461,839 results on '"D’angelo, A."'
Search Results
2. Grit, Retention and Student Success in a South African Distance Education Institution: A Postgraduate Triad?
- Author
-
Kelly Young and Angelo Fynn
- Abstract
Psychological grit has gained substantial interest among traditional higher education practitioners, with many seeking the link between grit, academic performance and retention. The literature pertaining to distance education cohorts is scant, however, especially within the South African context, which holds unique challenges for accessing and completing a tertiary qualification. This study made use of a nonexperimental design and used Grit-S and demographic data combined with records of student performance and progression to ascertain grit's role in determining retention and degree completion at a mega distance education institution in South Africa. The sample comprised 775 honours students who registered for their qualification for the first time in 2017. Results from the final structural model highlighted the significant influence of perseverance and first-to-second year retention on student success (operationalised at qualification completion). A subsequent binary logistic regression revealed odds ratios of 1.98 (CI: 1.45 - 2.69) and 12.15 (CI: 7.40 - 19.95), respectively. The final model explained 24% of the variance in qualification completion rates, with the biggest contributor being first-to-second year retention ([beta] = 0.45; p < 0.01). These results and subsequent implications are discussed.
- Published
- 2024
3. Is Multiple Object Tracking a Matter of Specialization?
- Author
-
Mancusi, Gianluca, Bernardi, Mattia, Panariello, Aniello, Porrello, Angelo, Cucchiara, Rita, and Calderara, Simone
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
End-to-end transformer-based trackers have achieved remarkable performance on most human-related datasets. However, training these trackers in heterogeneous scenarios poses significant challenges, including negative interference - where the model learns conflicting scene-specific parameters - and limited domain generalization, which often necessitates expensive fine-tuning to adapt the models to new domains. In response to these challenges, we introduce Parameter-efficient Scenario-specific Tracking Architecture (PASTA), a novel framework that combines Parameter-Efficient Fine-Tuning (PEFT) and Modular Deep Learning (MDL). Specifically, we define key scenario attributes (e.g, camera-viewpoint, lighting condition) and train specialized PEFT modules for each attribute. These expert modules are combined in parameter space, enabling systematic generalization to new domains without increasing inference time. Extensive experiments on MOTSynth, along with zero-shot evaluations on MOT17 and PersonPath22 demonstrate that a neural tracker built from carefully selected modules surpasses its monolithic counterpart. We release models and code., Comment: NeurIPS 2024
- Published
- 2024
4. Ultra-Slow-Roll Inflation on the Lattice: Backreaction and Nonlinear Effects
- Author
-
Caravano, Angelo, Franciolini, Gabriele, and Renaux-Petel, Sébastien
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Theory - Abstract
Violating the slow-roll regime during the final stages of inflation can significantly enhance curvature perturbations, a scenario often invoked in models producing primordial black holes and small-scale scalar induced gravitational waves. When perturbations are enhanced, one approaches the regime in which tree-level computations are insufficient, and nonlinear corrections may become relevant. In this work, we conduct lattice simulations of ultra-slow-roll (USR) dynamics to investigate the significance of nonlinear effects, both in terms of backreaction on the background and in the evolution of perturbations. Our systematic study of various USR potentials reveals that nonlinear corrections are significant when the tree-level curvature power spectrum peaks at $\mathcal{P}^{\rm max}_{\zeta} = {\cal O}(10^{-3})-{\cal O}(10^{-2})$, with 5%$-$10% corrections. Larger enhancements yield even greater differences. We establish a universal relation between simulation and tree-level quantities $\dot\phi = \dot\phi_{\rm tree}\left(1+\sqrt{\mathcal{P}^{\rm max}_{\zeta,\rm tree}}\right)$ at the end of the USR phase, which is valid in all cases we consider. Additionally, we explore how nonlinear interactions during the USR phase affect the clustering and non-Gaussianity of scalar fluctuations, crucial for understanding the phenomenological consequences of USR, such as scalar-induced gravitational waves and primordial black holes. Our findings demonstrate the necessity of going beyond leading order perturbation theory results, through higher-order or non-perturbative computations, to make robust predictions for inflation models exhibiting a USR phase., Comment: 17 pages, 11 figures; animations are available at https://github.com/caravangelo/USR-on-the-lattice
- Published
- 2024
5. Synthesis of Timeline-Based Planning Strategies Avoiding Determinization
- Author
-
Acampora, Renato, Della Monica, Dario, Geatti, Luca, Gigante, Nicola, Montanari, Angelo, and Sala, Pietro
- Subjects
Computer Science - Formal Languages and Automata Theory ,Computer Science - Computational Complexity - Abstract
Qualitative timeline-based planning models domains as sets of independent, but interacting, components whose behaviors over time, the timelines, are governed by sets of qualitative temporal constraints (ordering relations), called synchronization rules. Its plan-existence problem has been shown to be PSPACE-complete; in particular, PSPACE-membership has been proved via reduction to the nonemptiness problem for nondeterministic finite automata. However, nondeterministic automata cannot be directly used to synthesize planning strategies as a costly determinization step is needed. In this paper, we identify a large fragment of qualitative timeline-based planning whose plan-existence problem can be directly mapped into the nonemptiness problem of deterministic finite automata, which can then be exploited to synthesize strategies. In addition, we identify a maximal subset of Allen's relations that fits into such a deterministic fragment., Comment: In Proceedings GandALF 2024, arXiv:2410.21884
- Published
- 2024
- Full Text
- View/download PDF
6. Non-Hermitian Discrete Time Crystals
- Author
-
Yousefjani, Rozhin, Carollo, Angelo, Sacha, Krzysztof, Al-Kuwari, Saif, and Bayat, Abolfazl
- Subjects
Quantum Physics - Abstract
Discrete time crystals (DTC) exhibit a special non-equilibrium phase of matter in periodically driven many-body systems with spontaneous breaking of time translational symmetry. The presence of decoherence generally enhances thermalization and destroys the coherence required for the existence of DTC. In this letter, we devise a mechanism for establishing a stable DTC with period-doubling oscillations in an open quantum system that is governed by a properly tailored non-Hermitian Hamiltonian. We find a specific class of non-reciprocal couplings in our non-Hermitian dynamics which prevents thermalization through eigenstate ordering. Such choice of non-Hermitian dynamics, significantly enhances the stability of the DTC against imperfect pulses. Through a comprehensive analysis, we determine the phase diagram of the system in terms of pulse imperfection., Comment: Comments are welcome!
- Published
- 2024
7. High-level hybridization of heuristics and metaheuristics to solve symmetric TSP: a comparative study
- Author
-
Junior, Carlos Alberto da Silva, Tanaka, Roberto Yuji, da Silva, Luiz Carlos Farias, and Passaro, Angelo
- Subjects
Computer Science - Neural and Evolutionary Computing ,Computer Science - Discrete Mathematics ,Mathematics - Optimization and Control - Abstract
The Travelling Salesman Problem - TSP is one of the most explored problems in the scientific literature to solve real problems regarding the economy, transportation, and logistics, to cite a few cases. Adapting TSP to solve different problems has originated several variants of the optimization problem with more complex objectives and different restrictions. Metaheuristics have been used to solve the problem in polynomial time. Several studies have tried hybridising metaheuristics with specialised heuristics to improve the quality of the solutions. However, we have found no study to evaluate whether the searching mechanism of a particular metaheuristic is more adequate for exploring hybridization. This paper focuses on the solution of the classical TSP using high-level hybridisations, experimenting with eight metaheuristics and heuristics derived from k-OPT, SISR, and segment intersection search, resulting in twenty-four combinations. Some combinations allow more than one set of searching parameters. Problems with 50 to 280 cities are solved. Parameter tuning of the metaheuristics is not carried out, exploiting the different searching patterns of the eight metaheuristics instead. The solutions' quality is compared to those presented in the literature.
- Published
- 2024
8. A Two-Week $IXPE$ Monitoring Campaign on Mrk 421
- Author
-
Maksym, W. Peter, Liodakis, Ioannis, Saade, M. Lynne, Kim, Dawoon E., Middei, Riccardo, Di Gesu, Laura, Kiehlmann, Sebastian, Matzeu, Gabriele, Agudo, Iván, Marscher, Alan P., Ehlert, Steven R., Jorstad, Svetlana G., Kaaret, Philip, Marshall, Herman L., Pacciani, Luigi, Perri, Matteo, Puccetti, Simonetta, Kouch, Pouya M., Lindfors, Elina, Aceituno, Francisco José, Bonnoli, Giacomo, Casanova, Víctor, Escudero, Juan, Agís-González, Beatriz, Husillos, César, Morcuende, Daniel, Otero-Santos, Jorge, Sota, Alfredo, Piirola, Vilppu, Imazawa, Ryo, Sasada, Mahito, Fukazawa, Yasushi, Kawabata, Koji S., Uemura, Makoto, Mizuno, Tsunefumi, Nakaoka, Tatsuya, Akitaya, Hiroshi, McCall, Callum, Jermak, Helen E., Steele, Iain A., Borman, George A., Grishina, Tatiana S., Hagen-Thorn, Vladimir A., Kopatskaya, Evgenia N., Larionova, Elena G., Morozova, Daria A., Savchenko, Sergey S., Shishkina, Ekaterina V., Troitskiy, Ivan S., Troitskaya, Yulia V., Vasilyev, Andrey A., Zhovtan, Alexey V., Myserlis, Ioannis, Gurwell, Mark, Keating, Garrett, Rao, Ramprasad, Pauley, Colt, Angelakis, Emmanouil, Kraus, Alexander, Berdyugin, Andrei V., Kagitani, Masato, Kravtsov, Vadim, Poutanen, Juri, Sakanoi, Takeshi, Kang, Sincheol, Lee, Sang-Sung, Kim, Sang-Hyun, Cheong, Whee Yeon, Jeong, Hyeon-Woo, Song, Chanwoo, Blinov, Dmitry, Shablovinskaya, Elena, Antonelli, Lucio Angelo, Bachetti, Matteo, Baldini, Luca, Baumgartner, Wayne H., Bellazzini, Ronaldo, Bianchi, Stefano, Bongiorno, Stephen D., Bonino, Raffaella, Brez, Alessandro, Bucciantini, Niccoló, Capitanio, Fiamma, Castellano, Simone, Cavazzuti, Elisabetta, Chen, Chien-Ting, Ciprini, Stefano, Costa, Enrico, De Rosa, Alessandra, Del Monte, Ettore, Di Lalla, Niccoló, Di Marco, Alessandro, Donnarumma, Immacolata, Doroshenko, Victor, Dovčiak, Michal, Enoto, Teruaki, Evangelista, Yuri, Fabiani, Sergio, Ferrazzoli, Riccardo, Garcia, Javier A., Gunji, Shuichi, Hayashida, Kiyoshi, Heyl, Jeremy, Iwakiri, Wataru, Karas, Vladimir, Kislat, Fabian, Kitaguchi, Takao, Kolodziejczak, Jeffery J., Krawczynski, Henric, La Monaca, Fabio, Latronico, Luca, Maldera, Simone, Manfreda, Alberto, Marin, Frédéric, Marinucci, Andrea, Massaro, Francesco, Matt, Giorgio, Mitsuishi, Ikuyuki, Muleri, Fabio, Negro, Michela, Ng, C. -Y., O'Dell, Stephen L., Omodei, Nicola, Oppedisano, Chiara, Papitto, Alessandro, Pavlov, George G., Peirson, Abel Lawrence, Pesce-Rollins, Melissa, Petrucci, Pierre-Olivier, Pilia, Maura, Possenti, Andrea, Ramsey, Brian D., Rankin, John, Ratheesh, Ajay, Roberts, Oliver J., Romani, Roger W., Sgró, Carmelo, Slane, Patrick, Soffitta, Paolo, Spandre, Gloria, Swartz, Douglas A., Tamagawa, Toru, Tavecchio, Fabrizio, Taverna, Roberto, Tawara, Yuzuru, Tennant, Allyn F., Thomas, Nicholas E., Tombesi, Francesco, Trois, Alessio, Tsygankov, Sergey S., Turolla, Roberto, Vink, Jacco, Weisskopf, Martin C., Wu, Kinwah, Xie, Fei, and Zane, Silvia
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
X-ray polarization is a unique new probe of the particle acceleration in astrophysical jets made possible through the Imaging X-ray Polarimetry Explorer. Here we report on the first dense X-ray polarization monitoring campaign on the blazar Mrk 421. Our observations were accompanied by an even denser radio and optical polarization campaign. We find significant short-timescale variability in both X-ray polarization degree and angle, including a $\sim90^\circ$ angle rotation about the jet axis. We attribute this to random variations of the magnetic field, consistent with the presence of turbulence but also unlikely to be explained by turbulence alone. At the same time, the degree of lower-energy polarization is significantly lower and shows no more than mild variability. Our campaign provides further evidence for a scenario in which energy-stratified shock-acceleration of relativistic electrons, combined with a turbulent magnetic field, is responsible for optical to X-ray synchrotron emission in blazar jets., Comment: 23 pages, including 8 pages of appendices. 12 figures, 3 tables. Submitted to ApJ
- Published
- 2024
9. From an attention economy to an ecology of attending. A manifesto
- Author
-
Bombaerts, Gunter, Hannes, Tom, Adam, Martin, Aloisi, Alessandra, Anderson, Joel, Berger, Lawrence, Bettera, Stefano Davide, Campo, Enrico, Candiotto, Laura, Panizza, Silvia Caprioglio, Citton, Yves, DâAngelo, Diego, Dennis, Matthew, Depraz, Nathalie, Doran, Peter, Drechsler, Wolfgang, Duane, Bill, Edelglass, William, Eisenberger, Iris, McGuire, Beverley Foulks, Fredriksson, Antony, Gill, Karamjit S., Hershock, Peter D., Hongladarom, Soraj, Jacobs, Beth, Karsai, Gábor, Lennerfors, Thomas, Lim, Jeanne, Lin, Chien-Te, Losoncz, Mark, Loy, David, Marin, Lavinia, Marosán, Bence Péter, Mascarello, Chiara, McMahan, David, Park, Jin Y., Petek, Nina, Puzio, Anna, Schaubroek, Katrien, Schlieter, Jens, Schroeder, Brian, Shakya, Shobhit, Shi, Juewei, Solomonova, Elizaveta, Tormen, Francesco, Uttam, Jitendra, Van Vugt, Marieke, Vörös, Sebastjan, Wehrle, Maren, Wellner, Galit, Wirth, Jason M., Witkowski, Olaf, Wongkitrungrueng, Apiradee, Wright, Dale S., and Zheng, Yutong
- Subjects
Computer Science - Computers and Society - Abstract
As the signatories of this manifesto, we denounce the attention economy as inhumane and a threat to our sociopolitical and ecological well-being. We endorse policymakers' efforts to address the negative consequences of the attention economy's technology, but add that these approaches are often limited in their criticism of the systemic context of human attention. Starting from Buddhist philosophy, we advocate a broader approach: an ecology of attending, that centers on conceptualizing, designing, and using attention (1) in an embedded way and (2) focused on the alleviating of suffering. With 'embedded' we mean that attention is not a neutral, isolated mechanism but a meaning-engendering part of an 'ecology' of bodily, sociotechnical and moral frameworks. With 'focused on the alleviation of suffering' we explicitly move away from the (often implicit) conception of attention as a tool for gratifying desires., Comment: 21 pages, 1 figure
- Published
- 2024
10. Weak Bending of Light by Rotating Regular Black Holes with Asymptotically Minkowski Core using the Gauss-Bonnet Theorem
- Author
-
Sodejana, Miles Angelo P.
- Subjects
General Relativity and Quantum Cosmology - Abstract
In this paper, the weak gravitational lensing phenomenon for a recently proposed rotating regular black hole with an asymptotically Minkowski core characterized by a sub-Planckian curvature was investigated. Using the Gauss-Bonnet Theorem, the deflection of light in the weak limit was computed by taking the black hole as a lens at a finite distance from both the source and the observer. It was shown that the weak deflection angle slightly differs between the prograde and retrograde motion but both eventually converge to $0$ as $b$ increases. Moreover, the deflection angle correction for Kerr classical black hole and this sort of rotating regular black hole is a decreasing function for large values of $b$. It was also shown that the weak deflection angle for this sort of regular black hole is similar to Bardeen and Hayward black hole given its corresponding values for the parameters $x$ and $n$, Comment: 17 pages, 9 figures
- Published
- 2024
11. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
12. Integrating Reinforcement Learning with Foundation Models for Autonomous Robotics: Methods and Perspectives
- Author
-
Moroncelli, Angelo, Soni, Vishal, Shahid, Asad Ali, Maccarini, Marco, Forgione, Marco, Piga, Dario, Spahiu, Blerina, and Roveda, Loris
- Subjects
Computer Science - Robotics ,Computer Science - Machine Learning - Abstract
Foundation models (FMs), large deep learning models pre-trained on vast, unlabeled datasets, exhibit powerful capabilities in understanding complex patterns and generating sophisticated outputs. However, they often struggle to adapt to specific tasks. Reinforcement learning (RL), which allows agents to learn through interaction and feedback, offers a compelling solution. Integrating RL with FMs enables these models to achieve desired outcomes and excel at particular tasks. Additionally, RL can be enhanced by leveraging the reasoning and generalization capabilities of FMs. This synergy is revolutionizing various fields, including robotics. FMs, rich in knowledge and generalization, provide robots with valuable information, while RL facilitates learning and adaptation through real-world interactions. This survey paper comprehensively explores this exciting intersection, examining how these paradigms can be integrated to advance robotic intelligence. We analyze the use of foundation models as action planners, the development of robotics-specific foundation models, and the mutual benefits of combining FMs with RL. Furthermore, we present a taxonomy of integration approaches, including large language models, vision-language models, diffusion models, and transformer-based RL models. We also explore how RL can utilize world representations learned from FMs to enhance robotic task execution. Our survey aims to synthesize current research and highlight key challenges in robotic reasoning and control, particularly in the context of integrating FMs and RL--two rapidly evolving technologies. By doing so, we seek to spark future research and emphasize critical areas that require further investigation to enhance robotics. We provide an updated collection of papers based on our taxonomy, accessible on our open-source project website at: https://github.com/clmoro/Robotics-RL-FMs-Integration., Comment: Submitted for publication to the Special Issue on Foundation Models and Neural-Symbolic AI for Robotics in The International Journal of Robotics Research (IJRR)
- Published
- 2024
13. Effects of graph operations on star pairwise compatibility graphs
- Author
-
Monti, Angelo and Sinaimeri, Blerina
- Subjects
Computer Science - Discrete Mathematics ,Mathematics - Combinatorics - Abstract
A graph $G=(V,E)$ is defined as a star-$k$-PCG when it is possible to assign a positive real number weight $w$ to each vertex $V$, and define $k$ distinct intervals $I_1, I_2, \ldots I_k$, in such a way that there is an edge $uv$ in $E$ if and only if the sum of the weights of vertices $u$ and $v$ falls within the union of these intervals. The star-$k$-PCG class is connected to two significant categories of graphs, namely PCGs and multithreshold graphs. The star number of a graph $G$, is the smallest $k$ for which $G$ is a star-$k$-PCG. In this paper, we study the effects of various graph operations, such as the addition of twins, pendant vertices, universal vertices, or isolated vertices, on the star number of the graph resulting from these operations. As a direct application of our results, we determine the star number of lobster graphs and provide an upper bound for the star number of acyclic graphs.
- Published
- 2024
14. Conceptual and practical approaches for investigating irreversible processes
- Author
-
Lucente, Dario, Baldovin, Marco, Cecconi, Fabio, Cencini, Massimo, Cocciaglia, Niccolò, Puglisi, Andrea, Viale, Massimiliano, and Vulpiani, Angelo
- Subjects
Condensed Matter - Statistical Mechanics - Abstract
Current research in statistical mechanics mostly concerns the investigation of out-of-equilibrium, irreversible processes, which are ubiquitous in nature and still far from being theoretically understood. Even the precise characterization of irreversibility is the object of an open debate: while in the context of Hamiltonian systems the one-century-old proposal by M. Smoluchowski looks still valid (a process appears irreversible when the initial state has a recurrence time that is long compared to the time of observation [1]), in dissipative systems, particularly in the case of stochastic processes, the problem is more involved, and quantifying the "degree of irreversibility" is a pragmatic need. The most employed strategies rely on the estimation of entropy production: this quantity, although mathematically well-defined, is often difficult to compute, especially when analyzing experimental data. Moreover, being a global observable, entropy production fails to capture specific aspects of irreversibility in extended systems, such as the role of different currents and their spatial development. This review aims to address various conceptual and technical challenges encountered in the analysis of irreversibility, including the role of the coarse-graining procedure and the treatment of data in the absence of complete information. The discussion will be mostly based on simple models, analytically treatable, and supplemented by examples of complex, more realistic non-equilibrium systems., Comment: 79 pages, 19 figures
- Published
- 2024
15. Undecidability of the spectral gap in rotationally symmetric Hamiltonians
- Author
-
Castilla-Castellano, Laura and Lucia, Angelo
- Subjects
Quantum Physics - Abstract
The problem of determining the existence of a spectral gap in a lattice quantum spin system was previously shown to be undecidable for one [J. Bausch et al., "Undecidability of the spectral gap in one dimension", Physical Review X 10 (2020)] or more dimensions [T. S. Cubitt et al., "Undecidability of the spectral gap", Nature 528 (2015)]. In these works, families of nearest-neighbor interactions are constructed whose spectral gap depends on the outcome of a Turing machine Halting problem, therefore making it impossible for an algorithm to predict its existence. While these models are translationally invariant, they are not invariant under the other symmetries of the lattice, a property which is commonly found in physically relevant cases, posing the question of whether the spectral gap is still an undecidable problem for Hamiltonians with stronger symmetry constraints. We give a positive answer to this question, in the case of models with 4-body (plaquette) interactions on the square lattice satisfying rotation, but not reflection, symmetry: rotational symmetry is not enough to make the problem decidable., Comment: 42 pages, 12 figures, 11 tables
- Published
- 2024
16. A Proposal for Uncovering Hidden Social Bots via Genetic Similarity
- Author
-
Allegrini, Edoardo, Di Paolo, Edoardo, Petrocchi, Marinella, and Spognardi, Angelo
- Subjects
Computer Science - Social and Information Networks - Abstract
Social media platforms face an ongoing challenge in combating the proliferation of social bots, automated accounts that are also known to distort public opinion and support the spread of disinformation. Over the years, social bots have evolved greatly, often becoming indistinguishable from real users, and more recently, families of bots have been identified that are powered by Large Language Models to produce content for posting. We suggest an idea to classify social users as bots or not using genetic similarity algorithms. These algorithms provide an adaptive method for analyzing user behavior, allowing for the continuous evolution of detection criteria in response to the ever-changing tactics of social bots. Our proposal involves an initial clustering of social users into distinct macro species based on the similarities of their timelines. Macro species are then classified as either bot or genuine based on genetic characteristics. The preliminary idea we present, once fully developed, will allow existing detection applications based on timeline equality alone to be extended to detect bots. By incorporating new metrics, our approach will systematically classify non-trivial accounts into appropriate categories, effectively peeling back layers to reveal non-obvious species., Comment: Accepted at 27th International Conference on Discovery Science 2024. The present version is a preprint
- Published
- 2024
17. Report on Female Participation in Informatics degrees in Europe
- Author
-
D'Angelo, Andrea, Catarci, Tiziana, Di Marco, Antinisca, Landoni, Monica, Nardelli, Enrico, and Stilo, Giovanni
- Subjects
Computer Science - Computers and Society - Abstract
This study aims to enrich and leverage data from the Informatics Europe Higher Education (IEHE) data portal to extract and analyze trends in female participation in Informatics across Europe. The research examines the proportion of female students, first-year enrollments, and degrees awarded to women in the field. The issue of low female participation in Informatics has long been recognized as a persistent challenge and remains a critical area of scholarly inquiry. Furthermore, existing literature indicates that socio-economic factors can unpredictably influence female participation, complicating efforts to address the gender gap. The analysis focuses on participation data from research universities at various academic levels, including Bachelors, Masters, and PhD programs, and seeks to uncover potential correlations between female participation and geographical or economic zones. The dataset was first enriched by integrating additional information, such as each country's GDP and relevant geographical data, sourced from various online repositories. Subsequently, the data was cleaned to ensure consistency and eliminate incomplete time series. A final set of complete time series was selected for further analysis. We then used the data collected from the internet to assign countries to different clusters. Specifically, we employed Economic Zone, Geographical Area, and GDP quartile to cluster countries and compare their temporal trends both within and between clusters. We analyze the results for each classification and derive conclusions based on the available data.
- Published
- 2024
18. Evolution of Ferromagnetism and Electrical Resistivity in Sb-Doped Cr4PtGa17
- Author
-
Wang, Chaoguo, Angelo, Gina, Philbrick, Jeremy G., Kong, Tai, and Gui, Xin
- Subjects
Condensed Matter - Materials Science - Abstract
We describe the doping effects on a metallic breathing pyrochlore compound, Cr4PtGa17. Upon doping with Sb, i.e., Cr4Pt(Ga1-xSbx)17, it was found that a selective doping on one of the seven Ga sites occurs. With increasing dopant level, the ferromagnetism in the parent compound is gradually suppressed, along with a decrease in fitted Curie-Weiss temperature (from 61 (1) K to -1.8 (1) K) and effective moment (from ~2.26 muB/f.u. to ~0.68 muB/f.u.). Low-temperature heat capacity measurements confirm the absence of magnetic ordering above 0.4 K for the three most doped samples. Meanwhile, electrical resistivity measurements display a metal-semiconductor transition with increasing Sb contents, which is attributed to an increase of Fermi energy based on the calculations of electronic band structure and density of states. Moreover, we have speculated that the ferromagnetism in Cr4PtGa17 is governed by itinerant electrons according to our observations. This study of Sb-doping effect on Cr4PtGa17 provides deeper understanding of magnetism of this system and possibilities for future modifications., Comment: 29 pages, 7 figures, 6 tables
- Published
- 2024
19. Assessing the Impact of Unequal Noises and Foreground Modeling on SGWB Reconstruction with LISA
- Author
-
Kume, Jun'ya, Peloso, Marco, Pieroni, Mauro, and Ricciardone, Angelo
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
In the search for stochastic gravitational wave backgrounds (SGWB) of cosmological origin with LISA, it is crucial to account for realistic complications in the noise and astrophysical foreground modeling that may impact the signal reconstruction. To address these challenges, we updated the $\texttt{SGWBinner}$ code to incorporate both variable noise levels across LISA arms and more complex foreground spectral shapes. Our findings suggest that, while moderate variations of the noise amplitudes have a minimal impact, poor foreground modeling (i.e., templates requiring many free parameters) significantly degrades the reconstruction of cosmological signals. This underlines the importance of accurate modeling and subtraction of the astrophysical foregrounds to characterize possible cosmological components. To perform this more challenging analysis, we have integrated the $\texttt{JAX}$ framework, which significantly improves the computational efficiency of the code, in the $\texttt{SGWBinner}$ code, enabling faster Bayesian likelihood sampling and more effective exploration of complex SGWB signals., Comment: 30 pages, 9 figures
- Published
- 2024
20. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
21. vCLIC: Towards Fast Interrupt Handling in Virtualized RISC-V Mixed-criticality Systems
- Author
-
Zelioli, Enrico, Ottaviano, Alessandro, Balas, Robert, Wistoff, Nils, Garofalo, Angelo, and Benini, Luca
- Subjects
Computer Science - Hardware Architecture - Abstract
The widespread diffusion of compute-intensive edge-AI workloads and the stringent demands of modern autonomous systems require advanced heterogeneous embedded architectures. Such architectures must support high-performance and reliable execution of parallel tasks with different levels of criticality. Hardware-assisted virtualization is crucial for isolating applications concurrently executing these tasks under real-time constraints, but interrupt virtualization poses challenges in ensuring transparency to virtual guests while maintaining real-time system features, such as interrupt vectoring, nesting, and tail-chaining. Despite its rapid advancement to address virtualization needs for mixed-criticality systems, the RISC-V ecosystem still lacks interrupt controllers with integrated virtualization and real-time features, currently relying on non-deterministic, bus-mediated message-signaled interrupts (MSIs) for virtualization. To overcome this limitation, we present the design, implementation, and in-system assessment of vCLIC, a virtualization extension to the RISC-V CLIC fast interrupt controller. Our approach achieves 20x interrupt latency speed-up over the software emulation required for handling non-virtualization-aware systems, reduces response latency by 15% compared to existing MSI-based approaches, and is free from interference from the system bus, at an area cost of just 8kGE when synthesized in an advanced 16nm FinFet technology., Comment: 4 pages, 4 figures, accepted for presentation at the 42nd IEEE International Conference on Computer Design (ICCD 2024)
- Published
- 2024
22. Multi-messenger Probes of Supermassive Black Hole Spin Evolution
- Author
-
Ricarte, Angelo, Natarajan, Priyamvada, Narayan, Ramesh, and Palumbo, Daniel C. M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
Using the semi-analytic model Serotina, we investigate the cosmic spin evolution of supermassive black holes incorporating recent results from general relativistic magnetohydrodynamics simulations of spin-down from relativistic jets. We compare several variations of our model with compiled black hole spin measurements derived from X-ray reflection spectroscopy, correcting for a bias arising from the spin-dependent radiative efficiency of accretion flows. We show that the observed spin distribution is in agreement with a model that includes jet-driven spin-down, a key mechanism that acts to modulate spins across cosmic time at both high and very low specific accretion rates. The data also clearly prefer models with coherent accretion over models in which accretion disks rapidly switch from prograde to retrograde. We further predict spin distributions accessible via spatially resolved event horizons by the next-generation Event Horizon Telescope (ngEHT) and Black Hole Explorer (BHEX), as well as gravitational waves by the Laser Interferometer Space Antenna (LISA), each of which offer unique and distinct windows into the population of spinning black holes. Jet-driven spin-down is most strongly imprinted on the abundance of very highly spinning objects in our model. In addition, we show that the spin distribution sampled by LISA events may contain a signature of the natal spin distribution of heavy seeds, but not of light seeds, offering additional discrimination between these seeding pathways. Spin distributions from these future observed samples can be used to constrain the detailed physical properties of the accretion flow on horizon scales around supermassive black holes., Comment: 23 pages, 11 figures, 4 tables. Submitted to ApJ
- Published
- 2024
23. First Very Long Baseline Interferometry Detections at 870{\mu}m
- Author
-
Raymond, Alexander W., Doeleman, Sheperd S., Asada, Keiichi, Blackburn, Lindy, Bower, Geoffrey C., Bremer, Michael, Broguiere, Dominique, Chen, Ming-Tang, Crew, Geoffrey B., Dornbusch, Sven, Fish, Vincent L., García, Roberto, Gentaz, Olivier, Goddi, Ciriaco, Han, Chih-Chiang, Hecht, Michael H., Huang, Yau-De, Janssen, Michael, Keating, Garrett K., Koay, Jun Yi, Krichbaum, Thomas P., Lo, Wen-Ping, Matsushita, Satoki, Matthews, Lynn D., Moran, James M., Norton, Timothy J., Patel, Nimesh, Pesce, Dominic W., Ramakrishnan, Venkatessh, Rottmann, Helge, Roy, Alan L., Sánchez, Salvador, Tilanus, Remo P. J., Titus, Michael, Torne, Pablo, Wagner, Jan, Weintroub, Jonathan, Wielgus, Maciek, Young, André, Akiyama, Kazunori, Albentosa-Ruíz, Ezequiel, Alberdi, Antxon, Alef, Walter, Algaba, Juan Carlos, Anantua, Richard, Azulay, Rebecca, Bach, Uwe, Baczko, Anne-Kathrin, Ball, David, Baloković, Mislav, Bandyopadhyay, Bidisha, Barrett, John, Bauböck, Michi, Benson, Bradford A., Bintley, Dan, Blundell, Raymond, Bouman, Katherine L., Boyce, Hope, Brissenden, Roger, Britzen, Silke, Broderick, Avery E., Bronzwaer, Thomas, Bustamante, Sandra, Carlstrom, John E., Chael, Andrew, Chan, Chi-kwan, Chang, Dominic O., Chatterjee, Koushik, Chatterjee, Shami, Chen, Yongjun, Cheng, Xiaopeng, Cho, Ilje, Christian, Pierre, Conroy, Nicholas S., Conway, John E., Crawford, Thomas M., Cruz-Osorio, Alejandro, Cui, Yuzhu, Dahale, Rohan, Davelaar, Jordy, De Laurentis, Mariafelicia, Deane, Roger, Dempsey, Jessica, Desvignes, Gregory, Dexter, Jason, Dhruv, Vedant, Dihingia, Indu K., Dzib, Sergio A., Eatough, Ralph P., Emami, Razieh, Falcke, Heino, Farah, Joseph, Fomalont, Edward, Fontana, Anne-Laure, Ford, H. Alyson, Foschi, Marianna, Fraga-Encinas, Raquel, Freeman, William T., Friberg, Per, Fromm, Christian M., Fuentes, Antonio, Galison, Peter, Gammie, Charles F., Georgiev, Boris, Gold, Roman, Gómez-Ruiz, Arturo I., Gómez, José L., Gu, Minfeng, Gurwell, Mark, Hada, Kazuhiro, Haggard, Daryl, Hesper, Ronald, Heumann, Dirk, Ho, Luis C., Ho, Paul, Honma, Mareki, Huang, Chih-Wei L., Huang, Lei, Hughes, David H., Ikeda, Shiro, Impellizzeri, C. M. Violette, Inoue, Makoto, Issaoun, Sara, James, David J., Jannuzi, Buell T., Jeter, Britton, Jiang, Wu, Jiménez-Rosales, Alejandra, Johnson, Michael D., Jorstad, Svetlana, Jones, Adam C., Joshi, Abhishek V., Jung, Taehyun, Karuppusamy, Ramesh, Kawashima, Tomohisa, Kettenis, Mark, Kim, Dong-Jin, Kim, Jae-Young, Kim, Jongsoo, Kim, Junhan, Kino, Motoki, Kocherlakota, Prashant, Kofuji, Yutaro, Koch, Patrick M., Koyama, Shoko, Kramer, Carsten, Kramer, Joana A., Kramer, Michael, Kubo, Derek, Kuo, Cheng-Yu, La Bella, Noemi, Lee, Sang-Sung, Levis, Aviad, Li, Zhiyuan, Lico, Rocco, Lindahl, Greg, Lindqvist, Michael, Lisakov, Mikhail, Liu, Jun, Liu, Kuo, Liuzzo, Elisabetta, Lobanov, Andrei P., Loinard, Laurent, Lonsdale, Colin J., Lowitz, Amy E., Lu, Ru-Sen, MacDonald, Nicholas R., Mahieu, Sylvain, Maier, Doris, Mao, Jirong, Marchili, Nicola, Markoff, Sera, Marrone, Daniel P., Marscher, Alan P., Martí-Vidal, Iván, Medeiros, Lia, Menten, Karl M., Mizuno, Izumi, Mizuno, Yosuke, Montgomery, Joshua, Moriyama, Kotaro, Moscibrodzka, Monika, Mulaudzi, Wanga, Müller, Cornelia, Müller, Hendrik, Mus, Alejandro, Musoke, Gibwa, Myserlis, Ioannis, Nagai, Hiroshi, Nagar, Neil M., Nakamura, Masanori, Narayanan, Gopal, Natarajan, Iniyan, Nathanail, Antonios, Fuentes, Santiago Navarro, Neilsen, Joey, Ni, Chunchong, Nowak, Michael A., Oh, Junghwan, Okino, Hiroki, Sánchez, Héctor Raúl Olivares, Oyama, Tomoaki, Özel, Feryal, Palumbo, Daniel C. M., Paraschos, Georgios Filippos, Park, Jongho, Parsons, Harriet, Pen, Ue-Li, Piétu, Vincent, PopStefanija, Aleksandar, Porth, Oliver, Prather, Ben, Principe, Giacomo, Psaltis, Dimitrios, Pu, Hung-Yi, Raffin, Philippe A., Rao, Ramprasad, Rawlings, Mark G., Ricarte, Angelo, Ripperda, Bart, Roelofs, Freek, Romero-Cañizales, Cristina, Ros, Eduardo, Roshanineshat, Arash, Ruiz, Ignacio, Ruszczyk, Chet, Rygl, Kazi L. J., Sánchez-Argüelles, David, Sánchez-Portal, Miguel, Sasada, Mahito, Satapathy, Kaushik, Savolainen, Tuomas, Schloerb, F. Peter, Schonfeld, Jonathan, Schuster, Karl-Friedrich, Shao, Lijing, Shen, Zhiqiang, Small, Des, Sohn, Bong Won, SooHoo, Jason, Salas, León David Sosapanta, Souccar, Kamal, Srinivasan, Ranjani, Stanway, Joshua S., Sun, He, Tazaki, Fumie, Tetarenko, Alexandra J., Tiede, Paul, Toma, Kenji, Toscano, Teresa, Traianou, Efthalia, Trent, Tyler, Trippe, Sascha, Turk, Matthew, van Bemmel, Ilse, van Langevelde, Huib Jan, van Rossum, Daniel R., Vos, Jesse, Ward-Thompson, Derek, Wardle, John, Washington, Jasmin E., Wharton, Robert, Wiik, Kaj, Witzel, Gunther, Wondrak, Michael F., Wong, George N., Wu, Qingwen, Yadlapalli, Nitika, Yamaguchi, Paul, Yfantis, Aristomenis, Yoon, Doosoo, Younsi, Ziri, Yu, Wei, Yuan, Feng, Yuan, Ye-Fei, Zensus, J. Anton, Zhang, Shuo, Zhao, Guang-Yao, and Zhao, Shan-Shan
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The first very long baseline interferometry (VLBI) detections at 870$\mu$m wavelength (345$\,$GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth, and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on inter-continental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in October 2018. The longest-baseline detections approach 11$\,$G$\lambda$ corresponding to an angular resolution, or fringe spacing, of 19$\mu$as. The Allan deviation of the visibility phase at 870$\mu$m is comparable to that at 1.3$\,$mm on the relevant integration time scales between 2 and 100$\,$s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870$\mu$m. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time., Comment: Corresponding author: S. Doeleman
- Published
- 2024
- Full Text
- View/download PDF
24. Improved detection of discarded fish species through BoxAL active learning
- Author
-
Sokolova, Maria, Blok, Pieter M., Mencarelli, Angelo, Vroegop, Arjan, van Helmond, Aloysius, and Kootstra, Gert
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
In recent years, powerful data-driven deep-learning techniques have been developed and applied for automated catch registration. However, these methods are dependent on the labelled data, which is time-consuming, labour-intensive, expensive to collect and need expert knowledge. In this study, we present an active learning technique, named BoxAL, which includes estimation of epistemic certainty of the Faster R-CNN object-detection model. The method allows selecting the most uncertain training images from an unlabeled pool, which are then used to train the object-detection model. To evaluate the method, we used an open-source image dataset obtained with a dedicated image-acquisition system developed for commercial trawlers targeting demersal species. We demonstrated, that our approach allows reaching the same object-detection performance as with the random sampling using 400 fewer labelled images. Besides, mean AP score was significantly higher at the last training iteration with 1100 training images, specifically, 39.0±1.6 and 34.8±1.8 for certainty-based sampling and random sampling, respectively. Additionally, we showed that epistemic certainty is a suitable method to sample images that the current iteration of the model cannot deal with yet. Our study additionally showed that the sampled new data is more valuable for training than the remaining unlabeled data. Our software is available on https://github.com/pieterblok/boxal.
- Published
- 2024
25. Prediction and Inference: From Models and Data to Artificial Intelligence
- Author
-
Gammaitoni, Luca and Vulpiani, Angelo
- Subjects
Physics - General Physics - Abstract
In this paper we present a discussion of the basic aspects of the well-known problem of prediction and inference in physics, with specific attention to the role of models, the use of data and the application of recent developments in artificial intelligence. By focussing in the time evolution of dynamic system, it is shown that main difficulties in predictions arise due to the presence of few factors as: the occurrence of chaotic dynamics, the existence of many variables with very different characteristic time-scales and the lack of an accurate understanding of the underlying physical phenomena. It is shown that a crucial role is assigned to the preliminary identification of the proper variables, their selection and the identification of an appropriate level of description (coarse-graining procedure).
- Published
- 2024
- Full Text
- View/download PDF
26. From Concrete to Abstract: A Multimodal Generative Approach to Abstract Concept Learning
- Author
-
Xie, Haodong, Maharjan, Rahul Singh, Tavella, Federico, and Cangelosi, Angelo
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
Understanding and manipulating concrete and abstract concepts is fundamental to human intelligence. Yet, they remain challenging for artificial agents. This paper introduces a multimodal generative approach to high order abstract concept learning, which integrates visual and categorical linguistic information from concrete ones. Our model initially grounds subordinate level concrete concepts, combines them to form basic level concepts, and finally abstracts to superordinate level concepts via the grounding of basic-level concepts. We evaluate the model language learning ability through language-to-visual and visual-to-language tests with high order abstract concepts. Experimental results demonstrate the proficiency of the model in both language understanding and language naming tasks.
- Published
- 2024
27. Optimization of a Quantum Subset Sum Oracle
- Author
-
Benoit, Angelo, Schwartz, Sam, and Cytron, Ron K.
- Subjects
Computer Science - Emerging Technologies ,Computer Science - Computational Complexity - Abstract
We investigate the implementation of an oracle for the Subset Sum problem for quantum search using Grover's algorithm. Our work concerns reducing the number of qubits, gates, and multi-controlled gates required by the oracle. We describe the compilation of a Subset Sum instance into a quantum oracle, using a Python library we developed for Qiskit and have published in GitHub. We then present techniques to conserve qubits and gates along with experiments showing their effectiveness on random instances of Subset Sum. These techniques include moving from fixed to varying-width arithmetic, using partial sums of a set's integers to determine specific integer widths, and sorting the set to obtain provably the most efficient partial sums. We present a new method for computing bit-string comparisons that avoids arbitrarily large multiple-control gates, and we introduce a simple modification to the oracle that allows for approximate solutions to the Subset Sum problem via Grover search., Comment: 9 pages, 8 figures
- Published
- 2024
28. Estimates of loss function concentration in noisy parametrized quantum circuits
- Author
-
Crognaletti, Giulio, Grossi, Michele, and Bassi, Angelo
- Subjects
Quantum Physics - Abstract
Variational quantum computing provides a versatile computational approach, applicable to a wide range of fields such as quantum chemistry, machine learning, and optimization problems. However, scaling up the optimization of quantum circuits encounters a significant hurdle due to the exponential concentration of the loss function, often dubbed the barren plateau (BP) phenomenon. Although rigorous results exist on the extent of barren plateaus in unitary or in noisy circuits, little is known about the interaction between these two effects, mainly because the loss concentration in noisy parameterized quantum circuits (PQCs) cannot be adequately described using the standard Lie algebraic formalism used in the unitary case. In this work, we introduce a new analytical formulation based on non-negative matrix theory that enables precise calculation of the variance in deep PQCs, which allows investigating the complex and rich interplay between unitary dynamics and noise. In particular, we show the emergence of a noise-induced absorption mechanism, a phenomenon that cannot arise in the purely reversible context of unitary quantum computing. Despite the challenges, general lower bounds on the variance of deep PQCs can still be established by appropriately slowing down speed of convergence to the deep circuit limit, effectively mimicking the behaviour of shallow circuits. Our framework applies to both unitary and non-unitary dynamics, allowing us to establish a deeper connection between the noise resilience of PQCs and the potential to enhance their expressive power through smart initialization strategies. Theoretical developments are supported by numerical examples and related applications.
- Published
- 2024
29. Non-representable six-functor formalisms
- Author
-
Chowdhury, Chirantan and D'Angelo, Alessandro
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - K-Theory and Homology - Abstract
In this article, we study the properties of motivic homotopy category $\mathcal{SH}_{\operatorname{ext}}(\mathcal{X})$ developed by Chowdhury and Khan-Ravi for $\mathcal{X}$ a Nis-loc Stack. In particular, we compare the above construction with Voevodsky's original construction using NisLoc topology. Using the techniques developed by Liu-Zheng and Mann's notion of $\infty$-category of correspondences and abstract six-functor formalisms, we also extend the exceptional functors and extend properties like projection formula, base change and purity to the non-representable situation.
- Published
- 2024
30. Presence of a Spatially Varying Electric Field at Lipid-Water Interface with Na/K ratio in Water
- Author
-
Bawali, Biplab, Chowdhury, Shubhadip, Mukherjee, Smita, Giglia, Angelo, Mahne, Nicola, Nannarone, Stefano, Mukhopadhyay, Mrinmay, Saha, Jayashree, and Datta, Alokmay
- Subjects
Physics - Biological Physics ,Condensed Matter - Soft Condensed Matter - Abstract
The ion-lipid interface in Langmuir monolayers of Dipalmitoylphosphatidylcholine (DPPC) on pure water and 10 mM solutions of Na+ and K+ at different [K+]/[Na+] (a), atom/atom ratios, were studied initially by Surface Pressure (p) versus Specific Molecular Area (A) isotherms. The values of a were chosen as 0 (no K+), 0.43 ([K+]:[Na+] = 30:70) and 1.0 ([K+]:[Na+] = 50:50) These monolayers were studied through X-Ray Reflectivity (XRR) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at the O K-edge. The two-dimensional rigidity of the monolayer was found to increase with Na+ ions with respect to the pristine monolayer but fall drastically and non-linearly below the pristine value with introduction of the K+ ions, as a was increased. Analysis of the XRR profiles provided the thickness, average electron density (aed) and the interfacial roughness of the phosphatidylcholine head group and the two hydrocarbon tails of the monolayers on Si (001), from which the angle (f) between the head and the tails was determined. This was also follow the same as former one. From NEXAFS, it was found that a linear increase in the cation ratio towards K led to a nonlinear variation in the P=O bond energy and a weakening of the P-O bond energy, the latter becoming more pronounced with K ions, consistent with Fajans rule. Also a split in the C=O p-bond peak was observed at a = 1.0. These results cannot be explained with the model of a uniform electric field due to the cations, which would fall linearly with increase in the K+ proportion, and rather suggest a structured field due a spatial variation in charge density in an interfacial layer of high ion concentration assembled by the counterionic attraction of the phosphatidylcholine head groups. Our results have important implications for the cell membrane, where such mixtures at high concentrations constitute the norm.
- Published
- 2024
31. A Sim-to-Real Vision-based Lane Keeping System for a 1:10-scale Autonomous Vehicle
- Author
-
Gallina, Antonio, Grandin, Matteo, Cenedese, Angelo, and Bruschetta, Mattia
- Subjects
Computer Science - Robotics ,Electrical Engineering and Systems Science - Systems and Control - Abstract
In recent years, several competitions have highlighted the need to investigate vision-based solutions to address scenarios with functional insufficiencies in perception, world modeling and localization. This article presents the Vision-based Lane Keeping System (VbLKS) developed by the DEI-Unipd Team within the context of the Bosch Future Mobility Challenge 2022. The main contribution lies in a Simulation-to-Reality (Sim2Real) GPS-denied VbLKS for a 1:10-scale autonomous vehicle. In this VbLKS, the input to a tailored Pure Pursuit (PP) based control strategy, namely the Lookahead Heading Error (LHE), is estimated at a constant lookahead distance employing a Convolutional Neural Network (CNN). A training strategy for a compact CNN is proposed, emphasizing data generation and augmentation on simulated camera images from a 3D Gazebo simulator, and enabling real-time operation on low-level hardware. A tailored PP-based lateral controller equipped with a derivative action and a PP-based velocity reference generation are implemented. Tuning ranges are established through a systematic time-delay stability analysis. Validation in a representative controlled laboratory setting is provided., Comment: 16 pages, 23 figures
- Published
- 2024
32. On the Output Redundancy of LTI Systems: A Geometric Approach with Application to Privacy
- Author
-
Yang, Guitao, Gallo, Alexander J., Barboni, Angelo, Ferrari, Riccardo M. G., Serrani, Andrea, and Parisini, Thomas
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper examines the properties of output-redundant systems, that is, systems possessing a larger number of outputs than inputs, through the lenses of the geometric approach of Wonham et al. We begin by formulating a simple output allocation synthesis problem, which involves ``concealing" input information from a malicious eavesdropper having access to the system output, while still allowing for a legitimate user to reconstruct it. It is shown that the solvability of this problem requires the availability of a redundant set of outputs. This very problem is instrumental to unveiling the fundamental geometric properties of output-redundant systems, which form the basis for our subsequent constructions and results. As a direct application, we demonstrate how output allocation can be employed to effectively protect the information of input information from certain output eavesdroppers with guaranteed results.
- Published
- 2024
33. xDevSM: Streamlining xApp Development With a Flexible Framework for O-RAN E2 Service Models
- Author
-
Feraudo, Angelo, Maxenti, Stefano, Lacava, Andrea, Bellavista, Paolo, Polese, Michele, and Melodia, Tommaso
- Subjects
Computer Science - Networking and Internet Architecture - Abstract
RAN Intelligent Controllers (RICs) are programmable platforms that enable data-driven closed-loop control in the O-RAN architecture. They collect telemetry and data from the RAN, process it in custom applications, and enforce control or new configurations on the RAN. Such custom applications in the Near-Real-Time (RT) RIC are called xApps, and enable a variety of use cases related to radio resource management. Despite numerous open-source and commercial projects focused on the Near-RT RIC, developing and testing xApps that are interoperable across multiple RAN implementations is a time-consuming and technically challenging process. This is primarily caused by the complexity of the protocol of the E2 interface, which enables communication between the RIC and the RAN while providing a high degree of flexibility, with multiple Service Models (SMs) providing plug-and-play functionalities such as data reporting and RAN control. In this paper, we propose xDevSM, an open-source flexible framework for O-RAN service models, aimed at simplifying xApp development for the O-RAN Software Community (OSC) Near-RT RIC. xDevSM reduces the complexity of the xApp development process, allowing developers to focus on the control logic of their xApps and moving the logic of the E2 service models behind simple Application Programming Interfaces (APIs). We demonstrate the effectiveness of this framework by deploying and testing xApps across various RAN software platforms, including OpenAirInterface and srsRAN. This framework significantly facilitates the development and validation of solutions and algorithms on O-RAN networks, including the testing of data-driven solutions across multiple RAN implementations.
- Published
- 2024
34. Deep convolutional framelets for dose reconstruction in BNCT with Compton camera detector
- Author
-
Didonna, Angelo, Lopez, Dayron Ramos, Iaselli, Giuseppe, Amoroso, Nicola, Ferrara, Nicola, and Pugliese, Gabriella Maria Incoronata
- Subjects
Physics - Medical Physics ,Computer Science - Machine Learning - Abstract
Boron Neutron Capture Therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction 10B(n,$\alpha$)7Li, consisting in the exposition of patients to neutron beams after administration of a boron compound with preferential accumulation in cancer cells. The high linear energy transfer products of the ensuing reaction deposit their energy at cell level, sparing normal tissue. Although progress in accelerator-based BNCT has led to renewed interest in this cancer treatment modality, in vivo dose monitoring during treatment still remains not feasible and several approaches are under investigation. While Compton imaging presents various advantages over other imaging methods, it typically requires long reconstruction times, comparable with BNCT treatment duration. This study aims to develop deep neural network models to estimate the dose distribution by using a simulated dataset of BNCT Compton camera images. The models pursue the avoidance of the iteration time associated with the maximum-likelihood expectation-maximization algorithm (MLEM), enabling a prompt dose reconstruction during the treatment. The U-Net architecture and two variants based on the deep convolutional framelets framework have been used for noise and artifacts reduction in few-iterations reconstructed images, leading to promising results in terms of reconstruction accuracy and processing time., Comment: 16 pages, 12 figures, preprint
- Published
- 2024
35. The interplay between membrane viscosity and ligand-binding receptor kinetics in lipid bilayers
- Author
-
Bernard, Chiara, Carotenuto, Angelo Rosario, Pugno, Nicola Maria, Deseri, Luca, and Fraldi, Massimiliano
- Subjects
Condensed Matter - Soft Condensed Matter ,Physics - Biological Physics - Abstract
Plasma membranes appear as deformable systems wherein molecules are free to move and diffuse giving rise to condensed microdomains (composed of ordered lipids, transmembrane proteins and cholesterol) surrounded by disordered lipid molecules. Such denser and thicker regions, namely lipid rafts, are important communication hubs for cells. Indeed, recent experiments revealed how the most of active signaling proteins co-localize on such domains, thereby intensifying the biochemical trafficking of substances. From a material standpoint, it is reasonable to assume the bilayer as a visco-elastic body accounting for both in-plane fluidity and elasticity. Consequently, lipid rafts contribute to membrane heterogeneity by typically exhibiting higher stiffness and viscosity and by locally altering the bilayer dynamics and proteins activity. A chemo-mechanical model of lipid bilayer coupled with interspecific dynamics among the resident species (typically transmembrane receptors and trasporters) has been recently formulated to explain and predict how proteins regulate the dynamic heterogeneity of membrane. However, the explicit inclusion of the membrane viscosity in the model was not considered. To this aim, the present work enriches the constitutive description of the bilayer by modeling its visco-elastic behavior. This is done through a strain-level dependent viscosity able to theoretically trace back the alteration of membrane fluidity experimentally observed in lipid phase transitions. This provides new insights into how the quasi-solid and fluid components of lipid membrane response interact with the evolution of resident proteins by affecting the activity of raft domains, with effects on cell mechano-signaling., Comment: 26 pages, 7 figures
- Published
- 2024
- Full Text
- View/download PDF
36. Disjoint covering of bipartite graphs with $s$-clubs
- Author
-
Monti, Angelo and Sinaimeri, Blerina
- Subjects
Computer Science - Computational Complexity - Abstract
For a positive integer $s$, an $s$-club in a graph $G$ is a set of vertices inducing a subgraph with diameter at most $s$. As generalizations of cliques, $s$-clubs offer a flexible model for real-world networks. This paper addresses the problems of partitioning and disjoint covering of vertices with $s$-clubs on bipartite graphs. First we prove that for any fixed $s \geq 3$ and fixed $k \geq 3$, determining whether the vertices of $G$ can be partitioned into at most $k$ disjoint $s$-clubs is NP-complete even for bipartite graphs. Additionally, we study the Maximum Disjoint $(t,s)$-Club Covering problem (MAX-DCC($t,s$)), which aims to find a collection of vertex-disjoint $(t,s)$-clubs (i.e. $s$-clubs with at least $t$ vertices) that covers the maximum number of vertices in $G$. We prove that it is NP-hard to achieve an approximation factor of $\frac{95}{94} $ for MAX-DCC($t,3$) for any fixed $t\geq 8$ and for MAX-DCC($t,2$) for any fixed $t\geq 5$ even for bipartite graphs. Previously, results were known only for MAX-DCC($3,2$). Finally, we provide a polynomial-time algorithm for MAX-DCC($2,2$).
- Published
- 2024
37. Efficient computation of cumulant evolution and full counting statistics: application to infinite temperature quantum spin chains
- Author
-
Valli, Angelo, Moca, Cătălin Paşcu, Werner, Miklós Antal, Kormos, Márton, Krajnik, Žiga, Prosen, Tomaž, and Zaránd, Gergely
- Subjects
Condensed Matter - Statistical Mechanics ,Quantum Physics - Abstract
We propose a numerical method to efficiently compute quantum generating functions (QGF) for a wide class of observables in one-dimensional quantum systems at high temperature. We obtain high-accuracy estimates for the cumulants and reconstruct full counting statistics from the QGF. We demonstrate its potential on spin $S=1/2$ anisotropic Heisenberg chain, where we can reach time scales hitherto inaccessible to state-of-the-art classical and quantum simulations. Our results challenge the conjecture of the Kardar--Parisi--Zhang universality for isotropic integrable quantum spin chains., Comment: 7 pages, 3 figures plus Supporting Information
- Published
- 2024
38. bioSBM: a random graph model to integrate epigenomic data in chromatin structure prediction
- Author
-
Zhang, Alex Chen Yi, Rosa, Angelo, and Sanguinetti, Guido
- Subjects
Quantitative Biology - Quantitative Methods ,Physics - Biological Physics - Abstract
The spatial organization of chromatin within the nucleus plays a crucial role in gene expression and genome function. However, the quantitative relationship between this organization and nuclear biochemical processes remains under debate. In this study, we present a graph-based generative model, bioSBM, designed to capture long-range chromatin interaction patterns from Hi-C data and, importantly, simultaneously, link these patterns to biochemical features. Applying bioSBM to Hi-C maps of the GM12878 lymphoblastoid cell line, we identified a latent structure of chromatin interactions, revealing 12 distinct communities that strongly align with known biological annotations. Additionally, we infer a linear transformation that maps biochemical observables, such as histone marks, to the parameters of the generative graph model, enabling accurate genome-wide predictions of chromatin contact maps on out-of-sample data, both within the same cell line, and on the completely unseen HCT116 cell line under RAD21 depletion. These findings highlight bioSBM's potential as a powerful tool for elucidating the relationship between biochemistry and chromatin architecture and predicting long-range genome organization from independent biochemical data.
- Published
- 2024
39. Machine Learning Model for Complete Reconstruction of Diagnostic Polarimetric Images from partial Mueller polarimetry data
- Author
-
Chae, Sooyong, Huang, Tongyu, Rodrıguez-Nunez, Omar, Lucas, Théotim, Vanel, Jean-Charles, Vizet, Jérémy, Pierangelo, Angelo, Piavchenko, Gennadii, Genova, Tsanislava, Ajmal, Ajmal, Ramella-Roman, Jessica C., Doronin, Alexander, Ma, Hui, and Novikova, Tatiana
- Subjects
Physics - Optics ,Physics - Medical Physics - Abstract
The translation of imaging Mueller polarimetry to clinical practice is often hindered by large footprint and relatively slow acquisition speed of the existing instruments. Using polarization-sensitive camera as a detector may reduce instrument dimensions and allow data streaming at video rate. However, only the first three rows of a complete 4x4 Mueller matrix can be measured. To overcome this hurdle we developed a machine learning approach using sequential neural network algorithm for the reconstruction of missing elements of a Mueller matrix from the measured elements of the first three rows. The algorithm was trained and tested on the dataset of polarimetric images of various excised human tissues (uterine cervix, colon, skin, brain) acquired with two different imaging Mueller polarimeters operating in either reflection (wide-field imaging system) or transmission (microscope) configurations at different wavelengths of 550 nm and 385 nm, respectively. The reconstruction performance was evaluated using various error metrics, all of which confirmed low error values. The execution time of the trained neural network algorithm was about 300 microseconds for a single image pixel. It suggests that a machine learning approach with parallel processing of all image pixels combined with the partial Mueller polarimeter operating at video rate can effectively substitute for the complete Mueller polarimeter and produce accurate maps of depolarization, linear retardance and orientation of the optical axis of biological tissues, which can be used for medical diagnosis in clinical settings.
- Published
- 2024
40. Joint Localization, Synchronization and Mapping via Phase-Coherent Distributed Arrays
- Author
-
Fascista, Alessio, Deutschmann, Benjamin J. B., Keskin, Musa Furkan, Wilding, Thomas, Coluccia, Angelo, Witrisal, Klaus, Leitinger, Erik, Seco-Granados, Gonzalo, and Wymeersch, Henk
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Extremely large-scale antenna array (ELAA) systems emerge as a promising technology in beyond 5G and 6G wireless networks to support the deployment of distributed architectures. This paper explores the use of ELAAs to enable joint localization, synchronization and mapping in sub-6 GHz uplink channels, capitalizing on the near-field effects of phase-coherent distributed arrays. We focus on a scenario where a single-antenna user equipment (UE) communicates with a network of access points (APs) distributed in an indoor environment, considering both specular reflections from walls and scattering from objects. The UE is assumed to be unsynchronized to the network, while the APs can be time- and phase-synchronized to each other. We formulate the problem of joint estimation of location, clock offset and phase offset of the UE, and the locations of scattering points (SPs) (i.e., mapping). Through comprehensive Fisher information analysis, we assess the impact of bandwidth, AP array size, wall reflections, SPs and phase synchronization on localization accuracy. Furthermore, we derive the maximum-likelihood (ML) estimator, which optimally combines the information collected by all the distributed arrays. To overcome its intractable high dimensionality, we propose a novel three-step algorithm that first estimates phase offset leveraging carrier phase information of line-of-sight (LoS) paths, then determines the UE location and clock offset via LoS paths and wall reflections, and finally locates SPs using a null-space transformation technique. Simulation results demonstrate the effectiveness of our approach in distributed architectures supported by radio stripes (RSs) -- an innovative alternative for implementing ELAAs -- while revealing the benefits of carrier phase exploitation and showcasing the interplay between delay and angular information under different bandwidth regimes.
- Published
- 2024
41. Synthesizing Evolving Symbolic Representations for Autonomous Systems
- Author
-
Sartor, Gabriele, Oddi, Angelo, Rasconi, Riccardo, Santucci, Vieri Giuliano, and Meo, Rosa
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Symbolic Computation - Abstract
Recently, AI systems have made remarkable progress in various tasks. Deep Reinforcement Learning(DRL) is an effective tool for agents to learn policies in low-level state spaces to solve highly complex tasks. Researchers have introduced Intrinsic Motivation(IM) to the RL mechanism, which simulates the agent's curiosity, encouraging agents to explore interesting areas of the environment. This new feature has proved vital in enabling agents to learn policies without being given specific goals. However, even though DRL intelligence emerges through a sub-symbolic model, there is still a need for a sort of abstraction to understand the knowledge collected by the agent. To this end, the classical planning formalism has been used in recent research to explicitly represent the knowledge an autonomous agent acquires and effectively reach extrinsic goals. Despite classical planning usually presents limited expressive capabilities, PPDDL demonstrated usefulness in reviewing the knowledge gathered by an autonomous system, making explicit causal correlations, and can be exploited to find a plan to reach any state the agent faces during its experience. This work presents a new architecture implementing an open-ended learning system able to synthesize from scratch its experience into a PPDDL representation and update it over time. Without a predefined set of goals and tasks, the system integrates intrinsic motivations to explore the environment in a self-directed way, exploiting the high-level knowledge acquired during its experience. The system explores the environment and iteratively: (a) discover options, (b) explore the environment using options, (c) abstract the knowledge collected and (d) plan. This paper proposes an alternative approach to implementing open-ended learning architectures exploiting low-level and high-level representations to extend its knowledge in a virtuous loop.
- Published
- 2024
42. Bearing-based Target Localisation in Search and Rescue Scenarios
- Author
-
Michieletto, Giulia, Mimmo, Nicola, Naldi, Roberto, and Cenedese, Angelo
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper deals with the target localisation problem in search and rescue scenarios in which the technology is based on electromagnetic transceivers. The noise floor and the shape of the electromagnetic radiation pattern make this problem challenging. Indeed, on the one hand, the signal-to-noise ratio reduces with the inverse of the distance from the electromagnetic source thus impacting estimation-based techniques applicability. On the other hand, non-isotropic radiation patterns lessen the efficacy of gradient-based policies. In this work, we manage a fleet of autonomous agents, equipped with electromagnetic sensors, by combining gradient-based and estimation-based techniques to speed up the transmitter localisation. Simulations specialized in the ARTVA technology used in search and rescue in avalanche scenarios confirm that our scheme outperforms current solutions., Comment: accepted for presentation at the 2024 IEEE 63rd IEEE Conference on Decision and Control (CDC2024)
- Published
- 2024
43. A point process approach for the classification of noisy calcium imaging data
- Author
-
Burzacchi, Arianna, D'Angelo, Nicoletta, Payares-Garcia, David, and Mateu, Jorge
- Subjects
Quantitative Biology - Neurons and Cognition ,Statistics - Applications - Abstract
We study noisy calcium imaging data, with a focus on the classification of spike traces. As raw traces obscure the true temporal structure of neuron's activity, we performed a tuned filtering of the calcium concentration using two methods: a biophysical model and a kernel mapping. The former characterizes spike trains related to a particular triggering event, while the latter filters out the signal and refines the selection of the underlying neuronal response. Transitioning from traditional time series analysis to point process theory, the study explores spike-time distance metrics and point pattern prototypes to describe repeated observations. We assume that the analyzed neuron's firing events, i.e. spike occurrences, are temporal point process events. In particular, the study aims to categorize 47 point patterns by depth, assuming the similarity of spike occurrences within specific depth categories. The results highlight the pivotal roles of depth and stimuli in discerning diverse temporal structures of neuron firing events, confirming the point process approach based on prototype analysis is largely useful in the classification of spike traces., Comment: 12 pages, 8 figures
- Published
- 2024
44. On the critical finite-size gap scaling for frustration-free Hamiltonians
- Author
-
Lemm, Marius and Lucia, Angelo
- Subjects
Mathematical Physics ,Quantum Physics - Abstract
We prove that the critical finite-size gap scaling for frustration-free Hamiltonians is of inverse-square type. The novelty of this note is that the result is proved on general graphs and for general finite-range interactions. Therefore, the inverse-square critical gap scaling is a robust, universal property of finite-range frustration-free Hamiltonians. This places further limits on their ability to produce conformal field theories in the continuum limit. Our proof refines the divide-and-conquer strategy of Kastoryano and the second author through the refined Detectability Lemma of Gosset--Huang., Comment: 14 pages
- Published
- 2024
45. Plenoptic microscopy and photography from intensity correlations
- Author
-
Pepe, Francesco V., Di Lena, Francesco, Garuccio, Augusto, Giannella, Davide, Lupo, Alessandro, Massaro, Gianlorenzo, Scagliola, Alessio, Scattarella, Francesco, Vasiukov, Sergii, and D'Angelo, Milena
- Subjects
Physics - Optics - Abstract
We present novel methods to perform plenoptic imaging at the diffraction limit by measuring intensity correlations of light. The first method is oriented towards plenoptic microscopy, a promising technique which allows refocusing and depth-of-field enhancement, in post-processing, as well as scanning free 3D imaging. To overcome the limitations of standard plenoptic microscopes, we propose an adaptation of Correlation Plenoptic Imaging (CPI) to the working conditions of microscopy. We consider and compare different architectures of CPI microscopes, and discuss the improved robustness with respect to previous protocols against turbulence around the sample. The second method is based on measuring correlations between the images of two reference planes, arbitrarily chosen within the tridimensional scene of interest, providing an unprecedented combination of image resolution and depth of field. The results lead the way towards the realization of compact designs for CPI devices., Comment: 8 pages, 2 figures. arXiv admin note: text overlap with arXiv:2007.12033
- Published
- 2024
- Full Text
- View/download PDF
46. Innovative schemes for Correlation Plenoptic Imaging
- Author
-
Massaro, Gianlorenzo, Di Lena, Francesco, Garuccio, Augusto, Pepe, Francesco V., and D'Angelo, Milena
- Subjects
Physics - Optics - Abstract
CPI is a novel imaging modality capable of addressing the intrinsic limitations of conventional plenoptic imaging - namely, the resolution loss and the sacrificed change of perspective, - while guaranteeing the typical advantages of plenotpic imaging: 3D imaging, refocusing of acquired pictures, in post-processing, and depth of field extension. In this work, we review a recently developed CPI scheme, named correlation plenoptic imaging between arbitrary planes, and derive the algorithm for image refocusing., Comment: 7 pages, 2 figures
- Published
- 2024
- Full Text
- View/download PDF
47. Measurement of the nucleon spin structure functions for $0.01<Q^2<1$~GeV$^2$ using CLAS
- Author
-
Deur, A., Kuhn, S. E., Ripani, M., Zheng, X., Acar, A. G., Achenbach, P., Adhikari, K. P., Alvarado, J. S., Amaryan, M. J., Armstrong, W. R., Atac, H., Avakian, H., Baashen, L., Baltzell, N. A., Barion, L., Bashkanov, M., Battaglieri, M., Benkel, B., Benmokhtar, F., Bianconi, A., Biselli, A. S., Booth, W. A., ossu, F. B, Bosted, P., Boiarinov, S., Brinkmann, K. Th., Briscoe, W. J., Bueltmann, S., Burkert, V. D., Carman, D. S., Chatagnon, P., Chen, J. P., Ciullo, G., Cole, P. L., Contalbrigo, M., Crede, V., D'Angelo, A., Dashyan, N., De Vita, R., Defurne, M., Diehl, S., Djalali, C., Drozdov, V. A., Dupre, R., Egiyan, H., Alaoui, A. El, Fassi, L. El, Elouadrhiri, L., Eugenio, P., Faggert, J. C., Fegan, S., Fersch, R., Filippi, A., Gates, K., Gavalian, G., Gilfoyle, G. P., Gothe, R. W., Guo, L., Hakobyan, H., Hattawy, M., Hauenstein, F., Heddle, D., Hobart, A., Holtrop, M., Ireland, D. G., Isupov, E. L., Jiang, H., Jo, H. S., Joosten, S., Kang, H., Keith, C., Khandaker, M., Kim, W., Klein, F. J., Klimenko, V., Konczykowski, P., Kovacs, K., Kripko, A., Kubarovsky, V., Lanza, L., Lee, S., Lenisa, P., Li, X., Long, E., MacGregor, I. J. D., Marchand, D., Mascagna, V., Matamoros, D., McKinnon, B., Meekins, D., Migliorati, S., Mineeva, T., Mirazita, M., Mokeev, V., Munoz-Camacho, C., Nadel-Turonski, P., Nagorna, T., Neupane, K., Niccolai, S., Osipenko, M., Ostrovidov, A. I., Pandey, P., Paolone, M., Pappalardo, L. L., Paremuzyan, R., Pasyuk, E., Paul, S. J., Phelps, W., Phillips, S. K., Pierce, J., Pilleux, N., Pokhrel, M., Price, J. W., Prok, Y., Radic, A., Reed, T., Richards, J., Rosner, G., Rossi, P., Rusova, A. A., Salgado, C., Schmidt, A., Schumacher, R. A., Sharabian, Y. G., Shirokov, E. V., Shrestha, U., Sirca, S., Sparveris, N., Spreafico, M., Stepanyan, S., Strakovsky, I. I., Strauch, S., Sulkosky, V., Tan, J. A., Tenorio, M., Trotta, N., Tyson, R., Ungaro, M., Upton, D. W., Vallarino, S., Venturelli, L., Voskanyan, H., Voutier, E., Watts, D. P., Wei, X., Wood, M. H., Zachariou, N., Zhang, J., and Zurek, M.
- Subjects
Nuclear Experiment - Abstract
The spin structure functions of the proton and the deuteron were measured during the EG4 experiment at Jefferson Lab in 2006. Data were collected for longitudinally polarized electron scattering off longitudinally polarized NH$_3$ and ND$_3$ targets, for $Q^2$ values as small as 0.012 and 0.02 GeV$^2$, respectively, using the CEBAF Large Acceptance Spectrometer (CLAS). This is the archival paper of the EG4 experiment that summaries the previously reported results of the polarized structure functions $g_1$, $A_1F_1$, and their moments $\overline \Gamma_1$, $\overline \gamma_0$, and $\overline I_{TT}$, for both the proton and the deuteron. In addition, we report on new results on the neutron $g_1$ extracted by combining proton and deuteron data and correcting for Fermi smearing, and on the neutron moments $\overline \Gamma_1$, $\overline \gamma_0$, and $\overline I_{TT}$ formed directly from those of the proton and the deuteron. Our data are in good agreement with the Gerasimov-Drell-Hearn sum rule for the proton, deuteron, and neutron. Furthermore, the isovector combination was formed for $g_1$ and the Bjorken integral $\overline \Gamma_1^{p-n}$, and compared to available theoretical predictions. All of our results provide for the first time extensive tests of spin observable predictions from chiral effective field theory ($\chi$EFT) in a $Q^2$ range commensurate with the pion mass. They motivate further improvement in $\chi$EFT calculations from other approaches such as the lattice gauge method., Comment: 33 pages. 26 figures. Data table provided in supplementary material (30 pages)
- Published
- 2024
48. Thermalization is typical in large classical and quantum harmonic systems
- Author
-
Cattaneo, Marco, Baldovin, Marco, Lucente, Dario, Muratore-Ginanneschi, Paolo, and Vulpiani, Angelo
- Subjects
Condensed Matter - Statistical Mechanics ,Quantum Physics - Abstract
We establish an analytical criterion for dynamical thermalization within harmonic systems, applicable to both classical and quantum models. Specifically, we prove that thermalization of various observables, such as particle energies in physically relevant random quadratic Hamiltonians, is typical for large systems ($N \gg 1$) with initial conditions drawn from the microcanonical distribution. Moreover, we show that thermalization can also arise from non-typical initial conditions, where only a finite fraction of the normal modes is excited. Our findings provide a general dynamical basis for an approach to thermalization that bypasses chaos and ergodicity, focusing instead on observables dependent on a large number of normal modes, and build a bridge between the classical and quantum theories of thermalization., Comment: 20 pages (5 main + 2 references + 13 Supplemental Material)
- Published
- 2024
49. Extracting Paragraphs from LLM Token Activations
- Author
-
Pochinkov, Nicholas, Benoit, Angelo, Agarwal, Lovkush, Majid, Zainab Ali, and Ter-Minassian, Lucile
- Subjects
Computer Science - Computation and Language - Abstract
Generative large language models (LLMs) excel in natural language processing tasks, yet their inner workings remain underexplored beyond token-level predictions. This study investigates the degree to which these models decide the content of a paragraph at its onset, shedding light on their contextual understanding. By examining the information encoded in single-token activations, specifically the "\textbackslash n\textbackslash n" double newline token, we demonstrate that patching these activations can transfer significant information about the context of the following paragraph, providing further insights into the model's capacity to plan ahead.
- Published
- 2024
50. A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges
- Author
-
Salatino, Angelo, Aggarwal, Tanay, Mannocci, Andrea, Osborne, Francesco, and Motta, Enrico
- Subjects
Computer Science - Digital Libraries ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval - Abstract
Knowledge Organization Systems (KOSs), such as term lists, thesauri, taxonomies, and ontologies, play a fundamental role in categorising, managing, and retrieving information. In the academic domain, KOSs are often adopted for representing research areas and their relationships, primarily aiming to classify research articles, academic courses, patents, books, scientific venues, domain experts, grants, software, experiment materials, and several other relevant products and agents. These structured representations of research areas, widely embraced by many academic fields, have proven effective in empowering AI-based systems to i) enhance retrievability of relevant documents, ii) enable advanced analytic solutions to quantify the impact of academic research, and iii) analyse and forecast research dynamics. This paper aims to present a comprehensive survey of the current KOS for academic disciplines. We analysed and compared 45 KOSs according to five main dimensions: scope, structure, curation, usage, and links to other KOSs. Our results reveal a very heterogeneous scenario in terms of scope, scale, quality, and usage, highlighting the need for more integrated solutions for representing research knowledge across academic fields. We conclude by discussing the main challenges and the most promising future directions.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.