1. Simulating Dynamic Tumor Contrast Enhancement in Breast MRI using Conditional Generative Adversarial Networks
- Author
-
Osuala, Richard, Joshi, Smriti, Tsirikoglou, Apostolia, Garrucho, Lidia, Pinaya, Walter H. L., Lang, Daniel M., Schnabel, Julia A., Diaz, Oliver, and Lekadir, Karim
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
This paper presents a method for virtual contrast enhancement in breast MRI, offering a promising non-invasive alternative to traditional contrast agent-based DCE-MRI acquisition. Using a conditional generative adversarial network, we predict DCE-MRI images, including jointly-generated sequences of multiple corresponding DCE-MRI timepoints, from non-contrast-enhanced MRIs, enabling tumor localization and characterization without the associated health risks. Furthermore, we qualitatively and quantitatively evaluate the synthetic DCE-MRI images, proposing a multi-metric Scaled Aggregate Measure (SAMe), assessing their utility in a tumor segmentation downstream task, and conclude with an analysis of the temporal patterns in multi-sequence DCE-MRI generation. Our approach demonstrates promising results in generating realistic and useful DCE-MRI sequences, highlighting the potential of virtual contrast enhancement for improving breast cancer diagnosis and treatment, particularly for patients where contrast agent administration is contraindicated.
- Published
- 2024