1. MINDS. The Detection of 13CO2 with JWST-MIRI Indicates Abundant CO2 in a Protoplanetary Disk
- Author
-
Sierra L. Grant, Ewine F. van Dishoeck, Benoît Tabone, Danny Gasman, Thomas Henning, Inga Kamp, Manuel Güdel, Pierre-Olivier Lagage, Giulio Bettoni, Giulia Perotti, Valentin Christiaens, Matthias Samland, Aditya M. Arabhavi, Ioannis Argyriou, Alain Abergel, Olivier Absil, David Barrado, Anthony Boccaletti, Jeroen Bouwman, Alessio Caratti o Garatti, Vincent Geers, Adrian M. Glauser, Rodrigo Guadarrama, Hyerin Jang, Jayatee Kanwar, Fred Lahuis, Maria Morales-Calderón, Michael Mueller, Cyrine Nehmé, Göran Olofsson, Eric Pantin, Nicole Pawellek, Tom P. Ray, Donna Rodgers-Lee, Silvia Scheithauer, Jürgen Schreiber, Kamber Schwarz, Milou Temmink, Bart Vandenbussche, Marissa Vlasblom, L. B. F. M. Waters, Gillian Wright, Luis Colina, Thomas R. Greve, Kay Justannont, and Göran Östlin
- Subjects
Protoplanetary disks ,Planet formation ,Astrophysics ,QB460-466 - Abstract
We present JWST-MIRI Medium Resolution Spectrometer (MRS) spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey Guaranteed Time Observations program. Emission from ^12 CO _2 , ^13 CO _2 , H _2 O, HCN, C _2 H _2 , and OH is identified with ^13 CO _2 being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few astronomical units of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The Q branches of these molecules, including those of hot bands, are particularly sensitive to temperature and column density. We find that the ^12 CO _2 emission in the GW Lup disk is coming from optically thick emission at a temperature of ∼400 K. ^13 CO _2 is optically thinner and based on a lower temperature of ∼325 K, and thus may be tracing deeper into the disk and/or a larger emitting radius than ^12 CO _2 . The derived ${N}_{{\mathrm{CO}}_{2}}$ / ${N}_{{{\rm{H}}}_{2}{\rm{O}}}$ ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on Spitzer-InfraRed-Spectrograph data. This high column density ratio may be due to an inner cavity with a radius in between the H _2 O and CO _2 snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.
- Published
- 2023
- Full Text
- View/download PDF