1. Controlled Production of Zearalenone-Glucopyranoside Standards with Cunninghamella Strains Using Sulphate-Depleted Media.
- Author
-
Peters J, Ash E, Gerssen A, Van Dam R, Franssen MCR, and Nielen MWF
- Subjects
- Biotransformation, Chromatography, Liquid, Cunninghamella chemistry, Magnetic Resonance Spectroscopy, Mass Spectrometry, Zearalenone chemistry, Cunninghamella metabolism, Glycosides biosynthesis, Zearalenone metabolism
- Abstract
In recent years, conjugated mycotoxins have gained increasing interest in food safety, as their hydrolysis in human and animal intestines leads to an increase in toxicity. For the production of zearalenone (ZEN) glycosides reference standards, we applied Cunninghamella elegans and Cunninghamella echinulata fungal strains. A sulphate-depleted medium was designed for the preferred production of ZEN glycosides. Both Cunninghamella strains were able to produce zearalenone-14-β-D-glucopyranoside (Z14G), zearalenone-16-β-D-glucopyranoside (Z16G) and zearalenone-14-sulphate (Z14S). In a rich medium, Cunninghamella elegans preferably produced Z14S, while Cunninghamella echinulata preferably produced Z14G. In the sulphate-depleted medium a dramatic change was observed for Cunninghamella elegans , showing preferred production of Z14G and Z16G. From 2 mg of ZEN in sulphate-depleted medium, 1.94 mg of Z14G and 0.45 mg of Z16G were produced. Following preparative Liquid Chromatography-Mass Spectrometry (LC-MS) purification, both fractions were submitted to
1 H and13 C NMR and High-Resolution Mass Spectrometry (HRMS). These analyses confirmed that the purified fractions were indeed Z14G and Z16G. In conclusion, the presented research shows that a single Cunninghamella strain can be an effective and efficient tool for the controlled biotransformation of ZEN glycosides and other ZEN metabolites. Additionally, the biotransformation method was extended to zearalanone, β-zearalenol and other mycotoxins.- Published
- 2021
- Full Text
- View/download PDF