1. Toward Precision-Aware Safe Neural-Controlled Cyber–Physical Systems.
- Author
-
Thevendhriya, Harikishan, Ghosh, Sumana, and Lohar, Debasmita
- Abstract
The safety of neural network (NN) controllers is crucial, specifically in the context of safety-critical Cyber-Physical System (CPS) applications. Current safety verification focuses on the reachability analysis, considering the bounded errors from the noisy environments or inaccurate implementations. However, it assumes real-valued arithmetic and does not account for the fixed-point quantization often used in the embedded systems. Some recent efforts have focused on generating the sound quantized NN implementations in fixed-point, ensuring specific target error bounds, but they assume the safety of NNs is already proven. To bridge this gap, we introduce Nexus, a novel two-phase framework combining reachability analysis with sound NN quantization. Nexus provides an end-to-end solution that ensures CPS safety within bounded errors while generating mixed-precision fixed-point implementations for the NN controllers. Additionally, we optimize these implementations for the automated parallelization on the FPGAs using a commercial HLS compiler, reducing the machine cycles significantly. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF