10 results on '"Cryns N"'
Search Results
2. Optimales Langzeitüberleben nach Krebs - zwei Scoping Reviews für die Bestandsanalyse der aktuellen Versorgungslandschaft mit besonderer Berücksichtigung von vulnerablen Gruppen
- Author
-
Cryns, N, Messer, S, Ernst, M, Dirksen, U, Grünwald, V, Skoetz, N, Cryns, N, Messer, S, Ernst, M, Dirksen, U, Grünwald, V, and Skoetz, N
- Published
- 2024
3. Bewegungstherapie zur Behandlung von tumor-assoziierter Fatigue: Einblicke in die Entwicklung von fünf Cochrane Reviews unter Einbindung von Patient:innen
- Author
-
Ernst, M, Wagner, C, Oeser, A, Messer, S, Cryns, N, Wender, A, Monsef, I, Skoetz, N, Ernst, M, Wagner, C, Oeser, A, Messer, S, Cryns, N, Wender, A, Monsef, I, and Skoetz, N
- Published
- 2023
4. Structural and functional correlates of olfactory reward processing in behavioral variant frontotemporal dementia.
- Author
-
Sokołowski A, Brown JA, Roy ARK, Cryns N, Scheffler A, Hardy EG, Datta S, Seeley WW, Sturm VE, Miller BL, Rosen HJ, and Perry DC
- Abstract
The behavioral variant of frontotemporal dementia (bvFTD) includes symptoms that reflect altered pursuit of rewards, including food, alcohol, and money. Little is known, however, about how these reward changes relate to atrophy and functional connectivity within reward-related regions. The goal of this study was to examine the structural and functional correlates of valence perception for olfactory rewards in 24 patients with bvFTD. Regression analysis of resting-state brain functional connectivity indicated that more positive valence ratings of olfactory stimuli were predicted by ventral pallidum connectivity to other reward circuit regions, particularly functional connectivity between ventral pallidum and bilateral anterior cingulate cortex/ventromedial prefrontal cortex. Structural analysis showed that atrophy of the anterior cingulate cortex was also significantly associated with perceiving stimuli as more rewarding. Finally, there was a significant interaction between ventral pallidum connectivity and atrophy of the anterior cingulate cortex. More specifically, the ventral pallidum connectivity had a greater effect on the positive perception of olfactory stimuli in the setting of low anterior cingulate cortex volume. These findings indicate that atrophy and functional connectivity within reward-relevant regions exert independent and interacting effects on the perception of pleasantness in bvFTD, potentially due to changes in hedonic "liking" signals., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Cardiovascular training versus resistance training for fatigue in people with cancer.
- Author
-
Oeser A, Messer S, Wagner C, Wender A, Cryns N, Bröckelmann PJ, Holtkamp U, Baumann FT, Wiskemann J, Monsef I, Scherer RW, Mishra SI, Ernst M, and Skoetz N
- Subjects
- Adult, Female, Humans, Male, Anxiety therapy, Depression therapy, Depression etiology, Bias, Fatigue etiology, Fatigue therapy, Neoplasms complications, Quality of Life, Randomized Controlled Trials as Topic, Resistance Training methods
- Abstract
Background: With prevalence estimates between 50% and 90% of people with cancer, cancer-related fatigue is one of the most common morbidities related to cancer and its treatment. Exercise is beneficial for the treatment of cancer-related fatigue. However, the efficacy of different types of exercise (i.e. cardiovascular training and resistance training) have not yet been investigated systematically and compared directly in a meta-analysis., Objectives: To compare the benefits and harms of cardiovascular training versus resistance training for treatment or prevention of cancer-related fatigue in people with cancer., Search Methods: We searched CENTRAL, MEDLINE, Embase, and five other databases in January 2023. We searched ClinicalTrials.gov and the International Clinical Trials Registry Platform for ongoing trials. We integrated results from update searches of previously published Cochrane reviews. In total, our searches included trials from inception to October 2023., Selection Criteria: We included randomised controlled trials investigating cardiovascular training compared with resistance training, with exercise as the main component. We included studies on adults with cancer (aged 18 years and older), with or without a diagnosis of cancer-related fatigue, for any type of cancer and any type of cancer treatment, with the intervention starting before, during, or after treatment. We included trials evaluating at least one of our primary outcomes (cancer-related fatigue or quality of life). We excluded combined cardiovascular and resistance interventions, yoga, and mindfulness-based interventions. Our primary outcomes were cancer-related fatigue and quality of life. Our secondary outcomes were adverse events, anxiety, and depression., Data Collection and Analysis: We used standard Cochrane methodology. For analyses, we pooled results within the same period of outcome assessment (i.e. short term (up to and including 12 weeks' follow-up), medium term (more than 12 weeks' to less than six months' follow-up), and long term (six months' follow-up or longer)). We assessed risk of bias using the Cochrane RoB 1 tool, and certainty of the evidence using GRADE., Main Results: We included six studies with 447 participants with prostate, breast, or lung cancer who received radiotherapy or chemotherapy, had surgery, or a combination of these. All studies had a high risk of bias due to lack of blinding. Three studies had an additional high risk of bias domain; one study for attrition bias, and two studies for selection bias. Interventions in the cardiovascular training groups included training on a cycle ergometer, treadmill, an elliptical trainer, or indoor bike. Interventions in the resistance training group included a varying number of exercises using bodyweight, weights, or resistance bands. Interventions varied in frequency, intensity, and duration. None of the included studies reported including participants with a confirmed cancer-related fatigue diagnosis. The interventions in four studies started during cancer treatment and in two studies after cancer treatment. Before treatment No studies reported interventions starting before cancer treatment. During treatment The evidence was very uncertain about the effect of cardiovascular training compared with resistance training for short-term cancer-related fatigue (mean difference (MD) -0.29, 95% confidence interval (CI) -2.52 to 1.84; 4 studies, 311 participants; Functional Assessment of Chronic Illness Therapy - Fatigue (FACIT-Fatigue) scale where higher values indicate better outcome; very low-certainty evidence) and long-term cancer-related fatigue (MD 1.30, 95% CI -2.17 to 4.77; 1 study, 141 participants; FACIT-Fatigue scale; very low-certainty evidence). The evidence was very uncertain about the effect of cardiovascular training compared with resistance training for short-term quality of life (MD 1.47, 95% CI -1.47 to 4.42; 4 studies, 319 participants; Functional Assessment of Cancer Therapy - General scale where higher values indicate better outcome; very low-certainty evidence) and for long-term quality of life (MD 3.40, 95% CI -4.85 to 11.65; 1 study, 141 participants; Functional Assessment of Cancer Therapy - Anemia scale where higher values indicate better outcome; very low-certainty evidence). The evidence is very uncertain about the effect of cardiovascular training compared with resistance training on the occurrence of adverse events at any follow-up (risk ratio (RR) 2.00, 95% CI 0.19 to 21.18; 2 studies, 128 participants; very low-certainty evidence). No studies reported medium-term cancer-related fatigue or quality of life. After treatment The evidence was very uncertain about the effect of cardiovascular training compared with resistance training for short-term cancer-related fatigue (MD 1.47, 95% CI -0.09 to 3.03; 1 study, 95 participants; Multidimensional Fatigue Inventory-20 General Fatigue subscale where higher values indicate worse outcome; very low-certainty evidence). Resistance training may improve short-term quality of life compared to cardiovascular training, but the evidence is very uncertain (MD -10.96, 95% CI -17.77 to -4.15; 1 study, 95 participants; European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-C30 Global Health subscale where higher values indicate better outcome; very low-certainty evidence). No studies reported outcomes at medium-term or long-term follow-up., Authors' Conclusions: The evidence is very uncertain about the effects of cardiovascular training compared with resistance training on treatment of cancer-related fatigue in people with cancer. Larger, well-conducted studies including people with different cancer types receiving different treatments are needed to increase the certainty in the evidence and to better understand who may benefit most from cardiovascular or resistance training. Moreover, studies comparing the effects of cardiovascular and resistance training initiated before as well as after cancer treatment are needed to understand the prophylactic and rehabilitative effects of these exercise types on cancer-related fatigue., (Copyright © 2024 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
6. Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis.
- Author
-
Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, Cryns N, Monsef I, Dresen A, Roheger M, Eggers C, Skoetz N, and Kalbe E
- Subjects
- Humans, Postural Balance, Exercise, Bias, Parkinson Disease rehabilitation, Randomized Controlled Trials as Topic, Quality of Life, Network Meta-Analysis, Exercise Therapy methods
- Abstract
Background: Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear., Objectives: To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs)., Search Methods: An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date., Selection Criteria: We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both., Data Collection and Analysis: Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach., Main Results: We included 154 RCTs with a total of 7837 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 60 (2721 participants), and 48 (3029 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson's Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (60 studies; 2721 participants) suggests that dance and gait/balance/functional training probably have a moderate beneficial effect on the severity of motor signs (dance: mean difference (MD) -10.18, 95% confidence interval (CI) -14.87 to -5.36; gait/balance/functional training: MD -7.50, 95% CI -11.39 to -3.48; moderate confidence), and multi-domain training probably has a small beneficial effect on the severity of motor signs (MD -5.90, 95% CI -9.11 to -2.68; moderate confidence). The evidence also suggests that endurance, aqua-based, strength/resistance, and mind-body training might have a small beneficial effect on the severity of motor signs (endurance training: MD -5.76, 95% CI -9.78 to -1.74; aqua-based training: MD -5.09, 95% CI -10.45 to 0.40; strength/resistance training: MD -4.96, 95% CI -9.51 to -0.40; mind-body training: MD -3.62, 95% CI -7.24 to 0.00; low confidence). The evidence is very uncertain about the effects of "Lee Silverman Voice training BIG" (LSVT BIG) and flexibility training on the severity of motor signs (LSVT BIG: MD -6.70, 95% CI -16.48 to 3.08; flexibility training: MD 4.20, 95% CI -1.61 to 9.92; very low confidence). Quality of life The evidence from the NMA (48 studies; 3029 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -15.15, 95% CI -23.43 to -6.87; moderate confidence). The evidence also suggests that mind-body, gait/balance/functional, and multi-domain training and dance might have a small beneficial effect on QoL (mind-body training: MD -7.22, 95% CI -13.57 to -0.70; gait/balance/functional training: MD -6.17, 95% CI -10.75 to -1.59; multi-domain training: MD -5.29, 95% CI -9.51 to -1.06; dance: MD -3.88, 95% CI -10.92 to 3.00; low confidence). The evidence is very uncertain about the effects of gaming, strength/resistance, endurance, and flexibility training on QoL (gaming: MD -8.99, 95% CI -23.43 to 5.46; strength/resistance training: MD -6.70, 95% CI -12.86 to -0.35; endurance training: MD -6.52, 95% CI -13.74 to 0.88; flexibility training: MD 1.94, 95% CI -10.40 to 14.27; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types., Authors' Conclusions: We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD., (Copyright © 2024 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
7. Can Physical Exercise Be Considered as a Promising Enhancer of Global Cognition in People with Parkinson's Disease? Results of a Systematic Review and Meta-Analysis.
- Author
-
Folkerts AK, Ernst M, Gollan R, Cryns N, Monsef I, Skoetz N, and Kalbe E
- Subjects
- Humans, Cognition physiology, Exercise physiology, Cognitive Dysfunction etiology, Cognitive Dysfunction rehabilitation, Cognitive Dysfunction therapy, Randomized Controlled Trials as Topic, Parkinson Disease complications, Parkinson Disease rehabilitation, Parkinson Disease therapy, Exercise Therapy methods
- Abstract
Background: Physical exercise interventions are known to improve quality of life, motor and non-motor symptoms in people with Parkinson's disease (PD). However, systematic reviews and meta-analyses on cognitive outcomes are rare., Objective: To perform a systematic review and meta-analysis of physical exercise intervention effects compared with passive and active control groups (CGs) on global cognition in people with PD., Methods: A literature search was performed for randomized controlled trials (RCTs) on physical exercise interventions in PD using nine databases. We included RCTs reporting global cognition outcomes. A meta-analysis was performed using random-effects models and standardized mean differences (SMDs) with 95% confidence intervals (CIs). Bias was assessed with the revised Cochrane Risk of Bias tool and the certainty of evidence was rated using the GRADE approach., Results: Seventeen studies (ten with passive, seven with active CGs) were included in the systematic review. Exercise interventions varied considerably between studies. The meta-analysis included nine studies with 236 people with PD (seven with passive, two with active CGs). The SMD was 0.33 (95% CI 0.00; 0.65) demonstrating a small effect (p = 0.05) in favor of physical exercise. Compared with passive CGs, physical exercise had a small non-significant effect (SMD = 0.22, 95% CI -0.14;0.58, p = 0.24). Compared with active CGs, physical exercise had a medium significant effect (SMD = 0.72, 95% CI 0.12;1.33, p = 0.02)., Conclusions: Physical exercise may increase global cognition in people with PD, but the evidence is very uncertain. Further large-scale RCTs are needed to confirm this finding and to identify the most effective type of physical exercise for improving cognition.
- Published
- 2024
- Full Text
- View/download PDF
8. Are There Differences in Abdominal Muscle Function in Female Singers With and Without Voice Disorders? - An Observational Study.
- Author
-
Cryns N, Schemmann H, Zalpour C, and von Piekartz H
- Subjects
- Humans, Female, Voice Quality, Abdominal Muscles diagnostic imaging, Disability Evaluation, Singing, Voice Disorders, Dysphonia
- Abstract
Objectives: The purpose of this study was to determine the motor function of the abdominal muscles in singers with and without functional voice disorders and to examine them for possible differences. Additionally, the breathing behaviour and posture control was investigated., Study Design: Observational study., Methods: Female subjects (n = 20) with differing levels of professional competence were used to provide the data for analysis. By using the Singing Voice Handicap Index (SVHI) the grade of dysphonia could be measured, and the subjects were organized in groups. The change of muscle thickness of the M. transversus abdominis (TVA) and the M. obliquus internus abdominis (OIA) during different singing tasks was measured by using ultrasound. The subjects were then asked to perform the Abdominal Hollowing Test (AHT) with the STABILIZER. Finally, the subjects were all filmed while singing. The videos recordings of the singing sessions were analysed by an independent clinical expert regarding breathing and secondary motor activities (SMA). For the statistical analysis, the Mann-Whitney-U Test and the Chi-Square-Test was mainly used., Results: The results showed a significantly thinner TVA in the group with dysphonia in comparison to the group without dysphonia. Ultrasound measurements showed significantly higher changes of muscle thickness of the TVA during singing tasks in the group with dysphonia. Regarding the AHT there was a significant difference between the two groups. The group with dysphonia was not able to increase the pressure by 15mmHg. Furthermore, the healthy subjects demonstrated abdominal breathing, while the group with dysphonia present with thoracic breathing. Additionally, it was noted that the subjects with dysphonia showed a higher level of associated movements especially at and/or on the lumbar spine, cervical spine and the left arm and shoulder., Conclusion: Differences in TVA-recruitment, breathing behaviour and secondary motor activities while singing were found. This study sparks new ideas for neuromusculoskeletal assessments and therapy., (Copyright © 2021 The Voice Foundation. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
9. Convalescent plasma for people with COVID-19: a living systematic review.
- Author
-
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, and Skoetz N
- Subjects
- Humans, SARS-CoV-2, COVID-19 Serotherapy, Immunoglobulins, COVID-19 therapy, Virus Diseases
- Abstract
Background: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required., Objectives: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach., Search Methods: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022., Selection Criteria: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin., Data Collection and Analysis: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events., Main Results: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence., Authors' Conclusions: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease., (Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
10. Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis.
- Author
-
Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, Cryns N, Monsef I, Dresen A, Roheger M, Eggers C, Skoetz N, and Kalbe E
- Subjects
- Adult, Humans, Network Meta-Analysis, Exercise, Gait, Quality of Life, Parkinson Disease therapy, Resistance Training
- Abstract
Background: Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear., Objectives: To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs)., Search Methods: An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date., Selection Criteria: We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both., Data Collection and Analysis: Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach., Main Results: We included 156 RCTs with a total of 7939 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 71 (3196 participants), and 55 (3283 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (71 studies; 3196 participants) suggests that dance has a moderate beneficial effect on the severity of motor signs (mean difference (MD) -10.32, 95% confidence interval (CI) -15.54 to -4.96; high confidence), and aqua-based, gait/balance/functional, and multi-domain training might have a moderate beneficial effect on the severity of motor signs (aqua-based: MD -7.77, 95% CI -13.27 to -2.28; gait/balance/functional: MD -7.37, 95% CI -11.39 to -3.35; multi-domain: MD -6.97, 95% CI -10.32 to -3.62; low confidence). The evidence also suggests that mind-body training and endurance training might have a small beneficial effect on the severity of motor signs (mind-body: MD -6.57, 95% CI -10.18 to -2.81; endurance: MD -6.43, 95% CI -10.72 to -2.28; low confidence). Flexibility training might have a trivial or no effect on the severity of motor signs (MD 2.01, 95% CI -4.82 to 8.98; low confidence). The evidence is very uncertain about the effects of strength/resistance training and "Lee Silverman Voice training BIG" (LSVT BIG) on the severity of motor signs (strength/resistance: MD -6.97, 95% CI -11.93 to -2.01; LSVT BIG: MD -5.49, 95% CI -14.74 to 3.62; very low confidence). Quality of life The evidence from the NMA (55 studies; 3283 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -14.98, 95% CI -23.26 to -6.52; moderate confidence). The evidence also suggests that endurance training might have a moderate beneficial effect, and that gait/balance/functional and multi-domain training might have a small beneficial effect on QoL (endurance: MD -9.16, 95% CI -15.68 to -2.82; gait/balance/functional: MD -5.64, 95% CI -10.04 to -1.23; multi-domain: MD -5.29, 95% CI -9.34 to -1.06; low confidence). The evidence is very uncertain about the effects of mind-body training, gaming, strength/resistance training, dance, LSVT BIG, and flexibility training on QoL (mind-body: MD -8.81, 95% CI -14.62 to -3.00; gaming: MD -7.05, 95% CI -18.50 to 4.41; strength/resistance: MD -6.34, 95% CI -12.33 to -0.35; dance: MD -4.05, 95% CI -11.28 to 3.00; LSVT BIG: MD 2.29, 95% CI -16.03 to 20.44; flexibility: MD 1.23, 95% CI -11.45 to 13.92; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types., Authors' Conclusions: We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD., (Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.