* Context. -- While urine culture contamination may not be completely avoidable, some laboratories have lower contamination rates than others. A College of American Pathologists (CAP) 1998 Q-Probes study showed that many interventions commonly assumed to reduce contamination were not demonstrably effective. This article revisits the issue. Objective. -- To examine the frequency of urine culture contamination, review current laboratory practices in the collection of urine culture specimens, and determine practice characteristics that may be associated with the contamination rate. Design. -- Laboratories participating in a CAP Q-Probes study were required to prospectively collect data on 120 consecutive urine culture specimens and provide information on the patient's demographics (age and sex), the location where the specimen was collected, how the specimen was handled, the number of isolates in quantities greater than or equal to 10 000 colony-forming units (CFU)/mL, and whether the laboratory considered the specimen to be contaminated. Specific inclusion and exclusion criteria were provided to the participants. Each laboratory completed a supplemental questionnaire that probed for specific laboratory urine culture collection practices. Results. -- One hundred twenty-seven laboratories participated in the study. Results from a total of 14 739 urine specimens were received. For the purpose of this study, a urine specimen was determined to be contaminated if the culture yielded more than 2 isolates in quantities greater than or equal to 10 000 CFU/mL. Using these criteria the median institution had a contamination rate of 15.0%. Laboratories in the 10th percentile (low performance) had an average contamination rate of 41.7%, while laboratories in the 90th percentile had an average rate of 0.8%. The collection site had no influence on the contamination rate, but postcollection processing, especially refrigeration of the specimen, had a substantial effect. Providing instruction to patients produced a statistically significant lowering of contamination rates for specimens from male patients (P = .006) but not for female patients, except when written instructions were provided in the emergency room, in which case specimen contamination rates for both male and female patients dropped (P = .01). Conclusions. -- The median contamination rates remain at a level comparable to the results seen in a previous Q-Probes study, and some laboratories have very high contamination rates. Specimen refrigeration is associated with lower overall urine culture specimen contamination rate. Providing patient instruction is also associated with lower contamination rates under specific circumstances. (Arch Pathol Lab Med. 2008;132:913-917), Some contamination of urine specimens may be unavoidable. A College of American Pathologists (CAP) Q-Probes study (1) published in 1998 found that the contamination rate was as high as 36.8% [...]