langstaff, M., Larkin, J., Lasorak, P., Last, D., Laundrie, A., Laurenti, G., Lawrence, A., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeBrun, P., LeCompte, T., Lee, C., Lee, S., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. Leigui, Leitner, M., Lepin, L. M., Li, S., Li, Y., Liao, H., Lin, C., Lin, Q., Lin, S., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, J., Liu, Y., Lockwitz, S., Loew, T., Lokajicek, M., Lomidze, I., Long, K., Lord, T., LoSecco, J., Louis, W. C., Lu, X., Luk, K., Lunday, B., Luo, X., Luppi, E., Lux, T., Luzio, V. P., Maalmi, J., MacFarlane, D., Machado, A., Machado, P., Macias, C., Macier, J., Maddalena, A., Madera, A., Madigan, P., Magill, S., Mahn, K., Maio, A., Major, A., Maloney, J. A., Mandrioli, G., Mandujano, R. C., Maneira, J. C., Manenti, L., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marie, R., Marinho, F., Marino, A. D., Markiewicz, T., Marsden, D., Marshak, M., Marshall, C., Marshall, J., Marteau, J., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Mason, K., Mastbaum, A., Matichard, F., Matsuno, S., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., Mazzucato, E., McAskill, T., McCluskey, E., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Mefodiev, A., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Messier, M., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Michna, G., Mikola, V., Milincic, R., Miller, G., Miller, W., Mills, J., Mineev, O., Minotti, A., Miranda, O. G., Miryala, S., Mishra, C., Mishra, S., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Moffat, K., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J. A., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Moon, S., Mooney, M., Moor, A. F., Moreno, D., Moretti, D., Morris, C., Mossey, C., Mote, M., Motuk, E., Moura, C. A., Mousseau, J., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Mufson, S., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Muramatsu, H., Murphy, M., Murphy, S., Musser, J., Nachtman, J., Nagai, Y., Nagu, S., Nalbandyan, M., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Negishi, K., Nelson, J. K., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Newton, H., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Niner, E., Nishimura, K., Norman, A., Norrick, A., Northrop, R., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J., Olivier, A., Olshevskiy, A., Onel, Y., Onishchuk, Y., Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Paramesvaran, S., Parke, S., Parozzi, E., Parsa, Z., Parvu, M., Pascoli, S., Pasqualini, L., Pasternak, J., Pater, J., Patrick, C., Patrizii, L., Patterson, R. B., Patton, S., Patzak, T., Paudel, A., Paulos, B., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Peeters, S. J., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pia, V., Piastra, F., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Plows, K., Plunkett, R., Pompa, F., Pons, X., Poonthottathil, N., Poppi, F., Pordes, S., Porter, J., Porzio, S., Potekhin, M., Potenza, R., Potukuchi, B. V., Pozimski, J., Pozzato, M., Prakash, S., Prakash, T., Prest, M., Prince, S., Psihas, F., Pugnere, D., Qian, X., Raaf, J., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajaoalisoa, M., Rakhno, I., Rakotonandrasana, A., Rakotondravohitra, L., Rameika, R., Delgado, M. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Raut, S., Razafinime, H., Razakamiandra, R., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renshaw, A., Rescia, S., Resnati, F., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Rice, L. C., Ricol, J. S., Rigamonti, A., Rigaut, Y., Rincón, E. V., Ritchie-Yates, H., Rivera, D., Robert, A., Rocha, J. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Leite, J. V. Rodrigues da Silva, Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Roskovec, B., Rossella, M., Rossi, M., Rout, J., Roy, P., Rubbia, A., Rubbia, C., Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M., Sandberg, V., Sanders, D. A., Sankey, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Savage, G., Savinov, V., Scaramelli, A., Scarff, A., Scarpelli, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Segreto, E., Selyunin, A., Senise Jr., C. R., Sensenig, J., Sgalaberna, D., Shaevitz, M., Shafaq, S., Shaker, F., Shamma, M., Sharankova, R., Sharma, H. R., Sharma, R., Sharma, R. K., Shaw, K., Shaw, T., Shchablo, K., Shepherd-Themistocleous, C., Sheshukov, A., Shin, S., Shoemaker, I., Shooltz, D., Shrock, R., Siegel, H., Simard, L., Sinclair, J., Sinev, G., Singh, J., Singh, L., Singh, P., Singh, V., Sipos, R., Sippach, F., Sirri, G., Sitraka, A., Siyeon, K., Skarpaas, K., Smith, E., Smith, P., Smolik, J., Smy, M., Snider, E., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Ugaldi, F. Soto, Sousa, A., Soustruznik, K., Spagliardi, F., Spanu, M., Spitz, J., Spooner, N. J., Spurgeon, K., Stancari, M., Stanco, L., Stanford, C., Stein, R., Steiner, H., Lisbôa, A. F. Steklain, Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Sunción, J. Suárez, Sullivan, H., Surdo, A., Susic, V., Suter, L., Sutera, C., Suvorov, Y., Svoboda, R., Szczerbinska, B., Szelc, A. M., Talukdar, N., Tanaka, H., Tang, S., Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tata, N., Tatar, E., Tayloe, R., Teklu, A., Tennessen, P., Tenti, M., Terao, K., Ternes, C. A., Terranova, F., Testera, G., Thakore, T., Thea, A., Thorn, C., Timm, S., Tishchenko, V., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Travaglini, R., Trevor, J., Trilov, S., Trzaska, W. H., Tsai, Y., Tsamalaidze, Z., Tsang, K., Tsverava, N., Tu, S. Z., Tufanli, S., Tull, C., Tyler, J., Tyley, E., Tzanov, M., Uboldi, L., Uchida, M. A., Urheim, J., Usher, T., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. D., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W., Vallecorsa, S., Van Berg, R., Van de Water, R. G., Forero, D. Vanegas, Vannerom, D., Varanini, F., Oliva, D. Vargas, Varner, G., Vasel, J., Vasina, S., Vasseur, G., Vaughan, N., Vaziri, K., Ventura, S., Verdugo, A., Vergani, S., Vermeulen, M. A., Verzocchi, M., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Viren, B., Vrba, T., Wachala, T., Waldron, A. V., Wallbank, M., Wallis, C., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H., Wang, X., Wang, Y., Warburton, K., Warner, D., Wascko, M., Waters, D., Watson, A., Wawrowska, K., Weatherly, P., Weber, A., Weber, M., Wei, H., Weinstein, A., Wenman, D., Wetstein, M., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Williams, Z., Wilson, F., Wilson, R. J., Wisniewski, W., Wolcott, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wresilo, K., Wret, C., Wu, W., Xiao, Y., Yaeggy, B., Yandel, E., Yang, G., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Yoon, Y., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zazueta, L., Zeller, G., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhang, Y., Zhao, M., Zhivun, E., Zhu, G., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/$c$ charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1$\pm0.6$% and 84.1$\pm0.6$%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation., Comment: 39 pages, 20 figures. Accepted version. Published version available in Eur. Phys. J. C 83, 618 (2023) https://doi.org/10.1140/epjc/s10052-023-11733-2
- Published
- 2022
- Full Text
- View/download PDF
23. Integrating uterine microbiome and metabolome to advance the understanding of the uterine environment in dairy cows with metritis
- Author
-
S. Casaro, J. G. Prim, T. D. Gonzalez, F. Cunha, R. S. Bisinotto, R. C. Chebel, J. E. P. Santos, C. D. Nelson, S. J. Jeon, R. C. Bicalho, J. P. Driver, and Klibs N. Galvão
- Subjects
Microbiome ,Metabolome ,Multi-omics ,Metritis ,Uterine disease ,Dairy cows ,Veterinary medicine ,SF600-1100 ,Microbiology ,QR1-502 - Abstract
Abstract Background Metritis is a prevalent uterine disease that affects the welfare, fertility, and survival of dairy cows. The uterine microbiome from cows that develop metritis and those that remain healthy do not differ from calving until 2 days postpartum, after which there is a dysbiosis of the uterine microbiome characterized by a shift towards opportunistic pathogens such as Fusobacteriota and Bacteroidota. Whether these opportunistic pathogens proliferate and overtake the uterine commensals could be determined by the type of substrates present in the uterus. The objective of this study was to integrate uterine microbiome and metabolome data to advance the understanding of the uterine environment in dairy cows that develop metritis. Holstein cows (n = 104) had uterine fluid collected at calving and at the day of metritis diagnosis. Cows with metritis (n = 52) were paired with cows without metritis (n = 52) based on days after calving. First, the uterine microbiome and metabolome were evaluated individually, and then integrated using network analyses. Results The uterine microbiome did not differ at calving but differed on the day of metritis diagnosis between cows with and without metritis. The uterine metabolome differed both at calving and on the day of metritis diagnosis between cows that did and did not develop metritis. Omics integration was performed between 6 significant bacteria genera and 153 significant metabolites on the day of metritis diagnosis. Integration was not performed at calving because there were no significant differences in the uterine microbiome. A total of 3 bacteria genera (i.e. Fusobacterium, Porphyromonas, and Bacteroides) were strongly correlated with 49 metabolites on the day of metritis diagnosis. Seven of the significant metabolites at calving were among the 49 metabolites strongly correlated with opportunistic pathogenic bacteria on the day of metritis diagnosis. The main metabolites have been associated with attenuation of biofilm formation by commensal bacteria, opportunistic pathogenic bacteria overgrowth, tissue damage and inflammation, immune evasion, and immune dysregulation. Conclusions The data integration presented herein helps advance the understanding of the uterine environment in dairy cows with metritis. The identified metabolites may provide a competitive advantage to the main uterine pathogens Fusobacterium, Porphyromonas and Bacteroides, and may be promising targets for future interventions aiming to reduce opportunistic pathogenic bacteria growth in the uterus.
- Published
- 2024
- Full Text
- View/download PDF
24. Left Atrial Mechanical Dysfunction Is Associated With Atrial Fibrillation and Recurrent Stroke After Cryptogenic Stroke
- Author
-
Joseph Raco, Ravi Shah, Michael Farbaniec, Faye L. Norby, Megan Mann, Mario D. Gonzalez, Gerald V. Naccarelli, and Ankit Maheshwari
- Subjects
Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Published
- 2024
- Full Text
- View/download PDF
25. Complete mitochondrial genomes of the black corals Alternatipathes mirabilis Opresko & Molodtsova, 2021 and Parantipathes larix (Esper, 1788) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae)
- Author
-
Brendan A. Cruz, Anneau Cappelmann, Hope Chutjian, Jude C. Roman, Mason A. Reid, Jacob Wright, Aydanni D. Gonzalez, Taylor Keyman, Kierstin M. Griffith, Hannah J. Appiah-Madson, Daniel L. Distel, Vonda E. Hayes, Jim Drewery, D. Tye Pettay, Joseph L. Staton, and Mercer R. Brugler
- Subjects
Zoology ,QL1-991 - Abstract
We describe the complete mitogenomes of the black corals Alternatipathes mirabilis Opresko & Molodtsova, 2021 and Parantipathes larix (Esper, 1790) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae). The analysed specimens include the holotype of Alternatipathes mirabilis, collected from Derickson Seamount (North Pacific Ocean; Gulf of Alaska) at 4,685 m depth and a potential topotype of Parantipathes larix, collected from Secca dei Candelieri (Mediterranean Sea; Tyrrhenian Sea; Salerno Gulf; Italy) at 131 m depth. We also assemble, annotate and make available nine additional black coral mitogenomes that were included in a recent phylogeny (Quattrini et al. 2023b), but not made easily accessible on GenBank. This is the first study to present and compare two mitogenomes from the same species of black coral (Stauropathes arctica (Lütken, 1871)) and, thus, place minimum boundaries on the expected level of intraspecific variation at the mitogenome level. We also compare interspecific variation at the mitogenome-level across five different specimens of Parantipathes Brook, 1889 (representing at least two different species) from the NE Atlantic and Mediterranean Sea.
- Published
- 2024
- Full Text
- View/download PDF
26. Impact of Supplements on Stress Markers
- Author
-
M. Hunter Martaindale, C. Dillard, D. Gonzalez, and Matt McAllister, Associate Professor
- Published
- 2023
27. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor
- Author
-
Betancourt, R. D. Gonzalez, Zubáč, J., Gonzalez-Hernandez, R. J., Geishendorf, K., Šobáň, Z., Springholz, G., Olejník, K., Šmejkal, L., Sinova, J., Jungwirth, T., Goennenwein, S. T. B., Thomas, A., Reichlová, H., Železný, J., and Kriegner, D.
- Subjects
Condensed Matter - Materials Science - Abstract
The anomalous Hall effect, commonly observed in metallic magnets, has been established to originate from the time-reversal symmetry breaking by an internal macroscopic magnetization in ferromagnets or by a non-collinear magnetic order. Here we observe a spontaneous anomalous Hall signal in the absence of an external magnetic field in an epitaxial film of MnTe, which is a semiconductor with a collinear antiparallel magnetic ordering of Mn moments and a vanishing net magnetization. The anomalous Hall effect arises from an unconventional phase with strong time-reversal symmetry breaking and alternating spin polarization in real-space crystal structure and momentum-space electronic structure. The anisotropic crystal environment of magnetic Mn atoms due to the non-magnetic Te atoms is essential for establishing the unconventional phase and generating the anomalous Hall effect., Comment: 34 pages, 14 figures
- Published
- 2021
- Full Text
- View/download PDF
28. Time to Positive Blood Cultures Among Critically Ill Children Admitted to the PICU
- Author
-
Stephanie M. Yasechko, PharmD, Margot M. Hillyer, MD, Alison G. C. Smith, MD, MSc, Anna L. Rodenbough, MD, MPH, Alfred J. Fernandez, PharmD, Mark D. Gonzalez, PhD, and Preeti Jaggi, MD
- Subjects
Medical emergencies. Critical care. Intensive care. First aid ,RC86-88.9 - Abstract
OBJECTIVES:. Our study aimed to assess the time to positivity (TTP) of clinically significant blood cultures in critically ill children admitted to the PICU. DESIGN:. Retrospective review of positive blood cultures in patients admitted or transferred to the PICU. SETTING:. Large tertiary-care medical center with over 90 PICU beds. PATIENTS:. Patients 0–20 years old with bacteremia admitted or transferred to the PICU. INTERVENTIONS:. None. MEASUREMENTS AND MAIN RESULTS:. The primary endpoint was the TTP, defined as time from blood culture draw to initial Gram stain result. Secondary endpoints included percentage of cultures reported by elapsed time, as well as the impact of pathogen and host immune status on TTP. Host immune status was classified as previously healthy, standard risk, or immunocompromised. Linear regression for TTP was performed to account for age, blood volume, and Gram stain. Among 164 episodes of clinically significant bacteremia, the median TTP was 13.3 hours (interquartile range, 10.7–16.8 hr). Enterobacterales, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus pneumoniae were most commonly identified. By 12, 24, 36, and 48 hours, 37%, 89%, 95%, and 97% of positive cultures had resulted positive, respectively. Median TTP stratified by host immune status was 13.2 hours for previously healthy patients, 14.0 hours for those considered standard risk, and 10.6 hours for immunocompromised patients (p = 0.001). Median TTP was found to be independent of blood volume. No difference was seen in TTP for Gram-negative vs. Gram-positive organisms (12.2 vs. 13.9 hr; p = 0.2). CONCLUSIONS:. Among critically ill children, 95% of clinically significant blood cultures had an initial positive result within 36 hours, regardless of host immune status. Need for antimicrobial therapy should be frequently reassessed and implementation of a shorter duration of empiric antibiotics should be considered in patients with low suspicion for infection.
- Published
- 2024
- Full Text
- View/download PDF
29. Impact of insomnia on ovarian cancer risk and survival: a Mendelian randomization studyResearch in context
- Author
-
Heming Wang, Brett M. Reid, Rebecca C. Richmond, Jacqueline M. Lane, Richa Saxena, Brian D. Gonzalez, Brooke L. Fridley, Susan Redline, Shelley S. Tworoger, and Xuefeng Wang
- Subjects
Mendelian randomization ,Epithelial ovarian cancer ,Insomnia ,The ovarian cancer association consortium ,Genome-wide association study ,Patient survival ,Medicine ,Medicine (General) ,R5-920 - Abstract
Summary: Background: Insomnia is the most common sleep disorder in patients with epithelial ovarian cancer (EOC). We investigated the causal association between genetically predicted insomnia and EOC risk and survival through a two-sample Mendelian randomization (MR) study. Methods: Insomnia was proxied using genetic variants identified in a genome-wide association study (GWAS) meta-analysis of UK Biobank and 23andMe. Using genetic associations with EOC risk and overall survival from the Ovarian Cancer Association Consortium (OCAC) GWAS in 66,450 women (over 11,000 cases with clinical follow-up), we performed Iterative Mendelian Randomization and Pleiotropy (IMRP) analysis followed by a set of sensitivity analyses. Genetic associations with survival and response to treatment in ovarian cancer study of The Cancer Genome Atlas (TCGA) were estimated controlling for chemotherapy and clinical factors. Findings: Insomnia was associated with higher risk of endometrioid EOC (OR = 1.60, 95% CI 1.05–2.45) and lower risk of high-grade serous EOC (HGSOC) and clear cell EOC (OR = 0.79 and 0.48, 95% CI 0.63–1.00 and 0.27–0.86, respectively). In survival analysis, insomnia was associated with shorter survival of invasive EOC (OR = 1.45, 95% CI 1.13–1.87) and HGSOC (OR = 1.4, 95% CI 1.04–1.89), which was attenuated after adjustment for body mass index and reproductive age. Insomnia was associated with reduced survival in TCGA HGSOC cases who received standard chemotherapy (OR = 2.48, 95% CI 1.13–5.42), but was attenuated after adjustment for clinical factors. Interpretation: This study supports the impact of insomnia on EOC risk and survival, suggesting treatments targeting insomnia could be pivotal for prevention and improving patient survival. Funding: National Institutes of Health, National Cancer Institute. Full funding details are provided in acknowledgments.
- Published
- 2024
- Full Text
- View/download PDF
30. Resolving singularities of curves with one toric morphism
- Author
-
de Felipe, Ana Belén, Pérez, Pedro D. González, and Mourtada, Hussein
- Subjects
Mathematics - Algebraic Geometry ,3A80, 14E15, 14E18, 14M25 - Abstract
We give an explicit positive answer, in the case of reduced curve singularities, to a question of B. Teissier about the existence of a toric embedded resolution after reembedding. In the case of a curve singularity $(C,O)$ contained in a non singular surface $S$ such a reembedding may be defined in terms of a sequence of maximal contact curves of the minimal embedded resolution of $C$. We prove that there exists a toric modification, after reembedding, which provides an embedded resolution of $C$. We use properties of the semivaluation space of $S$ at $O$ to describe how the dual graph of the minimal embedded resolution of $C$ may be seen on the local tropicalization of $S$ associated to this reembedding., Comment: The presentation was improved and more details were added in Section 3
- Published
- 2021
31. Multiplier ideals of plane curve singularities via Newton polygons
- Author
-
Pérez, Pedro D. González, Villa, Manuel González, Durán, Carlos R. Guzmán, and Buces, Miguel Robredo
- Subjects
Mathematics - Algebraic Geometry ,14B05, 14F18, 14M25, 14H50 - Abstract
We give an effective method to determine the multiplier ideals and jumping numbers associated with a curve singularity $C$ in a smooth surface. We characterize the multiplier ideals in terms of certain Newton polygons, generalizing a theorem of Howald, which holds when $C$ is Newton non-degenerate with respect to some local coordinate system. The method uses toroidal embedded resolutions and generating sequences of families of valuations, and can be extended to some classes of higher dimensional hypersurface singularities.
- Published
- 2021
32. A Graph Classification Method Based on Support Vector Machines and Locality-Sensitive Hashing
- Author
-
Maria D. Gonzalez-Lima, Carenne C. Ludena, and Gibran G. Otazo-Sanchez
- Subjects
Graph classification ,locality sensitive hashing ,support vector machines ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
Graphs classification is a relevant problem that arises in many disciplines. Using graphs directly instead of vectorization allows exploiting the intrinsic representations of the data. Support Vector Machines (SVM) is a supervised learning method based on the use of graph kernel functions used for this task. One of the problems of SVM, as the number of samples increases, is the cost of storing and solving the optimization problem related to SVM. In this work, we propose a method capable of finding a small representative subset of the whole graph data set such that an approximate solution of the SVM optimization problem can be obtained in a fraction of the time, and without significantly degrading the classification prediction error. The method is based on the use of Locality-Sensitive Hashing for projecting over the Hilbert spaces defined by appropriate graph kernels that measure similarity between the graphs. A description of the algorithm, as well as numerical results using two graph kernels (Simple Product and Random Walk) on simulated and real life data sets are presented. The numerical experiments compare the training times and the classification error between the SVM obtained with our smart sampling approach, and the SVM obtained over the complete data set or over a random sub-sample. The results offer evidence of the advantages of our proposal for solving large scale graph classification problems when using SVM.
- Published
- 2024
- Full Text
- View/download PDF
33. Maintaining the Giant Component in Networks With Edge Weighted Augmentation Given Causal Failures
- Author
-
Zuyuan Zhang, Sridhar Radhakrishnan, Kash Barker, and Andres D. Gonzalez
- Subjects
Causal failure ,robustness ,connectivity augmentation ,NP-hardness ,heuristic algorithms ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
Understanding the relationship between various nodes of a network is critical for building a robust and resilient network. Studying and understanding the causes of network failures is vital to prevent electric grid blackouts, mitigate supply chain failures, and keep transportation systems functional, among others. Failure of one or more nodes may cause other nodes in the network to fail as well, that is, failures are causal. In general, these failure relationships extend beyond the immediate neighborhood of failed nodes. When any of the causal failures are applied (the nodes of the causal failures are removed), the network could be disconnected. One can add edges to the original network (augmentation problem) in such a way that the network remains connected after applying each of the causal failures, or the largest connected component in the disconnected network is at least a given specified size $\alpha \times n$ ( $\alpha $ -giant component), where n is the number of nodes in the original network. By choosing this size, we guarantee that the network is active for a large population of entities represented by the nodes in the giant component. More formally, we consider the network augmentation problem when faced with causal failures as follows. Given a network $G=(V, E)$ , its complement $\bar {G}=(V, \bar {E})$ with a cost function $c: \bar {E} \rightarrow R^{+}$ and the causality set $\mathcal {C}$ , find a subset of $\bar {E}$ with a minimum total cost such that the network maintains at least one $\alpha $ -giant component when each causal failure in $\mathcal {C}$ is applied to the augmented graph. We prove the NP-hardness of this problem and present a mixed integer linear programming model to provide the exact solution to the problem. Furthermore, we design a heuristic algorithm by checking the connected components when applying each causality. Finally, experiments are conducted on synthetic Erdős-Rényi networks, and we demonstrate the efficacy and efficiency of the heuristic algorithm relative to the mixed-integer linear programming model.
- Published
- 2024
- Full Text
- View/download PDF
34. Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adams, D., Adinolfi, M., Aduszkiewicz, A., Aguilar, J., Ahmad, Z., Ahmed, J., Ali-Mohammadzadeh, B., Alion, T., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alt, C., Alton, A., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Antusch, S., Aranda-Fernandez, A., Ariga, A., Arnold, L. O., Arroyave, M. A., Asaadi, J., Asquith, L., Aurisano, A., Aushev, V., Autiero, D., Ayala-Torres, M., Azfar, F., Back, A., Back, H., Back, J. J., Backhouse, C., Baesso, P., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baller, B., Bambah, B., Barao, F., Barenboim, G., Barker, G. J., Barkhouse, W., Barnes, C., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Belchior, E., Battat, J. B. R., Battisti, F., Bay, F., Alba, J. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Belver, D., Benekos, N., Montiel, C. Benitez, Neves, F. Bento, Berger, J., Berkman, S., Bernardini, P., Berner, R. M., Berns, H., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezerra, T. J. C., Bhattacharjee, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biassoni, M., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D. M., Blazey, G. C., Blucher, E., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bongrand, M., Bonini, F., Booth, A., Booth, C., Boran, F., Bordoni, S., Borkum, A., Boschi, T., Bostan, N., Bour, P., Bourgeois, C., Boyd, S. B., Boyden, D., Bracinik, J., Braga, D., Brailsford, D., Branca, A., Brandt, A., Bremer, J., Brew, C., Brianne, E., Brice, S. J., Brizzolari, C., Bromberg, C., Brooijmans, G., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Butorov, I., Cagnoli, I., Caiulo, D., Calabrese, R., Calafiura, P., Calcutt, J., Calin, M., Calvez, S., Calvo, E., Caminata, A., Campanelli, M., Cankocak, K., Caratelli, D., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carroll, T., Casta, J. F., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cervelli, A., Villanueva, A. Cervera, Chalifour, M., Chappell, A., Chardonnet, E., Charitonidis, N., Chatterjee, A., Chattopadhyay, S., Chen, H., Chen, K., Chen, M., Chen, Y., Chen, Z., Cheon, Y., Cherdack, D., Chi, C., Childress, S., Chiriacescu, A., Chisnall, G., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Choubey, S., Christensen, A., Christian, D., Christodoulou, G., Chukanov, A., Chung, M., Church, E., Cicero, V., Clarke, P., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Conley, E., Conley, R., Conrad, J. M., Convery, M., Copello, S., Corwin, L., Valentim, R., Cremaldi, L., Cremonesi, L., Crespo-Anadon, J. I., Crisler, M., Cristaldo, E., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Cussans, D., Dabrowski, M., Dalager, O., da Motta, H., Peres, L. Da Silva, David, C., David, Q., Davies, G. S., Davini, S., Dawson, J., De, K., De Almeida, R. M., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvea, A., De Holanda, P. C., Astiz, I. L. De Icaza, Deisting, A., De Jong, P., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., De Lurgio, P., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Deptuch, G. W., De Roeck, A., De Romeri, V., De Souza, G., Devi, R., Dharmapalan, R., Dias, M., Diaz, F., Diaz, J. S., Di Domizio, S., Di Giulio, L., Ding, P., Di Noto, L., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domine, L., Douglas, D., Douillet, D., Drake, G., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dunne, P., Durkin, T., Duyang, H., Dvornikov, O., Dwyer, D. A., Dyshkant, A. S., Eads, M., Earle, A., Edmunds, D., Eisch, J., Emberger, L., Emery, S., Ereditato, A., Erjavec, T., Escobar, C. O., Eurin, G., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Falcone, A., Faní, M., Farnese, C., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Menendez, P. Fernandez, Morales, M. Fernandez, Ferraro, F., Fields, L., Filip, P., Filthaut, F., Fiorentini, A., Fiorini, M., Fitzpatrick, R. S., Flanagan, W., Fleming, B., Flight, R., Forero, D. V., Fowler, J., Fox, W., Franc, J., Francis, K., Franco, D., Freeman, J., Freestone, J., Fried, J., Friedland, A., Robayo, F. Fuentes, Fuess, S., Furic, I., Furmanski, A. P., Gabrielli, A., Gago, A., Gallagher, H., Gallas, A., Gallego-Ros, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Gandrajula, R., Gao, F., Gao, S., B., A. C. Garcia, Garcia-Gamez, D., García-Peris, M. A., Gardiner, S., Gastler, D., Gauvreau, J., Ge, G., Gelli, B., Gendotti, A., Gent, S., Ghorbani-Moghaddam, Z., Giammaria, P., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Girerd, C., Giri, A. K., Gnani, D., Gogota, O., Gold, M., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Cuevas, J. A., Diaz, D. Gonzalez, Gonzalez-Lopez, M., Goodman, M. C., Goodwin, O., Goswami, S., Gotti, C., Goudzovski, E., Grace, C., Graham, M., Gran, R., Granados, E., Granger, P., Grant, A., Grant, C., Gratieri, D., Green, P., Greenler, L., Greer, J., Grenard, J., Griffith, W. C., Groh, M., Grudzinski, J., Grzelak, K., Gu, W., Guardincerri, E., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guglielmi, A., Guo, B., Guthikonda, K. K., Gutierrez, R., Guzowski, P., Guzzo, M. M., Gwon, S., Ha, C., Habig, A., Hadavand, H., Haenni, R., Hahn, A., Haiston, J., Hamacher-Baumann, P., Hamernik, T., Hamilton, P., Han, J., Harris, D. A., Hartnell, J., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hatfield, K. W., Hatzikoutelis, A., Hayes, C., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hennessy, K., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hertel, L., Hewes, V, Higuera, A., Hill, T., Hillier, S. J., Himmel, A., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Hoppe, E., Horton-Smith, G. A., Hostert, M., Hourlier, A., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Hugon, J., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Isenhower, L., Itay, R., Izmaylov, A., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jediny, F., Jena, D., Jeong, Y. S., Jesus-Valls, C., Ji, X., Jiang, L., Jimenez, S., Jipa, A., Johnson, R., Johnston, N., Jones, B., Jones, S. B., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A., Kadenko, I., Kalra, D., Kakorin, I., Kalitkina, A., Kamiya, F., Kaneshige, N., Karagiorgi, G., Karaman, G., Karcher, A., Karolak, M., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Kazaryan, N., Kearns, E., Keener, P., Kelly, K. J., Kemp, E., Kemularia, O., Ketchum, W., Kettell, S. H., Khabibullin, M., Khotjantsev, A., Khvedelidze, A., Kim, D., King, B., Kirby, B., Kirby, M., Klein, J., Koehler, K., Koerner, L. W., Kohn, S., Koller, P. P., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecky, V. A., Kothekar, K., Krennrich, F., Kreslo, I., Kropp, W., Kudenko, Y., Kudryavtsev, V. A., Kulagin, S., Kumar, J., Kumar, P., Kunze, P., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Kwak, D., Lambert, A., Land, B. J., Lande, K., Lane, C. E., Lang, K., Langford, T., Langstaff, M., Larkin, J., Lasorak, P., Last, D., Lastoria, C., Laundrie, A., Laurenti, G., Lawrence, A., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeBrun, P., LeCompte, T., Lee, C., Lee, S. Y., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Lepin, L. M., Li, L., Li, S. W., Li, T., Li, Y., Liao, H., Lin, C. S., Lin, Q., Lin, S., Ling, J., Lister, A., Littlejohn, B. R., Liu, J., Lockwitz, S., Loew, T., Lokajicek, M., Lomidze, I., Long, K., Loo, K., Lord, T., LoSecco, J. M., Louis, W. C., Lu, X. -G., Luk, K. B., Luo, X., Luppi, E., Lurkin, N., Lux, T., Luzio, V. P., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., Maddalena, A., Madera, A., Madigan, P., Magill, S., Mahn, K., Maio, A., Major, A., Maloney, J. A., Mandrioli, G., Mandujano, R. C., Maneira, J., Manenti, L., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Manyam, V. N., Manzanillas, L., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marie, R., Marinho, F., Marino, A. D., Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Marteau, J., Martin-Albo, J., Martinez, N., Caicedo, D. A. Martinez, Martynenko, S., Mascagna, V., Mason, K., Mastbaum, A., Masud, M., Matichard, F., Matsuno, S., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., Mazzucato, E., McAskill, T., McCluskey, E., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Mefodiev, A., Mehta, P., Melas, P., Mena, O., Menary, S., Mendez, H., Mendez, P., M, D. P., Menegolli, A., Meng, G., Messier, M. D., Metcalf, W., Mettler, T., Mewes, M., Meyer, H., Miao, T., Michna, G., Miedema, T., Mikola, V., Milincic, R., Miller, G., Miller, W., Mills, J., Milne, C., Mineev, O., Miranda, O. G., Miryala, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mladenov, D., Mocioiu, I., Moffat, K., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Zetina, L. M. Montano, Moon, J., Moon, S. H., Mooney, M., Moor, A. F., Moreno, D., Morris, C., Mossey, C., Motuk, E., Moura, C. A., Mousseau, J., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Mufson, S., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Muramatsu, H., Murphy, S., Musser, J., Nachtman, J., Nagu, S., Nalbandyan, M., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navas-Nicolás, D., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Negishi, K., Nelson, J. K., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Newhart, D., Newton, H., Nichol, R., Nicolas-Arnaldos, F., Niner, E., Nishimura, K., Norman, A., Norrick, A., Northrop, R., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Del Campo, A. Olivares, Olivier, A., Olshevskiy, A., Onel, Y., Onishchuk, Y., Ott, J., Pagani, L., Pakvasa, S., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Palomino-Gallo, J. L., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Paramesvaran, S., Parke, S., Parozzi, E., Parsa, Z., Parvu, M., Pascoli, S., Pasqualini, L., Pasternak, J., Pater, J., Patrick, C., Patrizii, L., Patterson, R. B., Patton, S. J., Patzak, T., Paudel, A., Paulos, B., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Peeters, S. J. M., Pennacchio, E., Penzo, A., Peres, O. L. G., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Piastra, F., Pickering, L., Pietropaolo, F., Plunkett, R., Poling, R., Pons, X., Poonthottathil, N., Poppi, F., Pordes, S., Porter, J., Potekhin, M., Potenza, R., Potukuchi, B. V. K. S., Pozimski, J., Pozzato, M., Prakash, S., Prakash, T., Prest, M., Prince, S., Psihas, F., Pugnere, D., Qian, X., Bazetto, M. C. Queiroga, Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajaoalisoa, M., Rakhno, I., Rakotonandrasana, A., Rakotondravohitra, L., Ramachers, Y. A., Rameika, R., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Raut, S., Razakamiandra, R. F., Rea, E., Real, J. S., Rebel, B., Reggiani-Guzzo, M., Rehak, T., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renshaw, A., Rescia, S., Resnati, F., Reynolds, A., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Rice, L. C. J., Ricol, J., Rigamonti, A., Rigaut, Y., Rivera, D., Robert, A., Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Bonilla, E. Rodriguez, Rondon, J. Rodriguez, Villa, L. A. Romo, Rosauro-Alcaraz, S., Rosenberg, M., Rosier, P., Roskovec, B., Rossella, M., Rossi, M., Rout, J., Roy, P., Roy, S., Rubbia, A., Rubbia, C., Rubio, F. C., Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Safford, T., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Sandberg, V., Sanders, D. A., Sankey, D., Santana, S., Santos-Maldonado, M., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Savage, G., Savinov, V., Scaramelli, A., Scarff, A., Scarpelli, A., Schaffer, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Scholberg, K., Schukraft, A., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Seoane, M., Seong, I., Sergi, A., Sgalaberna, D., Shaevitz, M. H., Shafaq, S., Shamma, M., Sharankova, R., Sharma, H. R., Sharma, R., Kumar, R., Shaw, T., Shepherd-Themistocleous, C., Sheshukov, A., Shin, S., Shoemaker, I., Shooltz, D., Shrock, R., Siegel, H., Simard, L., Simon, F., Simos, N., Sinclair, J., Sinev, G., Singh, J., Singh, L., Singh, V., Sipos, R., Sippach, F. W., Sirri, G., Sitraka, A., Siyeon, K., Skarpaas, K., Smith, A., Smith, E., Smith, P., Smolik, J., Smy, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Soldner-Remböld, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spagliardi, F., Spanu, M., Spitz, J., Spooner, N. J. C., Spurgeon, K., Staley, R., Stancari, M., Stanco, L., Stanley, R., Stein, R., Steiner, H. M., Lisboa, A. F. Steklain, Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Striganov, S., Stuart, A., Suarez, J. G., Sullivan, H., Summers, D., Surdo, A., Susic, V., Suter, L., Sutera, C. M., Svoboda, R., Szczerbinska, B., Szelc, A. M., Tanaka, H. A., Oregui, B. Tapia, Tapper, A., Tariq, S., Tatar, E., Tayloe, R., Teklu, A. M., Tenti, M., Terao, K., Ternes, C. A., Terranova, F., Testera, G., Thakore, T., Thea, A., Thompson, J. L., Thorn, C., Timm, S. C., Tishchenko, V., Todd, J., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Travaglini, R., Trevor, J., Trilov, S., Trzaska, W. H., Tsai, Y., Tsai, Y. T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tufanli, S., Tull, C., Tyley, E., Tzanov, M., Uboldi, L., Uchida, M. A., Urheim, J., Usher, T., Uzunyan, S., Vagins, M. R., Vahle, P., Valdiviesso, G. A., Valencia, E., Pia, V., Vallari, Z., Vallazza, E., Valle, J. W. F., Vallecorsa, S., Van Berg, R., Van de Water, R. G., Varanini, F., Vargas, D., Varner, G., Vasel, J., Vasina, S., Vasseur, G., Vaughan, N., Vaziri, K., Ventura, S., Verdugo, A., Vergani, S., Vermeulen, M. A., Verzocchi, M., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Viren, B., Vrba, T., Wachala, T., Waldron, A. V., Wallbank, M., Wallis, C., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, Y., Warburton, K., Warner, D., Wascko, M. O., Waters, D., Watson, A., Weatherly, P., Weber, A., Weber, M., Wei, H., Weinstein, A., Wenman, D., Wetstein, M., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, C., Williams, Z., Wilson, F., Wilson, R. J., Wisniewski, W., Wolcott, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wret, C., Wu, W., Xiao, Y., Xie, F., Yandel, E., Yang, G., Yang, K., Yang, S., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhao, M., Zhivun, E., Zhu, G., Zilberman, P., Zimmerman, E. D., Zito, M., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of $7\times 6\times 7.2$~m$^3$. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
- Published
- 2021
35. Searching for solar KDAR with DUNE
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adams, D., Adinolfi, M., Aduszkiewicz, A., Aguilar, J., Ahmad, Z., Ahmed, J., Ali-Mohammadzadeh, B., Alion, T., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alt, C., Alton, A., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Antusch, S., Aranda-Fernandez, A., Ariga, A., Arnold, L. O., Arroyave, M. A., Asaadi, J., Asquith, L., Aurisano, A., Aushev, V., Autiero, D., Ayala-Torres, M., Azfar, F., Back, A., Back, H., Back, J. J., Backhouse, C., Baesso, P., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baller, B., Bambah, B., Barao, F., Barenboim, G., Barker, G. J., Barkhouse, W., Barnes, C., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Belchior, E., Battat, J. B. R., Battisti, F., Bay, F., Alba, J. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Belver, D., Benekos, N., Montiel, C. Benitez, Neves, F. Bento, Berger, J., Berkman, S., Bernardini, P., Berner, R. M., Berns, H., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezerra, T. J. C., Bhatnagar, V., Bhattacharjee, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biassoni, M., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D. M., Blazey, G. C., Blucher, E., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bongrand, M., Bonini, F., Booth, A., Booth, C., Boran, F., Bordoni, S., Borkum, A., Boschi, T., Bostan, N., Bour, P., Bourgeois, C., Boyd, S. B., Boyden, D., Bracinik, J., Braga, D., Brailsford, D., Branca, A., Brandt, A., Bremer, J., Brew, C., Brianne, E., Brice, S. J., Brizzolari, C., Bromberg, C., Brooijmans, G., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Butorov, I., Cagnoli, I., Caiulo, D., Calabrese, R., Calafiura, P., Calcutt, J., Calin, M., Calvez, S., Calvo, E., Caminata, A., Campanelli, M., Cankocak, K., Caratelli, D., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carroll, T., Forero, J. F. Castaño, Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cervelli, A., Villanueva, A. Cervera, Chalifour, M., Chappell, A., Chardonnet, E., Charitonidis, N., Chatterjee, A., Chattopadhyay, S., Chen, H., Chen, M., Chen, Y., Chen, Z., Cheon, Y., Cherdack, D., Chi, C., Childress, S., Chiriacescu, A., Chisnall, G., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Choubey, S., Christensen, A., Christian, D., Christodoulou, G., Chukanov, A., Chung, M., Church, E., Cicero, V., Clarke, P., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Conley, E., Conley, R., Conrad, J. M., Convery, M., Copello, S., Corwin, L., Valentim, R., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Cussans, D., Dalager, O., da Motta, H., Peres, L. Da Silva, David, C., David, Q., Davies, G. S., Davini, S., Dawson, J., De, K., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, Deisting, A., De Jong, P., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., De Lurgio, P., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Deptuch, G. W., De Roeck, A., De Romeri, V., De Souza, G., Devi, R., Dharmapalan, R., Dias, M., Diaz, F., Díaz, J. S., Di Domizio, S., Di Giulio, L., Ding, P., Di Noto, L., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domine, L., Douglas, D., Douillet, D., Drake, G., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dunne, P., Durkin, T., Duyang, H., Dvornikov, O., Dwyer, D. A., Dyshkant, A. S., Eads, M., Earle, A., Edmunds, D., Eisch, J., Emberger, L., Emery, S., Ereditato, A., Erjavec, T., Escobar, C. O., Eurin, G., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Falcone, A., Fani, M., Farnese, C., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Menendez, P. Fernandez, Morales, M. Fernandez, Ferraro, F., Fields, L., Filip, P., Filthaut, F., Fiorentini, A., Fiorini, M., Fitzpatrick, R. S., Flanagan, W., Fleming, B., Flight, R., Forero, D. V., Fowler, J., Fox, W., Franc, J., Francis, K., Franco, D., Freeman, J., Freestone, J., Fried, J., Friedland, A., Robayo, F. Fuentes, Fuess, S., Furic, I. K., Furmanski, A. P., Gabrielli, A., Gago, A., Gallagher, H., Gallas, A., Gallego-Ros, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Gandrajula, R., Gao, F., Gao, S., B., A. C. Garcia, Garcia-Gamez, D., García-Peris, M. Á., Gardiner, S., Gastler, D., Gauvreau, J., Ge, G., Gelli, B., Gendotti, A., Gent, S., Ghorbani-Moghaddam, Z., Giammaria, P., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Girerd, C., Giri, A. K., Gnani, D., Gogota, O., Gold, M., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Cuevas, J. A., Diaz, D. Gonzalez, Gonzalez-Lopez, M., Goodman, M. C., Goodwin, O., Goswami, S., Gotti, C., Goudzovski, E., Grace, C., Graham, M., Gran, R., Granados, E., Granger, P., Grant, A., Grant, C., Gratieri, D., Green, P., Greenler, L., Greer, J., Grenard, J., Griffith, W. C., Groh, M., Grudzinski, J., Grzelak, K., Gu, W., Guardincerri, E., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guglielmi, A., Guo, B., Guthikonda, K. K., Gutierrez, R., Guzowski, P., Guzzo, M. M., Gwon, S., Ha, C., Habig, A., Hadavand, H., Haenni, R., Hahn, A., Haiston, J., Hamacher-Baumann, P., Hamernik, T., Hamilton, P., Han, J., Harris, D. A., Hartnell, J., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hatfield, K. W., Hatzikoutelis, A., Hayes, C., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hennessy, K., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hertel, L., Hewes, V, Higuera, A., Hill, T., Hillier, S. J., Himmel, A., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Hoppe, E., Horton-Smith, G. A., Hostert, M., Hourlier, A., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Hugon, J., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Isenhower, L., Itay, R., Izmaylov, A., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jediny, F., Jena, D., Jeong, Y. S., Jesús-Valls, C., Ji, X., Jiang, L., Jiménez, S., Jipa, A., Johnson, R., Johnston, N., Jones, B., Jones, S. B., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kamiya, Kaneshige, N., Karagiorgi, G., Karaman, G., Karcher, A., Karolak, M., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Kazaryan, N., Kearns, E., Keener, P., Kelly, K. J., Kemp, E., Kemularia, O., Ketchum, W., Kettell, S. H., Khabibullin, M., Khotjantsev, A., Khvedelidze, A., Kim, D., King, B., Kirby, B., Kirby, M., Klein, J., Koehler, K., Koerner, L. W., Kohn, S., Koller, P. P., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Krennrich, F., Kreslo, I., Kropp, W., Kudenko, Y., Kudryavtsev, V. A., Kulagin, S., Kumar, J., Kumar, P., Kunze, P., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Kwak, D., Lambert, A., Land, B. J., Lande, K., Lane, C. E., Lang, K., Langford, T., Langstaff, M., Larkin, J., Lasorak, P., Last, D., Lastoria, C., Laundrie, A., Laurenti, G., Lawrence, A., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeBrun, P., LeCompte, T., Lee, C., Lee, S. Y., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Lepin, L. M., Li, L., Li, S. W., Li, T., Li, Y., Liao, H., Lin, C. S., Lin, Q., Lin, S., Ling, J., Lister, A., Littlejohn, B. R., Liu, J., Lockwitz, S., Loew, T., Lokajicek, M., Lomidze, I., Long, K., Loo, K., Lord, T., LoSecco, J. M., Louis, W. C., Lu, X. -G., Luk, K. B., Luo, X., Luppi, E., Lurkin, N., Lux, T., Luzio, V. P., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., Maddalena, A., Madera, A., Madigan, P., Magill, S., Mahn, K., Maio, A., Major, A., Maloney, J. A., Mandrioli, G., Mandujano, R. C., Maneira, J., Manenti, L., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Manyam, V. N., Manzanillas, L., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marie, R., Marinho, F., Marino, A. D., Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Marteau, J., Martin-Albo, J., Martinez, N., Caicedo, D. A. Martinez, Martynenko, S., Mascagna, V., Mason, K., Mastbaum, A., Masud, M., Matichard, F., Matsuno, S., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., Mazzucato, E., McAskill, T., McCluskey, E., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Mefodiev, A., Mehta, P., Melas, P., Mena, O., Menary, S., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Messier, M. D., Metcalf, W., Mettler, T., Mewes, M., Meyer, H., Miao, T., Michna, G., Miedema, T., Mikola, V., Milincic, R., Miller, G., Miller, W., Mills, J., Milne, C., Mineev, O., Miranda, O. G., Miryala, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mladenov, D., Mocioiu, I., Moffat, K., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Zetina, L. M. Montano, Moon, J., Moon, S. H., Mooney, M., Moor, A. F., Moreno, D., Morris, C., Mossey, C., Motuk, E., Moura, C. A., Mousseau, J., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Mufson, S., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Muramatsu, H., Murphy, S., Musser, J., Nachtman, J., Nagu, S., Nalbandyan, M., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navas-Nicolás, D., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Negishi, K., Nelson, J. K., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Newhart, D., Newton, H., Nichol, R., Nicolas-Arnaldos, F., Niner, E., Nishimura, K., Norman, A., Norrick, A., Northrop, R., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Del Campo, A. Olivares, Olivier, A., Olshevskiy, A., Onel, Y., Onishchuk, Y., Ott, J., Pagani, L., Pakvasa, S., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Palomino-Gallo, J. L., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Paramesvaran, S., Parke, S., Parozzi, E., Parsa, Z., Parvu, M., Pascoli, S., Pasqualini, L., Pasternak, J., Pater, J., Patrick, C., Patrizii, L., Patterson, R. B., Patton, S. J., Patzak, T., Paudel, A., Paulos, B., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Peeters, S. J. M., Pennacchio, E., Penzo, A., Peres, O. L. G., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pia, V., Piastra, F., Pickering, L., Pietropaolo, F., Plunkett, R., Poling, R., Pons, X., Poonthottathil, N., Poppi, F., Pordes, S., Porter, J., Potekhin, M., Potenza, R., Potukuchi, B. V. K. S., Pozimski, J., Pozzato, M., Prakash, S., Prakash, T., Prest, M., Prince, S., Psihas, F., Pugnere, D., Qian, X., Bazetto, M. C. Queiroga, Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajaoalisoa, M., Rakhno, I., Rakotonandrasana, A., Rakotondravohitra, L., Ramachers, Y. A., Rameika, R., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Raut, S., Razakamiandra, R. F., Rea, E., Real, J. S., Rebel, B., Reggiani-Guzzo, M., Rehak, T., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renshaw, A., Rescia, S., Resnati, F., Reynolds, A., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Rice, L. C. J., Ricol, J., Rigamonti, A., Rigaut, Y., Rivera, D., Robert, A., Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Bonilla, E. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosenberg, M., Rosier, P., Roskovec, B., Rossella, M., Rossi, M., Rott, C., Rout, J., Roy, P., Roy, S., Rubbia, A., Rubbia, C., Rubio, F. C., Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Safford, T., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Sandberg, V., Sanders, D. A., Sankey, D., Santana, S., Santos-Maldonado, M., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Savage, G., Savinov, V., Scaramelli, A., Scarff, A., Scarpelli, A., Schaffer, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Scholberg, K., Schukraft, A., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Seoane, M., Seong, I., Sergi, A., Sgalaberna, D., Shaevitz, M. H., Shafaq, S., Shamma, M., Sharankova, R., Sharma, H. R., Sharma, R., Kumar, R., Shaw, T., Shepherd-Themistocleous, C., Sheshukov, A., Shin, S., Shoemaker, I., Shooltz, D., Shrock, R., Siegel, H., Simard, L., Simon, F., Sinclair, J., Sinev, G., Singh, J., Singh, L., Singh, V., Sipos, R., Sippach, F. W., Sirri, G., Sitraka, A., Siyeon, K., Skarpaas, K., Smith, A., Smith, E., Smith, P., Smolik, J., Smy, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spagliardi, F., Spanu, M., Spitz, J., Spooner, N. J. C., Spurgeon, K., Staley, R., Stancari, M., Stanco, L., Stanley, R., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Striganov, S., Stuart, A., Suarez, J. G., Sullivan, H., Summers, D., Surdo, A., Susic, V., Suter, L., Sutera, C. M., Svoboda, R., Szczerbinska, B., Szelc, A. M., Tanaka, H. A., Oregui, B. Tapia, Tapper, A., Tariq, S., Tatar, E., Tayloe, R., Teklu, A. M., Tenti, M., Terao, K., Ternes, C. A., Terranova, F., Testera, G., Thakore, T., Thea, A., Thompson, J. L., Thorn, C., Timm, S. C., Tishchenko, V., Todd, J., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Travaglini, R., Trevor, J., Trilov, S., Tripathi, A., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tufanli, S., Tull, C., Tyley, E., Tzanov, M., Uboldi, L., Uchida, M. A., Urheim, J., Usher, T., Uzunyan, S., Vagins, M. R., Vahle, P., Valdiviesso, G. A., Valencia, E., Vallari, Z., Vallazza, E., Valle, J. W. F., Vallecorsa, S., Van Berg, R., Van de Water, R. G., Varanini, F., Vargas, D., Varner, G., Vasel, J., Vasina, S., Vasseur, G., Vaughan, N., Vaziri, K., Ventura, S., Verdugo, A., Vergani, S., Vermeulen, M. A., Verzocchi, M., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Viren, B., Vrba, T., Wachala, T., Waldron, A. V., Wallbank, M., Wallis, C., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, Y., Warburton, K., Warner, D., Wascko, M. O., Waters, D., Watson, A., Weatherly, P., Weber, A., Weber, M., Wei, H., Weinstein, A., Wenman, D., Wetstein, M., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, C., Williams, Z., Wilson, F., Wilson, R. J., Wisniewski, W., Wolcott, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wret, C., Wu, W., Xiao, Y., Xie, F., Yandel, E., Yang, G., Yang, K., Yang, S., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhao, M., Zhivun, E., Zhu, G., Zilberman, P., Zimmerman, E. D., Zito, M., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Phenomenology - Abstract
The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions., Comment: 19 pages, 13 figures
- Published
- 2021
- Full Text
- View/download PDF
36. Benchmarking Advantage and D-Wave 2000Q quantum annealers with exact cover problems
- Author
-
Willsch, Dennis, Willsch, Madita, Calaza, Carlos D. Gonzalez, Jin, Fengping, De Raedt, Hans, Svensson, Marika, and Michielsen, Kristel
- Subjects
Quantum Physics - Abstract
We benchmark the quantum processing units of the largest quantum annealers to date, the 5000+ qubit quantum annealer Advantage and its 2000+ qubit predecessor D-Wave 2000Q, using tail assignment and exact cover problems from aircraft scheduling scenarios. The benchmark set contains small, intermediate, and large problems with both sparsely connected and almost fully connected instances. We find that Advantage outperforms D-Wave 2000Q for almost all problems, with a notable increase in success rate and problem size. In particular, Advantage is also able to solve the largest problems with 120 logical qubits that D-Wave 2000Q cannot solve anymore. Furthermore, problems that can still be solved by D-Wave 2000Q are solved faster by Advantage. We find, however, that D-Wave 2000Q can achieve better success rates for sparsely connected problems that do not require the many new couplers present on Advantage, so improving the connectivity of a quantum annealer does not per se improve its performance., Comment: new experiments to test the conjecture about unused couplers (appendix B)
- Published
- 2021
- Full Text
- View/download PDF
37. Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber
- Author
-
A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, B. Aimard, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, D. A. Andrade, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, G. Barenboim, P. B̃arham Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, J. Bracinik, D. Braga, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, J. Calcutt, M. Calin, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell’Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani’, C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M. Gago, F. Galizzi, H. Gallagher, A. Gallas, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, E. Guerard, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmueller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, S. Henry, M. A. Hernandez Morquecho, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, M. Hostert, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, D. José Fernández, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, J. Kumar, P. Kumar, S. Kumaran, P. Kunze, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, A. Lawrence, P. Laycock, I. Lazanu, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, C. Lee, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J.-Y. Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, J. Ling, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X.-G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, J. Maalmi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, D. Marsden, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, A. Mazzacane, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, J. Metcalf, W. Metcalf, M. Mewes, H. Meyer, T. Miao, A. Miccoli, G. Michna, V. Mikola, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, M. Mote, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Nath, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, V. Papadimitriou, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, J. Pinchault, K. Pitts, K. Plows, R. Plunkett, C. Pollack, T. Pollman, D. Polo-Toledo, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, M. Reggiani-Guzzo, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, D. Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, A. Saa-Hernandez, R. Saakyan, S. Sacerdoti, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, S. R. Soleti, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, A. Thiebault, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y.-T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. Vizcaya-Hernandez, T. Vrba, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, H. Wenzel, S. Westerdale, M. Wetstein, K. Whalen, J. Whilhelmi, A. White, L. H. Whitehead, D. Whittington, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska, and on behalf of the DUNE Collaboration
- Subjects
neutrino ,near detector ,Deep Underground Neutrino Experiment ,DUNE ,Physics ,QC1-999 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations.
- Published
- 2024
- Full Text
- View/download PDF
38. Supraventricular Tachycardias in Patients with Congenitally Corrected Transposition of the Great Arteries
- Author
-
Ibragim Al-Seykal, Chenni S. Sriram, Mauricio Sendra Ferrer, and Mario D. Gonzalez
- Subjects
Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Published
- 2024
- Full Text
- View/download PDF
39. Optical and ultraviolet pulsed emission from an accreting millisecond pulsar
- Author
-
Ambrosino, F., Zanon, A. Miraval, Papitto, A., Zelati, F. Coti, Campana, S., D'Avanzo, P., Stella, L., Di Salvo, T., Burderi, L., Casella, P., Sanna, A., de Martino, D., Cadelano, M., Ghedina, A., Leone, F., Meddi, F., Cretaro, P., Baglio, M. C., Poretti, E., Mignani, R. P., Torres, D. F., Israel, G. L., Cecconi, M., Russell, D. M., Gomez, M. D. Gonzalez, Rodriguez, A. L. Riverol, Ventura, H. Perez, Diaz, M. Hernandez, Juan, J. J. San, Bramich, D. M., and Lewis, F.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Millisecond spinning, low magnetic field neutron stars are believed to attain their fast rotation in a 0.1-1 Gyr-long phase during which they accrete matter endowed with angular momentum from a low-mass companion star. Despite extensive searches, coherent periodicities originating from accreting neutron star magnetospheres have been detected only at X-ray energies and in ~10% of the presently known systems. Here we report the detection of optical and ultraviolet coherent pulsations at the X-ray period of the transient low mass X-ray binary system SAX J1808.4-3658, during an accretion outburst that occurred in August 2019. At the time of the observations, the pulsar was surrounded by an accretion disc, displayed X-ray pulsations and its luminosity was consistent with magnetically funneled accretion onto the neutron star. Current accretion models fail to account for the luminosity of both optical and ultraviolet pulsations; these are instead more likely driven by synchro-curvature radiation in the pulsar magnetosphere or just outside of it. This interpretation would imply that particle acceleration can take place even when mass accretion is going on, and opens up new perspectives in the study of coherent optical/UV pulsations from fast spinning accreting neutron stars in low-mass X-ray binary systems., Comment: 47 pages, 9 figures. The first two authors contributed equally to this work; Nature Astronomy (2021), published on-line on February 22, 2021; doi:10.1038/s41550-021-01308-0
- Published
- 2021
- Full Text
- View/download PDF
40. Garden optimization problems for benchmarking quantum annealers
- Author
-
Calaza, Carlos D. Gonzalez, Willsch, Dennis, and Michielsen, Kristel
- Subjects
Quantum Physics ,Physics - Computational Physics - Abstract
We benchmark the 5000+ qubit system Advantage coupled with the Hybrid Solver Service 2 released by D-Wave Systems Inc. in September 2020 by using a new class of optimization problems called garden optimization problems known in companion planting. These problems are scalable to an arbitrarily large number of variables and intuitively find application in real-world scenarios. We derive their QUBO formulation and illustrate their relation to the quadratic assignment problem. We demonstrate that the Advantage system and the new hybrid solver can solve larger problems in less time than their predecessors. However, we also show that the solvers based on the 2000+ qubit system DW2000Q sometimes produce more favourable results if they can solve the problems., Comment: open-source code available at https://jugit.fz-juelich.de/qip/garden-optimization-problem.git
- Published
- 2021
- Full Text
- View/download PDF
41. The cryogenic RWELL: a stable charge multiplier for dual-phase liquid argon detectors
- Author
-
A. Tesi, S. Leardini, L. Moleri, D. Gonzalez-Diaz, A. Jash, A. Breskin, and S. Bressler
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The operation of a cryogenic Resistive WELL (RWELL) in liquid argon vapor is reported for the first time. It comprises a Thick Gas Electron Multiplier (THGEM) structure coupled to a resistive Diamond-Like Carbon (DLC) anode deposited on an insulating substrate. The multiplier was operated at cryogenic temperature (90 K, 1.2 bar) in saturated argon vapor and characterized in terms of charge gain and electrical stability. A comparative study with standard, non-resistive THGEM (a.k.a LEM) and WELL multipliers confirmed the RWELL advantages in terms of discharge quenching – i.e. superior gain and stability.
- Published
- 2023
- Full Text
- View/download PDF
42. Examining disparities in large‐scale patient‐reported data capture using digital tools among cancer patients at clinical intake
- Author
-
Dana E. Rollison, Brian D. Gonzalez, Kea Turner, Heather S. L. Jim, Yayi Zhao, Rossybelle P. Amorrortu, Rachel Howard, Kavita M. Ghia, Bryan Ngo, Phillip Reisman, Colin Moore, Randa Perkins, Robert J. Keenan, David A. Sallman, Cristina M. Naso, Edmondo J. Robinson, Susan T. Vadaparampil, Vani N. Simmons, Matthew B. Schabath, and Scott M. Gilbert
- Subjects
adults ,healthcare disparities ,neoplasms ,population groups ,surveys and questionnaires ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Patient‐reported data can improve quality of healthcare delivery and patient outcomes. Moffitt Cancer Center (“Moffitt”) administers the Electronic Patient Questionnaire (EPQ) to collect data on demographics, including sexual orientation and gender identity (SOGI), medical history, cancer risk factors, and quality of life. Here we investigated differences in EPQ completion by demographic and cancer characteristics. Methods An analysis including 146,142 new adult patients at Moffitt in 2009–2020 was conducted using scheduling, EPQ and cancer registry data. EPQ completion was described by calendar year and demographics. Logistic regression was used to estimate associations between demographic/cancer characteristics and EPQ completion. More recently collected information on SOGI were described. Results Patient portal usage (81%) and EPQ completion rates (79%) were consistently high since 2014. Among patients in the cancer registry, females were more likely to complete the EPQ than males (odds ratio [OR] = 1.17, 95% confidence interval [CI] = 1.14–1.20). Patients ages 18–64 years were more likely to complete the EPQ than patients aged ≥65. Lower EPQ completion rates were observed among Black or African American patients (OR = 0.59, 95% CI = 0.56–0.63) as compared to Whites and among patients whose preferred language was Spanish (OR = 0.40, 95% CI = 0.36–0.44) or another language as compared to English. Furthermore, patients with localized (OR = 1.16, 95% CI = 1.12–1.19) or regional (OR = 1.16, 95% CI = 1.12–1.20) cancer were more likely to complete the EPQ compared to those with metastatic disease. Less than 3% of patients self‐identified as being lesbian, gay, or bisexual and
- Published
- 2023
- Full Text
- View/download PDF
43. Support Through Remote Observation and Nutrition Guidance (STRONG), a digital health intervention to reduce malnutrition among pancreatic cancer patients: A study protocol for a pilot randomized controlled trial
- Author
-
Kea Turner, Dae Won Kim, Brian D. Gonzalez, Laurence R. Gore, Erin Gurd, Jeanine Milano, Diane Riccardi, Margaret Byrne, Mohammed Al-Jumayli, Tiago Biachi de Castria, Damian A. Laber, Sarah Hoffe, James Costello, Edmondo Robinson, Juskaran S. Chadha, Sahana Rajasekhara, Emma Hume, Ryan Hagen, Oliver T. Nguyen, Nicole Nardella, Nathan Parker, Tiffany L. Carson, Amir Alishahi Tabriz, and Pamela Hodul
- Subjects
Digital health ,Wearable device ,Remote monitoring ,Malnutrition ,Nutrition ,Pancreatic cancer ,Medicine (General) ,R5-920 - Abstract
Background: Malnutrition is a common and distressing condition among pancreatic cancer patients. Fewer than a quarter of pancreatic cancer patients receive medical nutrition therapy (MNT), important for improving nutritional status, weight maintenance, quality of life and survival. System, provider, and patient level barriers limit access to MNT. We propose to examine the feasibility of a 12-week multi-level, digital health intervention designed to expand MNT access among pancreatic cancer patients. Methods: Individuals with advanced pancreatic cancer starting chemotherapy (N = 80) will be 1:1 randomized to the intervention or usual care. The Support Through Remote Observation and Nutrition Guidance (STRONG) intervention includes system-level (e.g., routine malnutrition and screening), provider-level (e.g., dietitian training and web-based dashboard), and patient-level strategies (e.g., individualized nutrition plan, self-monitoring of dietary intake via Fitbit, ongoing goal monitoring and feedback). Individuals receiving usual care will be referred to dietitians based on their oncologists’ discretion. Study assessments will be completed at baseline, 4-, 8-, 12-, and 16-weeks. Results: Primary outcomes will be feasibility (e.g., recruitment, retention, assessment completion) and acceptability. We will collect additional implementation outcomes, such as intervention adherence, perceived usability, and feedback on intervention quality via an exit interview. We will collect preliminary data on outcomes that may be associated with the intervention including malnutrition, quality of life, treatment outcomes, and survival. Conclusion: This study will advance our knowledge on the feasibility of a digital health intervention to reduce malnutrition among individuals with advanced pancreatic cancer. Trial registration: NCT05675059, registered on December 9, 2022.
- Published
- 2024
- Full Text
- View/download PDF
44. Successful treatment with fludarabine and cyclophosphamide in a VEXAS syndrome patient with associated myelodysplastic syndrome: a case report and systematic review
- Author
-
Polina Bellman, Jesus D. Gonzalez-Lugo, Moazzam Shahzad, Muhammad Kashif Amin, Muhammad Fareed Khalid, Nahid Suleman, Nausheen Ahmed, Anurag K. Singh, Abdulraheem Yacoub, Da Zhang, Joseph P. McGuirk, and Muhammad Umair Mushtaq
- Subjects
myelodysplastic syndrome ,VEXAS syndrome ,outcomes ,allogeneic hematopoietic stem cell transplantation ,fludarabine and cyclophosphamide ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Vacuoles, E1 syndrome, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a chronic inflammatory disorder that affects various organ systems. It is associated with hematologic malignancies and is generally refractory to therapies. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) may be considered for selected patients. We report a case wherein systemic and hematological manifestations completely resolved in a patient with VEXAS and associated myelodysplastic syndrome (MDS), following the administration of fludarabine and cyclophosphamide as part of the preparation for allo-HSCT. We conducted a systematic literature review and included 86 patients with VEXAS syndrome and associated MDS. Most cases presented with musculoskeletal involvement (71%) and anemia (72%) with lower-risk MDS. Most patients responded to corticosteroids (CS) but had a recurrence of symptoms with CS taper and were refractory to other immunosuppressive agents. Hypomethylating agents and Janus kinase inhibitors achieved a complete response in some cases. Further research is needed to develop more effective treatment strategies.
- Published
- 2024
- Full Text
- View/download PDF
45. LOCNES: a solar telescope to study stellar activity in the near infrared
- Author
-
R., Claudi, A., Ghedina, E., Pace, M., Di Giorgio A., V., D'Orazi, L., Gallorini, F., Lanza A., J., Liu S., M., Rainer, A., Tozzi, I., Carleo, J., Maldonado Prado, G., Micela, E., Molinari, E., Poretti, D., Phillips, G., Tripodo, M., Cecconi, A., Galli, D., Gonzalez M., V., Guerra Padilla, G., Guerra Ramòn J., A., Harutyunyan, N., Hernàndez Càceres, M., Hernàndez Dìaz, M., Lodi, H., Pèrez Ventura, L., Riverol Rodrìguez A., A., Riverol Rodrìguez C., and J, San Juan Gòmez
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
LOCNES (LOw-Cost NIR Extended Solar telescope) is a solar telescope installed at the TNG (Telescopio Nazionale Galileo). It feeds the light of the Sun into the NIR spectrograph GIANO-B through a 40-m patch of optical fibers. LOCNES has been designed to obtain high signal-to-noise ratio spectra of the Sun as a star with an accurate wavelength calibration through molecular-band cells. This is an entirely new area of investigation that will provide timely results to improve the search of telluric planets with NIR spectrographs such as iSHELL, CARMENES, and GIANO-B. We will extract several disc-integrated activity indicators and average magnetic field measurements for the Sun in the NIR. Eventually, they will be correlated with both the RV of the Sun-as-a -star and the resolved images of the solar disc in visible and NIR. Such an approach will allow for a better understanding of the origin of activity-induced RV variations in the two spectral domains and will help in improving the techniques for their corrections. In this paper, we outline the science drivers for the LOCNES project and its first commissioning results., Comment: 12 pages, 8 Figures, SPIE 2020 Conference
- Published
- 2020
46. Quantum Annealing based Power Grid Partitioning for Parallel Simulation.
- Author
-
Carsten Hartmann, Junjie Zhang, Carlos D. Gonzalez Calaza, Thiemo Pesch, Kristel Michielsen, and Andrea Benigni
- Published
- 2024
- Full Text
- View/download PDF
47. Targeted reproductive management for lactating Holstein cows: Reducing the reliance on exogenous reproductive hormones
- Author
-
Tomas D. Gonzalez, Luana Factor, Ahmadreza Mirzaei, Ana B. Montevecchio, Segundo Casaro, Victoria R. Merenda, Jessica G. Prim, Klibs N. Galvão, Rafael S. Bisinotto, and Ricardo C. Chebel
- Subjects
Holstein cow ,reproduction ,automated estrus detection ,Dairy processing. Dairy products ,SF250.5-275 ,Dairying ,SF221-250 - Abstract
ABSTRACT: Adoption of automated monitoring devices (AMD) affords the opportunity to tailor reproductive management according to the cow's needs. We hypothesized that a targeted reproductive management (TRM) would reduce the use of reproductive hormones while increasing the percentage of cows pregnant 305 d in milk (DIM). Holstein cows from 2 herds (n = 1,930) were fitted with an AMD at 251.0 ± 0.4 d of gestation. Early-postpartum estrus characteristics (EPEC; intense estrus = heat index ≥70; 0 = minimum, 100 = maximum) of multiparous cows were evaluated at 40 (herd 1) or 41 (herd 2) DIM and EPEC of primiparous cows were evaluated at 54 (herd 1) or 55 (herd 2) DIM. Control cows received the first artificial insemination at fixed time (TAI; primiparous, herd 1 = 82 and herd 2 = 83 DIM; multiparous, herd 1 = 68 and herd 2 = 69 DIM) following the Double-Ovsynch (DOV) protocol. Cows enrolled in the TRM treatment were managed as follows: (1) cows with at least one intense estrus were inseminated upon AMD detected estrus for 42 d and, if not inseminated, were enrolled in the DOV protocol; and (2) cows without an intense estrus were enrolled in the DOV protocol at the same time as cows in the control treatment. Control cows were re-inseminated based on visual or patch aided detection of estrus, whereas TRM cows were re-inseminated as described for control cows with the aid of the AMD. Cows received a GnRH injection 27 ± 3 d after insemination and, if diagnosed as nonpregnant, completed the 5-d Cosynch protocol and received TAI 35 ± 3 d after insemination. Among cows in the TRM treatment, 55.8 and 42.9% of primiparous and multiparous cows, respectively, received the first insemination in spontaneous estrus. The interaction between treatment and parity affected pregnancy 67 d after the first AI (primiparous: control = 37.6%, TRM = 27.4%; multiparous: control = 41.0%, TRM = 44.7%). The TRM treatment increased re-insemination in estrus (control = 48.3%, TRM = 70.5%). Pregnancy 67 d after re-inseminations tended to be affected by the interaction between treatment and EPEC (no intense estrus: control = 25.3%, TRM = 32.0%; intense estrus: control = 32.9%, TRM = 32.2%). The interaction between treatment and EPEC affected pregnancy by 305 DIM (no intense estrus: control = 80.8%, TRM = 88.2%; intense estrus: control = 87.1%, TRM = 86.1%). Treatment did not affect the number of reproductive hormone treatments among cows that had not had an intense estrus (control = 10.5 ± 0.3, TRM = 9.1 ± 0.2 treatments/cow), but cows in the TRM treatment that had an intense estrus received fewer reproductive hormone treatments than cows in the control treatment (2.0 ± 0.1 vs. 9.6 ± 0.2 treatments/cow). Selecting multiparous cows for first AI in estrus based on EPEC reduced the use of reproductive hormones without impairing the likelihood of pregnancy to first AI. The use of AMD for re-insemination expedited the establishment of pregnancy among cows that did not display an intense estrus early postpartum.
- Published
- 2023
- Full Text
- View/download PDF
48. Western variant intravascular large B-cell lymphoma in an Indian man
- Author
-
Kevin M. Burningham, BS, Ravi R. Patel, MD, Cristian D. Gonzalez, MD, Melissa Mauskar, MD, Travis Vandergriff, MD, and Heather W. Goff, MD, MPH
- Subjects
case report ,cutaneous lymphoma ,cutaneous manifestation of disease ,hematologic malignancy ,intravascular large B-cell lymphoma ,MR-CHOP ,Dermatology ,RL1-803 - Published
- 2023
- Full Text
- View/download PDF
49. A high burden of diabetes and ankle brachial index abnormalities exists in Mexican Americans in South Texas
- Author
-
Anand Prasad, Audrey C. Choh, Nelson D. Gonzalez, Marlene Garcia, Miryoung Lee, Gordon Watt, Liliana Maria Vasquez, Susan Laing, Shenghui Wu, Joseph B. McCormick, and Susan Fisher-Hoch
- Subjects
Peripheral arterial disease ,Ankle brachial index ,Diabetes mellitus ,Population health ,Amputation ,Vascular medicine ,Medicine - Abstract
Ethnic differences exist in the United States in the interrelated problems of diabetes (DM), peripheral arterial disease (PAD), and leg amputations. The purpose of this study was to determine the prevalence and risk factor associations for subclinical PAD in a population sample of Mexican Americans using the ankle brachial (ABI) index.The ABI-High (higher of the two ankle pressures/highest brachial pressure) and ABI-Low (lower of the two ankle pressures/highest brachial pressure) were calculated to define PAD. Toe brachial index (TBI) was also calculated. 746 participants were included with an age of 53.4 ± 0.9 years, 28.3 % had diabetes mellitus (DM), 12.6 % were smokers, and 51.2 % had hypertension (HTN). Using ABI-High ≤ 0.9, the prevalence of PAD was 2.7 %. This rose to 12.7 % when an ABI-Low ≤ 0.9 was used; 4.0 % of the population had an ABI-High > 1.4. The prevalence of TBI 1.4, and TBI 1.4. Increased age, smoking, and lower education were all associated with abnormal TBI.Despite relatively younger mean age than other studied Hispanic cohorts, the present population has a high burden of ABI abnormalities. DM was a consistent risk factor for PAD. These abnormalities indicate an important underlying substrate of vascular and metabolic disease that may predispose this population to the development of symptomatic PAD and incident amputations.
- Published
- 2024
- Full Text
- View/download PDF
50. The combinatorics of plane curve singularities. How Newton polygons blossom into lotuses
- Author
-
Barroso, Evelia R. García, Pérez, Pedro D. González, and Popescu-Pampu, Patrick
- Subjects
Mathematics - Algebraic Geometry ,14H20, 14B05, 32S05 - Abstract
This survey may be seen as an introduction to the use of toric and tropical geometry in the analysis of plane curve singularities, which are germs $(C,o)$ of complex analytic curves contained in a smooth complex analytic surface $S$. The embedded topological type of such a pair $(S, C)$ is usually defined to be that of the oriented link obtained by intersecting $C$ with a sufficiently small oriented Euclidean sphere centered at the point $o$, defined once a system of local coordinates $(x,y)$ was chosen on the germ $(S,o)$. If one works more generally over an arbitrary algebraically closed field of characteristic zero, one speaks instead of the combinatorial type of $(S, C)$. One may define it by looking either at the Newton-Puiseux series associated to $C$ relative to a generic local coordinate system $(x,y)$, or at the set of infinitely near points which have to be blown up in order to get the minimal embedded resolution of the germ $(C,o)$ or, thirdly, at the preimage of this germ by the resolution. Each point of view leads to a different encoding of the combinatorial type by a decorated tree: an Eggers-Wall tree, an Enriques diagram, or a weighted dual graph. The three trees contain the same information, which in the complex setting is equivalent to the knowledge of the embedded topological type. There are known algorithms for transforming one tree into another. In this paper we explain how a special type of two-dimensional simplicial complex called a lotus allows to think geometrically about the relations between the three types of trees. Namely, all of them embed in a natural lotus, their numerical decorations appearing as invariants of it. This lotus is constructed from the finite set of Newton polygons created during any process of resolution of $(C,o)$ by successive toric modifications., Comment: 104 pages, 58 figures. Compared to the previous version, section 2 is new. The historical information, contained before in subsection 6.2, is distributed now throughout the paper in the subsections called "Historical comments''. More details are also added at various places of the paper. To appear in the Handbook of Geometry and Topology of Singularities I, Springer, 2020
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.