1. Intensifying interfacial oscillations in falling film flows over rectangular corrugations.
- Author
-
Düll, A., Cros-Le Lagadec, A., Buchmüller, J., Häber, T., Ates̗, C., and Börnhorst, M.
- Subjects
- *
FILM flow , *FALLING films , *UNSTEADY flow , *SURFACE structure , *TIME series analysis - Abstract
Unsteady film flows play an important role in intensifying heat and mass transfer processes, with applications, e.g., in falling film absorbers or reactors. In this context, the influence of surface structure modification on the wave dynamics of falling film flows is experimentally investigated based on localized film thickness time series data. Arrays of rectangular ridges oriented perpendicular to the main flow direction are considered, and an optimum ridge distance is identified, at which particularly strong interfacial oscillations are induced in the falling film. These potentially result from the interaction of the flow with a statically deformed base film under resonance-like conditions. The transient destabilization is amplified in the case of narrow ridge sizes, where inertia-driven flow features are particularly pronounced. With regard to mass transfer applications, the structure-induced increase in gas–liquid interfacial area may be of secondary importance compared to changes in internal flow conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF