1. The TGF-β mimic TGM4 achieves cell specificity through combinatorial surface co-receptor binding.
- Author
-
Singh SP, Smyth DJ, Cunningham KT, Mukundan A, Byeon CH, Hinck CS, White MPJ, Ciancia C, Wąsowska N, Sanders A, Jin R, White RF, Lilla S, Zanivan S, Schoenherr C, Inman GJ, van Dinther M, Ten Dijke P, Hinck AP, and Maizels RM
- Abstract
The immunoregulatory cytokine TGF-β is pleiotropic due to the near-ubiquitous expression of the TGF-β receptors TβRI and TβRII on diverse cell types. The helminth parasite Heligmosomoides polygyrus has convergently evolved a family of TGF-β mimics (TGMs) that bind both these receptors through domains 1-3 of a 5-domain protein. One member of this family, TGM4, differs from TGF-β in acting in a cell-specific manner, failing to stimulate fibroblasts, but activating SMAD phosphorylation in macrophages. Primarily through domains 4 and 5, TGM4 interacts with multiple co-receptors, including CD44, CD49d (integrin α4) and CD206, and can up- and downmodulate macrophage responses to IL-4 and lipopolysaccharide (LPS), respectively. The dependence of TGM4 on combinatorial interactions with co-receptors is due to a moderated affinity for TβRII that is more than 100-fold lower than for TGF-β. Thus the parasite has elaborated TGF-β receptor interactions to establish cell specificity through combinatorial cis-signalling, an innovation absent from the mammalian cytokine., Competing Interests: Disclosure and competing interests statement. The authors declare no competing interests., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF