1. Detecting Android Malware by Visualizing App Behaviors from Multiple Complementary Views
- Author
-
Meng, Zhaoyi, Zhang, Jiale, Guo, Jiaqi, Wang, Wansen, Huang, Wenchao, Cui, Jie, Zhong, Hong, and Xiong, Yan
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Software Engineering - Abstract
Deep learning has emerged as a promising technology for achieving Android malware detection. To further unleash its detection potentials, software visualization can be integrated for analyzing the details of app behaviors clearly. However, facing increasingly sophisticated malware, existing visualization-based methods, analyzing from one or randomly-selected few views, can only detect limited attack types. We propose and implement LensDroid, a novel technique that detects Android malware by visualizing app behaviors from multiple complementary views. Our goal is to harness the power of combining deep learning and software visualization to automatically capture and aggregate high-level features that are not inherently linked, thereby revealing hidden maliciousness of Android app behaviors. To thoroughly comprehend the details of apps, we visualize app behaviors from three related but distinct views of behavioral sensitivities, operational contexts and supported environments. We then extract high-order semantics based on the views accordingly. To exploit semantic complementarity of the views, we design a deep neural network based model for fusing the visualized features from local to global based on their contributions to downstream tasks. A comprehensive comparison with five baseline techniques is performed on datasets of more than 51K apps in three real-world typical scenarios, including overall threats, app evolution and zero-day malware. The experimental results show that the overall performance of LensDroid is better than the baseline techniques. We also validate the complementarity of the views and demonstrate that the multi-view fusion in LensDroid enhances Android malware detection., Comment: Submitted to TIFS
- Published
- 2024