23 results on '"Crop forecast"'
Search Results
2. Model performance in estimating the yield of common bean cultivars1.
- Author
-
Augusto Filla, Vinicius, Prates Coelho, Anderson, Trombeta Bettiol, João Víctor, Leal, Fábio Tiraboschi, Lemos, Leandro Borges, and Luciano Rosalen, David
- Abstract
Copyright of Revista Ciência Agronômica is the property of Revista Ciencia Agronomica and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2023
- Full Text
- View/download PDF
3. Model performance in estimating the yield of common bean cultivars
- Author
-
Vinicius Augusto Filla, Anderson Prates Coelho, João Víctor Trombeta Bettiol, Fábio Tiraboschi Leal, Leandro Borges Lemos, and David Luciano Rosalen
- Subjects
Crop forecast ,NDVI ,Phaseolus vulgaris L. ,Remote sensing ,Vegetation index. ,Agriculture (General) ,S1-972 - Abstract
ABSTRACT The use of vegetation indices has good potential for predicting the productivity of several crops, but factors such as the time of assessment, cultivar, and plant phenology can influence the performance of predictive models. The objective of this study was to evaluate and compare the precision of estimating the common bean grain yield, according to the normalized difference vegetation index (NDVI), using individual models per cultivar and a general model with all cultivars. The cultivars IAC Imperador and IPR Campos Gerais, with determined and indeterminate growth habits, respectively, were evaluated. They were subjected to different nitrogen management methods to provide grain yield variability. NDVI evaluations were conducted throughout the culture cycle on six dates during the vegetative and reproductive stages. The common bean grain yield was estimated with high precision as a function of NDVI, obtaining a precision of up to 78% and an average error close to 350 kg ha-1. The greatest fit of estimation was obtained in the phenological reproductive stages of beans, especially after crop flowering. General models, composed of data from more than one cultivar, had similar precision and, in some cases, superiority to the fitted models for each cultivar, demonstrating the feasibility of using the same model for several genotypes.
- Published
- 2022
- Full Text
- View/download PDF
4. Growing Degree Days to Forecast Crop Stages
- Author
-
Ahmad, Latief, Habib Kanth, Raihana, Parvaze, Sabah, Sheraz Mahdi, Syed, Ahmad, Latief, Habib Kanth, Raihana, Parvaze, Sabah, and Sheraz Mahdi, Syed
- Published
- 2017
- Full Text
- View/download PDF
5. Brazil 2022-2023 orange crop forecast.
- Author
-
Fava Neves, Marcos and Gustavo Trombin, Vinícius
- Subjects
CROP development ,DROUGHTS ,WEATHER ,FROST - Abstract
The article discusses orange crop forecast for the São Paulo and West-Southwest Minas Gerais citrus belt. Topic discussed includes the prospect of a better crop that indicates recovery from adverse weather including the drought and frost that took place in 2020 and 2021 and caused two consecutive small crops, resulting in a discontinued biennial bearing cycle characterized by the yearly alternation of large and small crops.
- Published
- 2022
6. Improving drought management in the Brazilian semiarid through crop forecasting.
- Author
-
Martins, Minella A., Tomasella, Javier, Rodriguez, Daniel A., Alvalá, Regina C.S., Giarolla, Angélica, Garofolo, Lucas L., Júnior, José Lázaro Siqueira, Paolicchi, Luis T.L.C., and Pinto, Gustavo L.N.
- Subjects
- *
CROP yields , *AGRICULTURAL forecasts , *AGRICULTURAL productivity , *RAINFALL , *FOOD security - Abstract
In this paper, we evaluated the performance of the model AquaCrop for crop yield forecasting in the Brazilian semiarid (BSA) using meteorological observation and Eta model seasonal climate forecasts as input data. The study area is characterized by low rainfall that is poorly distributed throughout the rainy season; thus, the region's agricultural productivity is vulnerable to climate conditions. AquaCrop was first calibrated using field experiments and subsequently applied to simulate an operational crop yield forecast system for maize under rainfed conditions. Simulations were performed with daily data for 37 growing seasons for the period 2001–2010. The seasonal climate forecast was used in combination with observed meteorological data to anticipate the crop forecast. Soil characteristics were derived from pedotransfer functions (PTFs). We were able to demonstrate the ability of the seasonal crop yield forecast system to provide timely and accurate information about maize yield at least 30 days in advance of the harvest. The development of improved crop yield forecasting system is crucial for implementing drought-preparedness measures in the BSA region. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
7. Modelagem agrometeorológica do rendimento de arroz irrigado no Rio Grande do Sul Agrometeorological modelling of irrigated rice yield in Rio Grande do Sul, Brazil
- Author
-
Eliana Veleda Klering, Denise Cybis Fontana, Moacir Antonio Berlato, and Alberto Cargnelutti Filho
- Subjects
Oryza sativa ,previsão de safras ,radiação solar ,temperatura mínima ,crop forecast ,solar radiation ,minimum temperature ,Agriculture (General) ,S1-972 - Abstract
O objetivo deste trabalho foi elaborar e testar modelos para a estimativa de rendimento de arroz irrigado, no Estado do Rio Grande do Sul. O estudo foi realizado com dados meteorológicos de temperatura mínima do ar, radiação solar global e dados de estatísticas agrícolas de rendimento de arroz irrigado, das seis regiões orizícolas do Rio Grande do Sul, referentes às safras 1982/1983 até 2005/2006. Foram feitas análises de tendência tecnológica dos rendimentos, e foram estabelecidos os indicadores agrometeorológicos para o ajuste de modelos de estimativa de rendimento de arroz irrigado, para o Rio Grande do Sul. Existe tendência tecnológica de aumento nos rendimentos de arroz irrigado no Estado. As variáveis meteorológicas avaliadas - dias com temperatura mínima do ar inferior a 15°C e radiação solar global - podem ser usadas como indicadores do rendimento de arroz irrigado. Os modelos agrometeorológicos elaborados para as seis regiões orizícolas e para o Estado do Rio Grande do Sul apresentam características de precisão, fácil implementação e baixo custo e podem, portanto, ser introduzidos ao programa nacional de previsão de safras.The objective of this work was to elaborate and test models to estimate the irrigated rice yield, in Rio Grande do Sul State, Brazil. The study was carried out using meteorological data of minimum air temperature, global solar radiation and data of agricultural statistics about the irrigated rice yield, involving six rice production regions of Rio Grande do Sul, relative to crop years from 1982/1983 to 2005/2006. Analyses of yield technological tendencies were performed, and agrometeorological indicators for model adjustments of irrigated rice yields were established. There is a technological tendency of increasing the irrigated rice yield in the State. The analyzed meteorological variables - global solar radiation and days with minimum air temperature below or equal to 15°C - can be used as indicators of the irrigated rice yield. The adjusted agrometeorological models, elaborated for the six rice production regions and for the Rio Grande do Sul State, show characteristics of accuracy, easy implementation and low cost, which make them able to be introduced in the national program of crop forecast.
- Published
- 2008
- Full Text
- View/download PDF
8. Análise espectral e temporal da cultura do café em imagens Landsat Spectral and temporal behavior analysis of coffee crop in Landsat images
- Author
-
Mauricio Alves Moreira, Marcos Adami, and Bernardo Friedrich Theodor Rudorff
- Subjects
Coffea arabica ,sensoriamento remoto ,geoprocessamento ,previsão de safra ,remote sensing ,geoprocessing ,crop forecast ,Agriculture (General) ,S1-972 - Abstract
A definição da resposta espectral da cultura do café é uma das etapas na identificação de lavouras cafeeiras em imagens de satélites de sensoriamento remoto, para fins de mapeamento e estimativa de área plantada. O objetivo deste trabalho foi avaliar o potencial das imagens adquiridas pelos satélites da série Landsat, no mapeamento da cultura do café para a previsão de safras. Foi feita uma análise temporal do comportamento espectral de lavouras de café-formação e café-produção por meio de imagens livres de nuvens adquiridas nos anos de 1999 e 2001. Também foi analisado o comportamento espectral das classes pastagem e mata, que compõem os alvos de maior ocupação na área de estudo. As imagens do período seco foram mais eficientes no mapeamento de lavouras de café-formação e café-produção. As imagens da banda 4 dos dois sensores apresentaram melhor diferenciação espectral entre café e os demais alvos da cena. A reflectância do café-produção apresentou grande variabilidade entre lavouras, que pode ser atribuída à idade, espaçamento de plantas, cultivar, indicando a necessidade de trabalho em campo para a correta identificação das lavouras de café nas imagens Landsat.The definition of the spectral response of coffee crop is one of the steps to identify coffee fields in remote sensing images in order to map and estimate planted area. The objective of this work was to analyze the potential of the images acquired by the Landsat series satellites, for coffee crop mapping and forecast. A temporal analysis of the spectral behavior of coffee crop fields under development and under active production was performed through cloud free images acquired in the years of 1999 and 2001. The spectral behavior of pasture and forest was also analyzed due to their relevance in the study area. The results showed that images acquired during the dry season were more efficient to map coffee crop at early development and under production. Band 4 (near infrared) of both sensors (TM and ETM+) presented best performance for spectral differentiation between coffee crop and other scene targets. The analysis of the reflectance values for active producing coffee crop showed a high spectral variability which may be attributed to age, plants spacing, cultivar, indicating a need for field work for the identification of coffee crop in Landsat scenes.
- Published
- 2004
- Full Text
- View/download PDF
9. Relações entre a produção de laranjeira 'Westin' e as precipitações em Botucatu, SP Relationships between production of 'Westin' sweet orange trees and rainfall at Botucatu, São Paulo State, Brazil
- Author
-
Antonio Tubelis, Ary Aparecido Salibe, and Gislene Pessim
- Subjects
laranjeira doce ,clima ,previsão de safra ,irrigação suplementar ,sweet orange tree ,climate ,crop forecast ,suplemental irrigation ,Agriculture (General) ,S1-972 - Abstract
O trabalho estuda a correlação entre a produção de um pomar de laranja, plantado no altiplano de Botucatu, SP, com as precipitações que ocorrem dezesseis meses antes da colheita e a idade do pomar. As plantas eram de laranjeira doce (Citrus sinensis (L.) Osbeck), variedade Westin, de clone nucelar, enxertadas em porta-enxerto de limoeiro 'Cravo' (Citrus limonia Osbeck), plantadas em solo Terra Roxa Estruturada, a 810 m de altitude e em região de clima do tipo Cwb. A cultura foi conduzida de modo convencional e sem irrigação. Coletaram-se dados de produção, nos períodos entre o 3º e o 17º e entre o 21º e o 27º ano de idade do pomar, para análise do comportamento da produção e o efeito da idade e das precipitações na produção. Calcularam-se equações lineares múltiplas de regressão, entre a produção, idade do pomar e as precipitações mensais, nos períodos de pomar juvenil, adulto, senescente e adulto-senescente. A produção correlacionou-se com a idade e com valores mensais de precipitação. Os pequenos desvios observados entre os valores medidos e estimados de produção revelaram que as equações de regressão poderiam ser usadas na previsão de safra ou no controle de irrigação suplementar do pomar.This paper deals with the existence of correlation between the production of a sweet orange orchard, planted at the plateau of Botucatu, São Paulo State, Brazil, with the orchard age and the rainfall that occurred in the sixteen months before the picking season. The plants were of sweet orange trees (Citrus sinensis (L.) Osbeck), variety Westin, budded on 'Rangpur' lime (Citrus limonia Osbeck) rootstock, grown on "Terra Roxa Estruturada" soil, at an altitude of 810 m above sea level and in a region with Cwb climatic type. The orchard was conducted by conventional ways and no irrigation was applied. The production of the orchard was recorded, during the period from the 3rd until the 17th and from the 21st until the 27th year old, to analyse the behaviour of the production and the effect of the orchard age and of the rainfalls on the production of the plants. Multi linear regression equations among the production, age of the orchard and monthly rainfalls were calculated for the juvenile, adult, senescent and adult-senescent phases of the period of orchard production. The production was found to be correlated with the orchard age and with the monthly rainfalls. The small deviations between the measured and calculated values of production showed that the regression equations could be used to crop forecast or to suplemental irrigation control of the orchard.
- Published
- 1999
- Full Text
- View/download PDF
10. A Decision Support System for Agriculture Using Natural Language Processing (ADSS).
- Author
-
Prasad, J. R., Prasad, R. S., and Kulkarni, U. V.
- Subjects
DECISION support systems ,AGRICULTURE ,NATURAL language processing ,CLIMATE change ,AGRICULTURAL productivity ,INFORMATION retrieval - Abstract
The agricultural sector which is core part of the Indian economy, represents 35% of The impact of climate change on agriculture is expected to impact on agricultural productivity and shifting crop patterns This paper suggests development of a decision support system for agriculture based on the natural language processing. The analytical data about the rainfall pattern, soil structure of the area will be maintained at back end, the system will retrieve the information based on the interaction with the user, which will be a farmer in this case. The authors aim to provide a user friendly decision support system. [ABSTRACT FROM AUTHOR]
- Published
- 2008
11. Seasonal forecasts of the SINTEX-F coupled model applied to maize yield and streamflow estimates over north-eastern South Africa.
- Author
-
Malherbe, J., Landman, W. A., Olivier, C., Sakuma, H., and Luo, J‐ J.
- Subjects
- *
STREAMFLOW , *CROP yields , *CORN breeding , *AGRICULTURAL forecasts - Abstract
ABSTRACT Forecasts of a Global Coupled Model for austral summer with a 1 month lead are downscaled to end-of-season maize yields and accumulated streamflow over the Limpopo Province and adjacent districts in northeastern South Africa through application of an MOS ( Model Output Statistics) approach applied over a 28 year period. Promising results, based on the hindcasts of the Global Models and historically observed yield and streamflow data, suggest potential for a commodity-orientated forecast system for application in agriculture in an operational environment. It also serves as a baseline study for inclusion of sophisticated crop or runoff models using GCM output data towards estimating potential yields and streamflows in the region. Copyright © 2013 Royal Meteorological Society [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
12. Annual forecasting of the Australian macadamia crop – integrating tree census data with statistical climate-adjustment models
- Author
-
Mayer, D.G., Stephenson, R.A., Jones, K.H., Wilson, K.J., Bell, D.J.D., Wilkie, J., Lovatt, J.L., and Delaney, K.E.
- Subjects
- *
MACADAMIA , *FRUIT trees , *SOLAR radiation , *FORECASTING - Abstract
Abstract: To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers’ historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year’s climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R 2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001–2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
13. К ВОПРОСУ ПРОГНОЗИРОВАНИЯ УРОЖАЙНОСТИ ПОЛЕВЫХ КУЛЬТУР
- Subjects
Технічні науки ,Engineering sciences ,Crop forecast ,Accuracy of forecasts ,Field crops ,Прогноз врожайності ,Точність прогнозів ,Польові культури ,Технические науки ,Прогноз урожайности ,Точность прогнозов ,Полевые культуры - Abstract
Long-term crop forecasts are indicative, but they are important in practice because they allow us to determine in advance the feasibility of sowing a crop, to solve the problems of optimizing the structure of acreage and a number of other organizational and strategic issues.The purpose of this work is presentation of the results of accuracy estimation for crop forecasting by major field crops performed by L. Pogorilyy UkrNDIPVT with varying earliness during the growing season.Methods. The estimation of the accuracy of the forecasts is made by calculating the relative error by standard methods of statistical analysis.The results of the accuracy assessment by crop forecasting performed in L. Pogorilyy UkrNDIPVT in 2015-2018 indicate satisfactory accuracy for country-level forecasts. Thus, as of the end of May, the prediction accuracy for wheat was 93-98 %, barley - 91-97 %, oats - 93-98 %, sunflower - 94-99 %, sugar beet - 90-97 %. The lowest accuracy was by corn yield forecasting, which varied within 80-92% in different years. The highest accuracy for late crops was observed in the July forecast and in May for the majority of cereals and legumes. For the general group of cereals and legumes, the average prediction error in January was 7.1 %, in May - 5.2 %, and in July, respectively, 5.7 %.Conclusions. The results presented of satisfactory accuracy of crop forecasting performed in L. Pogorilyy UkrNDIPVT at the state level. However, the impossibility of long-term prediction of agrometeorological conditions will always make its mistake, and if the anticipation period is several months, then this error can be avoided only in years when the agrometeorological conditions are close to the norm laid down in the model., Долгосрочные прогнозы урожайности являются ориентировочными, однако они имеют важное практическое значение, так как позволяют заблаговременно определить целесообразность сева той или иной культуры, решить задачи оптимизации структуры посевных площадей и ряда других организационных и стратегических вопросов.Целью работы является освещение результатов оценки точности выполненных в УкрНИИПИТ им. Л. Погорелого прогнозов урожайности основных полевых культур с разной заблаговременностью в течение вегетационного периода.Методы. Оценку точности прогнозов выполнено путем вычисления относительной погрешности по стандартными методами статистического анализа.Результаты оценки точности выполненных в УкрНИИПИТ им. Л. Погорелого прогнозов урожайности основных полевых культур в 2015-2018 годах свидетельствуют об удовлетворительной точности разработанных прогнозных оценок на уровне государства. Так, по состоянию на конец мая, точность прогнозирования для пшеницы составила 93-98%, ячменя - 91-97 %, овса - 93-98 %, подсолнечника - 94-99 %, сахарной свеклы - 90-97 %. Низкой оказалась точность прогнозирования урожайности кукурузы, которая в разные годы колебалась в пределах 80-92%. Наивысшая точность для поздних полевых культур отмечалась в июльском прогнозе, а для основной массы зерновых и зернобобовых культур - в майском. Для обобщенной группы зерновых и зернобобовых культур средняя ошибка прогнозирования в январе составила 7,1 %, в мае - 5,2 %, а в июле соответственно 5,7 %.Выводы. Представленные результаты свидетельствуют об удовлетворительной точности выполненных в УкрНИИПИТ им. Л. Погорелого прогнозов урожайности основных полевых культур на уровне государства. Однако невозможность долгосрочного предсказания агрометеорологических условий развития культур всегда будет вносить свою ошибку и если период предсказания составляет несколько месяцев, то избежать этой ошибки удается только в годы, когда агрометеорологические условия близки к норме, которая закладывается в модель., Довготермінові прогнози врожайності є орієнтовними, проте вони мають важливе практичне значення, оскільки дозволяють завчасно визначити доцільність сівби тієї чи іншої культури, вирішити задачі оптимізації структури посівних площ та ряду інших організаційних і стратегічних питань.Метою роботи є висвітлення результатів оцінки точності виконаних в УкрНДІПВТ ім. Л. Погорілого прогнозів врожайності основних польових культур з різною завчасністю впродовж вегетаційного періодуМетоди. Оцінку точності прогнозів виконано обчисленням відносної похибки за стандартними методами статистичного аналізу. Результати з оцінки точності виконаних в УкрНДІПВТ ім. Л. Погорілого прогнозів врожайності основних польових культур у 2015-2018 роках свідчать про задовільну точність розроблених прогнозів на рівні держави. Скажімо, станом на кінець травня, точність прогнозування для пшениці склала 93-98 %, ячменю – 91-97 %, вівса – 93-98 %, соняшника – 94-99 %, цукрових буряків – 90-97 %. Найнижчою виявилася точність прогнозування врожайності кукурудзи, що в різні роки коливалася в межах 80-92 %. Найвища точність пізніх польових культур відмічалася у липневому прогнозі, а для основної маси зернових і зернобобових культур – у травневому. Для узагальненої групи зернових та зернобобових культур середня похибка прогнозування у січні склала 7,1 %, у травні – 5,2 %, а у липні відповідно 5,7 %.Висновки. Представлені результати свідчать про задовільну точність виконаних в УкрНДІПВТ ім. Л. Погорілого прогнозів врожайності основних польових культурна рівні держави. Проте неможливість довгострокового передбачення агрометеорологічних умов розвитку культур завжди вноситиме свою похибку і якщо період завбачення складає декілька місяців, то уникнути цієї похибки вдається лише в роки, коли агрометеорологічні умови близькі до норми, яка закладається у модель.
- Published
- 2019
14. TO THE PROBLEM OF CROP FORECASTING
- Author
-
Сердюченко, Н.; ДНУ «УкрНДІПВТ ім. Л. Погорілого», Новохацький, М.; ДНУ «УкрНДІПВТ ім. Л. Погорілого», Бондаренко, О.; ДНУ «УкрНДІПВТ ім. Л. Погорілого», Гусар, І.; ДНУ «УкрНДІПВТ ім. Л. Погорілого», Сердюченко, Н.; ДНУ «УкрНДІПВТ ім. Л. Погорілого», Новохацький, М.; ДНУ «УкрНДІПВТ ім. Л. Погорілого», Бондаренко, О.; ДНУ «УкрНДІПВТ ім. Л. Погорілого», and Гусар, І.; ДНУ «УкрНДІПВТ ім. Л. Погорілого»
- Abstract
Long-term crop forecasts are indicative, but they are important in practice because they allow us to determine in advance the feasibility of sowing a crop, to solve the problems of optimizing the structure of acreage and a number of other organizational and strategic issues.The purpose of this work is presentation of the results of accuracy estimation for crop forecasting by major field crops performed by L. Pogorilyy UkrNDIPVT with varying earliness during the growing season.Methods. The estimation of the accuracy of the forecasts is made by calculating the relative error by standard methods of statistical analysis.The results of the accuracy assessment by crop forecasting performed in L. Pogorilyy UkrNDIPVT in 2015-2018 indicate satisfactory accuracy for country-level forecasts. Thus, as of the end of May, the prediction accuracy for wheat was 93-98 %, barley - 91-97 %, oats - 93-98 %, sunflower - 94-99 %, sugar beet - 90-97 %. The lowest accuracy was by corn yield forecasting, which varied within 80-92% in different years. The highest accuracy for late crops was observed in the July forecast and in May for the majority of cereals and legumes. For the general group of cereals and legumes, the average prediction error in January was 7.1 %, in May - 5.2 %, and in July, respectively, 5.7 %.Conclusions. The results presented of satisfactory accuracy of crop forecasting performed in L. Pogorilyy UkrNDIPVT at the state level. However, the impossibility of long-term prediction of agrometeorological conditions will always make its mistake, and if the anticipation period is several months, then this error can be avoided only in years when the agrometeorological conditions are close to the norm laid down in the model., Долгосрочные прогнозы урожайности являются ориентировочными, однако они имеют важное практическое значение, так как позволяют заблаговременно определить целесообразность сева той или иной культуры, решить задачи оптимизации структуры посевных площадей и ряда других организационных и стратегических вопросов.Целью работы является освещение результатов оценки точности выполненных в УкрНИИПИТ им. Л. Погорелого прогнозов урожайности основных полевых культур с разной заблаговременностью в течение вегетационного периода.Методы. Оценку точности прогнозов выполнено путем вычисления относительной погрешности по стандартными методами статистического анализа.Результаты оценки точности выполненных в УкрНИИПИТ им. Л. Погорелого прогнозов урожайности основных полевых культур в 2015-2018 годах свидетельствуют об удовлетворительной точности разработанных прогнозных оценок на уровне государства. Так, по состоянию на конец мая, точность прогнозирования для пшеницы составила 93-98%, ячменя - 91-97 %, овса - 93-98 %, подсолнечника - 94-99 %, сахарной свеклы - 90-97 %. Низкой оказалась точность прогнозирования урожайности кукурузы, которая в разные годы колебалась в пределах 80-92%. Наивысшая точность для поздних полевых культур отмечалась в июльском прогнозе, а для основной массы зерновых и зернобобовых культур - в майском. Для обобщенной группы зерновых и зернобобовых культур средняя ошибка прогнозирования в январе составила 7,1 %, в мае - 5,2 %, а в июле соответственно 5,7 %.Выводы. Представленные результаты свидетельствуют об удовлетворительной точности выполненных в УкрНИИПИТ им. Л. Погорелого прогнозов урожайности основных полевых культур на уровне государства. Однако невозможность долгосрочного предсказания агрометеорологических условий развития культур всегда будет вносить свою ошибку и если период предсказания составляет несколько месяцев, то избежать этой ошибки удается только в годы, когда агрометеорологические условия близки к норме, которая закладывается в модель., Довготермінові прогнози врожайності є орієнтовними, проте вони мають важливе практичне значення, оскільки дозволяють завчасно визначити доцільність сівби тієї чи іншої культури, вирішити задачі оптимізації структури посівних площ та ряду інших організаційних і стратегічних питань.Метою роботи є висвітлення результатів оцінки точності виконаних в УкрНДІПВТ ім. Л. Погорілого прогнозів врожайності основних польових культур з різною завчасністю впродовж вегетаційного періодуМетоди. Оцінку точності прогнозів виконано обчисленням відносної похибки за стандартними методами статистичного аналізу. Результати з оцінки точності виконаних в УкрНДІПВТ ім. Л. Погорілого прогнозів врожайності основних польових культур у 2015-2018 роках свідчать про задовільну точність розроблених прогнозів на рівні держави. Скажімо, станом на кінець травня, точність прогнозування для пшениці склала 93-98 %, ячменю – 91-97 %, вівса – 93-98 %, соняшника – 94-99 %, цукрових буряків – 90-97 %. Найнижчою виявилася точність прогнозування врожайності кукурудзи, що в різні роки коливалася в межах 80-92 %. Найвища точність пізніх польових культур відмічалася у липневому прогнозі, а для основної маси зернових і зернобобових культур – у травневому. Для узагальненої групи зернових та зернобобових культур середня похибка прогнозування у січні склала 7,1 %, у травні – 5,2 %, а у липні відповідно 5,7 %.Висновки. Представлені результати свідчать про задовільну точність виконаних в УкрНДІПВТ ім. Л. Погорілого прогнозів врожайності основних польових культурна рівні держави. Проте неможливість довгострокового передбачення агрометеорологічних умов розвитку культур завжди вноситиме свою похибку і якщо період завбачення складає декілька місяців, то уникнути цієї похибки вдається лише в роки, коли агрометеорологічні умови близькі до норми, яка закладається у модель.
- Published
- 2019
15. Mathematical models for predicting the yield of corn in two cropping systems
- Author
-
Sasseron, Juliano Cézar, Miranda, José Messias, Veiga, Patrícia de Oliveira Alvin, and Silva, Adriano Bortolotti da
- Subjects
zea mays ,crop forecast ,estimativa de produção ,spacing ,CIENCIAS AGRARIAS::AGRONOMIA [CNPQ] ,espaçamento - Abstract
Made available in DSpace on 2016-05-02T13:53:50Z (GMT). No. of bitstreams: 1 JulianoCesarSasseronDissertacao.pdf: 912677 bytes, checksum: f2d63baed22140f9170ad66e591200ff (MD5) Previous issue date: 2013-04-12 In order to evaluate the best crop estimation model (harvest of 10 linear meters, ear sampling, density of grains per ear) and the spacing effect between the planting line (0.50 and 0.80 m) on the productivity of maize grain (Zea mays L.) in a same environment, field experiments were conducted in the municipality of Carmo do Rio Claro, in the southern State of Minas Gerais, from August 14th, 2011 to March 6th, 2012. The outlining used was a randomized block banded with 3x2 factorial. We evaluated the estimated productivity in each model. There were differences between the estimation models, and the closest models to the actual production were obtained by harvesting 10 linear meters and by ear sampling. Also there was effect of spacing between lines, obtaining the maximum yield of grain with reduced spacing, i.e. 0.50 m. . Com objetivo de avaliar o melhor modelo de previsão de safra (colheita de 10 metros lineares, amostragem de espiga, densidade de grãos por espiga) e o efeito do espaçamento entre linhas de plantio (0,50 e 0,80 m), sobre a produtividade de grãos de milho (Zea mays L.) em um mesmo ambiente, foram conduzidos experimentos de campo no município de Carmo do Rio Claro, no sul do estado de Minas Gerais no período de 14 de agosto de 2011 a 06 de março de 2012. O delineamento utilizado foi em blocos casualisados em faixas com fatorial 3x2. Foi avaliada a produtividade estimada em cada modelo. Houve diferença entre os métodos de previsão, sendo que os mais próximos da produção real foram obtidos através da colheita de 10 metros lineares e pela amostragem de espiga. Também houve efeito do espaçamento entre linhas, obtendo o máximo rendimento de grãos com o espaçamento reduzido, ou seja, 0,50 m.
- Published
- 2013
16. Simulation of maize yield at different times of sowing in Arapiraca, Alagoas, the model AquaCrop
- Author
-
Anjos, Franklin Alves dos, Souza, José Leonaldo de, SOUZA, José Leonaldo de, Maia, Stoecio Malta Ferreira, Lyra, Guilherme Bastos, Moura Filho, Gilson, and MOURA FILHO, G.
- Subjects
Modeling ,CIENCIAS AGRARIAS::AGRONOMIA [CNPQ] ,Crop Forecast ,Modelagem ,AquaCrop ,Previsão de safra - Abstract
The maize (Zea mays L.), due to its importance in human and animal diet, is one of the most widespread crop in the world. In Brazil, it is cultivated in almost all regions, due to this, has been the focus of agrometeorological modeling for decades. The AquaCrop model was used in this work in order to simulate the total biomass and daily yield, and get the corn crop forecast for the region of Arapiraca, Alagoas. The model uses the canopy cover (CC), instead of leaf area index (LAI) as a basis for separate calculations of the plant transpiration and evaporation of soil water. The productivity is calculated as the product of biomass and harvest index (HI). The input data of model experiments were performed by Medeiros (2008), in Batingas town in the country of Arapiraca-AL. For four seasons of sowing, the results of soil water storage simulated by the model AquaCrop tended to be similar to those observed variation. However, for the third sowing date had observed the storage maximum value (171.66 mm) at 35 DAE, whereas the maximum simulated (115.0 mm) occurred at 24 DAE. For the final yield biomass (kg ha-1) the maximum and minimum values observed (simulated) ranged from 13.059 (11.861) and 9.873 (8.306) for 3rd and 4th season of planting, respectively. The simulated grain yield was between 4.406 and 2.069 kg ha-1 for the 3rd and 4th sowing time, underestimating by 2.0% (3rd SS) and overestimated by 5.1% (4th SS). The overestimation of the 4th season of sowing due to the adjustment of the depth of the root system at 0.75 m, where for the other seasons of sowing depth considered was 0.60 m (MEDEIROS et al., 2008). The AquaCrop model is a tool to predict corn yield of the AL Bandeirante variety. This procedure allows for adequate estimation of grain yield with 18 days prior to harvest in the Agreste region of Alagoas, providing end users of the model program storage, logistics and marketing of grain crop to be harvested. Fundação de Amparo a Pesquisa do Estado de Alagoas O milho (Zea mays L.), devido a sua importância na dieta alimentar humana e animal, é uma das culturas mais difundidas no mundo. No Brasil, é cultivado em praticamente todas as regiões, devido a isto, tem sido foco da modelagem agrometeorológica por décadas. O modelo AquaCrop foi utilizado nesse trabalho com o objetivo de simular a produção de biomassa total e diária, produtividade de grãos, bem como obter a previsão de safra do milho para região de Arapiraca, Alagoas. O modelo usa a cobertura do dossel (CD), em vez do índice de área foliar (IAF), como base para calcular separadamente a transpiração das plantas e a evaporação da água do solo. A produtividade é calculada como o produto da biomassa e do índice de colheita (IC). Os dados de entrada do modelo foram de experimento realizado por Medeiros (2008), no povoado Batingas no município de Arapiraca-AL. Para as quatro épocas de semeio, os resultados do armazenamento de água no solo simulados pelo modelo AquaCrop apresentaram tendência de variação similar aos valores observados. Porém, para terceira época de semeadura o armazenamento observado apresentou valor máximo (171,66 mm) aos 35 DAE, enquanto que o valor máximo simulado (115,0 mm) ocorreu aos 24 DAE. Para a produção de biomassa final (kg ha-1) os valores máximos e mínimos observados (simulados) variaram entre 13.059 (11.861) e 9.873 (8.306) para 3ª e 4ª época de semeadura, respectivamente. A produtividade de grãos simulada foi entre 4.406 e 2.069 kg ha-1, para a 3ª e 4ª época de semeadura, subestimando em 2,0% (3ª ES) e superestimando em 5,1 % (4ª ES). A superestimativa da 4ª época de semeadura deve-se ao ajustamento da profundidade do sistema radicular em 0,75 m, em que para as demais épocas de semeadura a profundidade considerada foi 0,60 m (MEDEIROS et al., 2008). O modelo AquaCrop é uma ferramenta para previsão da produtividade de milho da variedade AL Bandeirante. Esse procedimento permite obter adequada estimativa do rendimento de grãos com 18 dias de antecedência à colheita na região do Agreste Alagoano, disponibilizando aos usuários finais do modelo programar o armazenamento, logística e comercialização da safra de grãos a ser colhida.
- Published
- 2011
17. Modelagem agrometeorológica do rendimento de arroz irrigado no Rio Grande do Sul
- Author
-
Klering, Eliana Veleda, Fontana, Denise Cybis, Berlato, Moacir Antonio, and Cargnelutti Filho, Alberto
- Subjects
crop forecast ,radiação solar ,solar radiation ,Oryza sativa ,temperatura mínima ,previsão de safras ,minimum temperature - Abstract
O objetivo deste trabalho foi elaborar e testar modelos para a estimativa de rendimento de arroz irrigado, no Estado do Rio Grande do Sul. O estudo foi realizado com dados meteorológicos de temperatura mínima do ar, radiação solar global e dados de estatísticas agrícolas de rendimento de arroz irrigado, das seis regiões orizícolas do Rio Grande do Sul, referentes às safras 1982/1983 até 2005/2006. Foram feitas análises de tendência tecnológica dos rendimentos, e foram estabelecidos os indicadores agrometeorológicos para o ajuste de modelos de estimativa de rendimento de arroz irrigado, para o Rio Grande do Sul. Existe tendência tecnológica de aumento nos rendimentos de arroz irrigado no Estado. As variáveis meteorológicas avaliadas - dias com temperatura mínima do ar inferior a 15°C e radiação solar global - podem ser usadas como indicadores do rendimento de arroz irrigado. Os modelos agrometeorológicos elaborados para as seis regiões orizícolas e para o Estado do Rio Grande do Sul apresentam características de precisão, fácil implementação e baixo custo e podem, portanto, ser introduzidos ao programa nacional de previsão de safras. The objective of this work was to elaborate and test models to estimate the irrigated rice yield, in Rio Grande do Sul State, Brazil. The study was carried out using meteorological data of minimum air temperature, global solar radiation and data of agricultural statistics about the irrigated rice yield, involving six rice production regions of Rio Grande do Sul, relative to crop years from 1982/1983 to 2005/2006. Analyses of yield technological tendencies were performed, and agrometeorological indicators for model adjustments of irrigated rice yields were established. There is a technological tendency of increasing the irrigated rice yield in the State. The analyzed meteorological variables - global solar radiation and days with minimum air temperature below or equal to 15°C - can be used as indicators of the irrigated rice yield. The adjusted agrometeorological models, elaborated for the six rice production regions and for the Rio Grande do Sul State, show characteristics of accuracy, easy implementation and low cost, which make them able to be introduced in the national program of crop forecast.
- Published
- 2008
18. Agrometeorological modelling of irrigated rice yield in Rio Grande do Sul, Brazil
- Author
-
Alberto Cargnelutti Filho, Eliana Veleda Klering, Denise Cybis Fontana, and Moacir Antonio Berlato
- Subjects
Rio Grande do Sul ,Arroz irrigado ,Minimum temperature ,radiação solar ,Rio Grande do Sul [Radiação solar] ,Solar radiation ,Animal Science and Zoology ,Meteorologia ,Oryza sativa ,temperatura mínima ,Agronomy and Crop Science ,Crop forecast ,previsão de safras - Abstract
O objetivo deste trabalho foi elaborar e testar modelos para a estimativa de rendimento de arroz irrigado, no Estado do Rio Grande do Sul. O estudo foi realizado com dados meteorológicos de temperatura mínima do ar, radiação solar global e dados de estatísticas agrícolas de rendimento de arroz irrigado, das seis regiões orizícolas do Rio Grande do Sul, referentes às safras 1982/1983 até 2005/2006. Foram feitas análises de tendência tecnológica dos rendimentos, e foram estabelecidos os indicadores agrometeorológicos para o ajuste de modelos de estimativa de rendimento de arroz irrigado, para o Rio Grande do Sul. Existe tendência tecnológica de aumento nos rendimentos de arroz irrigado no Estado. As variáveis meteorológicas avaliadas – dias com temperatura mínima do ar inferior a 15°C e radiação solar global – podem ser usadas como indicadores do rendimento de arroz irrigado. Os modelos agrometeorológicos elaborados para as seis regiões orizícolas e para o Estado do Rio Grande do Sul apresentam características de precisão, fácil implementação e baixo custo e podem, portanto, ser introduzidos ao programa nacional de previsão de safras. The objective of this work was to elaborate and test models to estimate the irrigated rice yield, in Rio Grande do Sul State, Brazil. The study was carried out using meteorological data of minimum air temperature, global solar radiation and data of agricultural statistics about the irrigated rice yield, involving six rice production regions of Rio Grande do Sul, relative to crop years from 1982/1983 to 2005/2006. Analyses of yield technological tendencies were performed, and agrometeorological indicators for model adjustments of irrigated rice yields were established. There is a technological tendency of increasing the irrigated rice yield in the State. The analyzed meteorological variables – global solar radiation and days with minimum air temperature below or equal to 15°C – can be used as indicators of the irrigated rice yield. The adjusted agrometeorological models, elaborated for the six rice production regions and for the Rio Grande do Sul State, show characteristics of accuracy, easy implementation and low cost, which make them able to be introduced in the national program of crop forecast.
- Published
- 2008
19. SEGURO RURAL NO BRASIL: EXPERIÊNCIAS E PROPOSIÇÕES PARA UM MODELO INTEGRADO DE GESTÃO DO RISCO AGRÍCOLA (MIGRA)
- Author
-
Silveira, Pedro Abel Junior, Buainain, Antonio Marcio, Madi, Maria Alejandra Caporale, Vieira, Adriana Carvalho Pinto, Souza, Raquel Pereira, Ojima, Andrea Leda Ramos De Oliveira, and Veira, Jose Maria Ferreira Jardim Da
- Subjects
agricultural risk ,crop forecast ,Risk and Uncertainty ,renda agrícola ,risco agrícola ,previsão de safras ,agricultural income - Abstract
O seguro rural apresenta-se com um instrumento para o desenvolvimento do setor agrícola, protegendo o produtor rural dos efeitos adversos de eventos ambientais e do mercado tornando-se indispensável à estabilidade da renda, à geração de emprego e ao desenvolvimento tecnológico. Nesse sentido, sugere-se a consideração de um conjunto de indicadores que podem influir positivamente no processo de mitigação dos riscos inerentes ao seguro rural agrícola. Dessa forma, propõe-se o desenvolvimento de um Modelo Integrado de Gestão do Risco Agrícola para o Brasil (MIGRA) para o Brasil, um país que, além da heterogeneidade setorial, tem sua economia fortemente calcada no setor agrícola, o qual também é bastante heterogêneo quanto à produção e a renda agrícola. Esse modelo deve enfatizar a mitigação do risco no setor com base em um sistema de informação disponível para todos os segmentos do setor agrícola. A ênfase do MIGRA deve ser na redução da informação imperfeita e da assimetria de informação. Ainda, o MIGRA deverá considerar a diversidade dos sistemas de produção existentes no território nacional, notadamente quanto ao tamanho (pequeno e grande produtor segundo o capital) e o modo de exploração (agricultura patronal, empresarial ou não, e agricultura familiar).----------------------------------------------Highly instrumental in the development of the agricultural sector insofar as it protects farmers from adverse weather and market conditions, agricultural insurance also plays a crucial role not only in income and employment generation, but also in technological advancements. In this way, suggests the consideration of a group of indicators to agro-insurance. Thus this work proposes the development of an Integrated Agricultural Risk Management Model for Brazil (MIGRA), a country which, in addition to its sectorial heterogeneity, has its economy strongly based on an also heterogeneous the agricultural sector, concerning production types and agricultural income levels. Such model should emphasize risk mitigation in the sector through an information system available to all segments of the agricultural sector. The major focus of the MIGRA must be on the reduction of imperfect information and information asymmetry. Also, the MIGRA shall take into consideration the diversity of production systems extant in the national territory, notably with regards to the size (small and large producers according to capital intensity) and means of exploration (employer agriculture, entrepreneurial or not, and family agriculture).
- Published
- 2008
- Full Text
- View/download PDF
20. Um modelo integrado de gestão do risco agrícola para o Brasil
- Author
-
VIEIRA JUNIOR, P. A., BUAINAIN, A. M., MADI, M. A. C., VIEIRA, A. C. P., DOURADO NETO, D., CHANG, C. S., ASSAD, E. D., PEDRO ABEL VIEIRA JUNIOR, SNTEEN Campinas, ANTÔNIO MÁRCIO BUAINAIN, IE/UNICAMP, MARIA ALEJANDRA CAPORALE MADI, IE/Unicamp, ADRIANA CARVALHO PINTO VIEIRA, IE/Unicamp, DURVAL DOURADO NETO, Esalq/USP, CHOU SIN CHANG, CPTEC/INPE, and EDUARDO DELGADO ASSAD, CNPTIA.
- Subjects
Risk ,Agricultural income ,Gestão do risco agrícola ,Seguro Rural ,Crop insurance ,Crop forecast ,Agricultural risk - Abstract
O seguro agrícola é um dos mais importantes instrumentos para o desenvolvimento do setor agrícola, pois, ao permitir proteção ao produtor rural contra efeitos adversos de eventos ambientais e do mercado torna-se indispensável à estabilidade da renda, à geração de emprego e ao desenvolvimento tecnológico. No setor agrícola, além do risco de mercado, existem diversas outras fontes que a tornam uma atividade eminentemente arriscada. A principal delas se refere ao fato de que a atividade agrícola é altamente dependente de condições ambientais de difícil controle pelo homem, de modo que as variáveis climáticas e sua interação com fatores bióticos podem influenciar sobremaneira o resultado final da safra. A realidade histórica mostra que o seguro agrícola permite ao produtor rural manter sua renda na ocorrência de um sinistro, o que é fundamental para o setor agrícola e a sociedade em geral. Made available in DSpace on 2012-02-01T00:01:59Z (GMT). No. of bitstreams: 1 RBRS8.pdf: 977659 bytes, checksum: 3c66c0c5192f10e9c5e933c9be3fe3c6 (MD5) Previous issue date: 2012-01-31
- Published
- 2008
21. Integration of spectral and meteorologgical data through neural networks for surgarcane yield estimate
- Author
-
Liane de Souza Weber, Rocha, Jansle Vieira, 1961, Rudorff, Bernardo Friedrich Theodor, Deppe, Flavio Andre Cecchini, Von Zuben, Fernando José, Lamparelli, Rubens Augusto Camargo, Universidade Estadual de Campinas. Faculdade de Engenharia Agrícola, Programa de Pós-Graduação em Engenharia Agrícola, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Meteorologia agricola ,Vegetation index ,Agricultura - Previsão ,Produtividade agrícola ,Agrometeorological model ,Crop forecast ,Ensemble - Abstract
Orientador: Jansle Vieira Rocha Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola Resumo: O presente trabalho descreve um estudo sobre estimativa de safras cujo principal objetivo foi criar uma metodologia de integração de dados de produção, dados espectrais e indicadores meteorológicos por meio de redes neurais artificiais, estabelecendo correlações entre índices de vegetação e de produtividade, com o propósito de estimar a produtividade de cana-de-açúcar. O estudo foi dividido em duas etapas: a primeira correspondeu à obtenção e organização dos dados em um banco de dados com padrões de entrada/saída; a segunda, à implementação e ajuste das redes neurais, por meio de ensembles. O estudo foi realizado em unidades amostrais de produção de uma usina sucroalcooleira no município de Araras-SP. A primeira etapa consistiu na obtenção dos coeficientes de produtividade (kp), por meio da inversão do modelo agrometeorológico de Doorenbos e Kassam (1979), a partir da determinação do balanço hídrico. O resultado deste procedimento mostrou a sensibilidade do coeficiente à variabilidade da produtividade nos talhões. Os dados espectrais das imagens Landsat 7 ¿ ETM+ foram obtidos de correlações descritas na literatura estabelecidas entre o Índice de Vegetação Greenness (GVI), a banda do infravermelho próximo (B4) e a produtividade da cana-de-açúcar. A estratégia para treinamento dos ensembles foi baseada no aprendizado supervisionado aplicado a uma arquitetura Multilayer Perceptron (MLP), com uma camada escondida, método de aprendizado de 2ª ordem e feedforward. Na etapa de treinamento e validação, as redes neurais tiveram como variáveis de entrada os valores de kp, GVI e B4, e como variável de saída a produtividade, que definiram os padrões de entrada/saída. A fase de teste consistiu em implementar a metodologia em um grupo de padrões de entrada não utilizados nos treinamentos. Os resultados mostraram valores de EQM entre 0,03 e 0,51 ton/ha, enquanto que a estimativa da usina errou em média 9,93 ton/ha, o que garantiu o correto ajuste da rede neural quanto à topologia, ao número de iterações e aos algoritmos de aprendizagem. Esta etapa mostrou a capacidade de generalização da rede neural, já que os treinamentos foram realizados a partir de unidades amostrais. O estudo ratificou a aplicação desta metodologia na determinação da estimativa de produtividade de cana-deaçúcar, empregando-a como técnica complementar aos atuais métodos de estimativa agrícola, sugerindo a ampliação da escala de aplicação para o ambiente de produção da usina Abstract: The present thesis describes a study on crop forecast. Its main purpose was to create a methodology for integrating production, spectral and meteorological data indicators through artificial neural networks, establishing correlations between vegetation index and yield coefficients, aiming at the estimate of sugarcane yield. The study was divided in two parts: the first corresponded to obtaining and organizing data in a database with input/output default; the second corresponded to the implementation and adjustment of the neural network. The study was carried out in sample production units (fields) of a sugarmill agricultural area located in the municipality of Araras-SP, Brazil. The first part consisted in obtaining yield coefficients (kp) through the inversion of the Doorenbos-Kassam (1979) agrometeorological model, based on the determination of the water balance. The result of this procedure showed the coefficient¿s sensitivity to the variability of yield within the sample fields. The spectral data of the Landsat 7 ¿ ETM+ images were obtained from correlations, available in scientific literature, between the Greenness Vegetation Index (GVI), near infrared band, and sugarcane yield. The strategy for training the neural network was based on supervised learning applied to a Multilayer Perceptron (MLP) architecture, with a hidden layer, second order learning method and feedforward. For the training and validation stage, the neural network had as input variables kp, GVI and B4 values, and as output variable the yield, both obtained in the input/output database. The test stage consisted of implementing the methodology in a set of input patterns not used for the trainings. The results showed Mean Square Error (MSE) values between 0,03 and 0,51 ton/ha, while the average error of the sugarmill estimates were 9,93 ton/ha, which showed the correct adjustment of the network concerning topology, number of iterations and learning algorithms. This showed the generalization capacity of the neural network once the trainings were carried out based on sample units. The study ratified the application of this methodology for determining sugarcane yield estimate, employing it as a complementary technique to the present methods of agricultural forecast, suggesting the increase of the application scale to a broader area of the sugarmill production environment Doutorado Planejamento e Desenvolvimento Rural Sustentável Doutor em Engenharia Agrícola
- Published
- 2005
22. Spectral and temporal behavior analysis of coffee crop in Landsat images
- Author
-
Bernardo Friedrich Theodor Rudorff, Maurício Alves Moreira, and Marcos Adami
- Subjects
remote sensing ,sensoriamento remoto ,crop forecast ,previsão de safra ,Animal Science and Zoology ,Coffea arabica ,geoprocessing ,Agronomy and Crop Science ,geoprocessamento - Abstract
A definição da resposta espectral da cultura do café é uma das etapas na identificação de lavouras cafeeiras em imagens de satélites de sensoriamento remoto, para fins de mapeamento e estimativa de área plantada. O objetivo deste trabalho foi avaliar o potencial das imagens adquiridas pelos satélites da série Landsat, no mapeamento da cultura do café para a previsão de safras. Foi feita uma análise temporal do comportamento espectral de lavouras de café-formação e café-produção por meio de imagens livres de nuvens adquiridas nos anos de 1999 e 2001. Também foi analisado o comportamento espectral das classes pastagem e mata, que compõem os alvos de maior ocupação na área de estudo. As imagens do período seco foram mais eficientes no mapeamento de lavouras de café-formação e café-produção. As imagens da banda 4 dos dois sensores apresentaram melhor diferenciação espectral entre café e os demais alvos da cena. A reflectância do café-produção apresentou grande variabilidade entre lavouras, que pode ser atribuída à idade, espaçamento de plantas, cultivar, indicando a necessidade de trabalho em campo para a correta identificação das lavouras de café nas imagens Landsat. The definition of the spectral response of coffee crop is one of the steps to identify coffee fields in remote sensing images in order to map and estimate planted area. The objective of this work was to analyze the potential of the images acquired by the Landsat series satellites, for coffee crop mapping and forecast. A temporal analysis of the spectral behavior of coffee crop fields under development and under active production was performed through cloud free images acquired in the years of 1999 and 2001. The spectral behavior of pasture and forest was also analyzed due to their relevance in the study area. The results showed that images acquired during the dry season were more efficient to map coffee crop at early development and under production. Band 4 (near infrared) of both sensors (TM and ETM+) presented best performance for spectral differentiation between coffee crop and other scene targets. The analysis of the reflectance values for active producing coffee crop showed a high spectral variability which may be attributed to age, plants spacing, cultivar, indicating a need for field work for the identification of coffee crop in Landsat scenes.
- Published
- 2004
23. Relationships between production of 'Westin' sweet orange trees and rainfall at Botucatu, São Paulo State, Brazil
- Author
-
Gislene Pessim, Ary Apparecido Salibe, Antonio Tubelis, Universidade de Brasília (UnB), and Universidade Estadual Paulista (Unesp)
- Subjects
irrigação suplementar ,Previsão de Safra ,sweet orange tree ,suplemental irrigation ,Irrigation control ,Orange (colour) ,Biology ,laranjeira doce ,Citrus limonia ,Horticulture ,Suplemental irrigation ,previsão de safra ,crop forecast ,climate ,clima ,Animal Science and Zoology ,Orchard ,Rootstock ,Agronomy and Crop Science ,Citrus × sinensis - Abstract
Submitted by Guilherme Lemeszenski (guilherme@nead.unesp.br) on 2013-08-22T18:46:32Z No. of bitstreams: 1 S0100-204X1999000500007.pdf: 100352 bytes, checksum: 586e47f90954b0b8e764ac356576c7fa (MD5) Made available in DSpace on 2013-08-22T18:46:32Z (GMT). No. of bitstreams: 1 S0100-204X1999000500007.pdf: 100352 bytes, checksum: 586e47f90954b0b8e764ac356576c7fa (MD5) Previous issue date: 1999-05-01 Made available in DSpace on 2013-09-30T17:44:04Z (GMT). No. of bitstreams: 2 S0100-204X1999000500007.pdf: 100352 bytes, checksum: 586e47f90954b0b8e764ac356576c7fa (MD5) S0100-204X1999000500007.pdf.txt: 34681 bytes, checksum: fc1cabb518e31a17b8efb75b387e5a4d (MD5) Previous issue date: 1999-05-01 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T13:19:40Z No. of bitstreams: 2 S0100-204X1999000500007.pdf: 100352 bytes, checksum: 586e47f90954b0b8e764ac356576c7fa (MD5) S0100-204X1999000500007.pdf.txt: 34681 bytes, checksum: fc1cabb518e31a17b8efb75b387e5a4d (MD5) Made available in DSpace on 2014-05-20T13:19:40Z (GMT). No. of bitstreams: 2 S0100-204X1999000500007.pdf: 100352 bytes, checksum: 586e47f90954b0b8e764ac356576c7fa (MD5) S0100-204X1999000500007.pdf.txt: 34681 bytes, checksum: fc1cabb518e31a17b8efb75b387e5a4d (MD5) Previous issue date: 1999-05-01 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) O trabalho estuda a correlação entre a produção de um pomar de laranja, plantado no altiplano de Botucatu, SP, com as precipitações que ocorrem dezesseis meses antes da colheita e a idade do pomar. As plantas eram de laranjeira doce (Citrus sinensis (L.) Osbeck), variedade Westin, de clone nucelar, enxertadas em porta-enxerto de limoeiro 'Cravo' (Citrus limonia Osbeck), plantadas em solo Terra Roxa Estruturada, a 810 m de altitude e em região de clima do tipo Cwb. A cultura foi conduzida de modo convencional e sem irrigação. Coletaram-se dados de produção, nos períodos entre o 3º e o 17º e entre o 21º e o 27º ano de idade do pomar, para análise do comportamento da produção e o efeito da idade e das precipitações na produção. Calcularam-se equações lineares múltiplas de regressão, entre a produção, idade do pomar e as precipitações mensais, nos períodos de pomar juvenil, adulto, senescente e adulto-senescente. A produção correlacionou-se com a idade e com valores mensais de precipitação. Os pequenos desvios observados entre os valores medidos e estimados de produção revelaram que as equações de regressão poderiam ser usadas na previsão de safra ou no controle de irrigação suplementar do pomar. This paper deals with the existence of correlation between the production of a sweet orange orchard, planted at the plateau of Botucatu, São Paulo State, Brazil, with the orchard age and the rainfall that occurred in the sixteen months before the picking season. The plants were of sweet orange trees (Citrus sinensis (L.) Osbeck), variety Westin, budded on 'Rangpur' lime (Citrus limonia Osbeck) rootstock, grown on Terra Roxa Estruturada soil, at an altitude of 810 m above sea level and in a region with Cwb climatic type. The orchard was conducted by conventional ways and no irrigation was applied. The production of the orchard was recorded, during the period from the 3rd until the 17th and from the 21st until the 27th year old, to analyse the behaviour of the production and the effect of the orchard age and of the rainfalls on the production of the plants. Multi linear regression equations among the production, age of the orchard and monthly rainfalls were calculated for the juvenile, adult, senescent and adult-senescent phases of the period of orchard production. The production was found to be correlated with the orchard age and with the monthly rainfalls. The small deviations between the measured and calculated values of production showed that the regression equations could be used to crop forecast or to suplemental irrigation control of the orchard. UnB Faculdade de Agronomia e Medicina Veterinária UNESP Faculdade de Ciências Agronômicas Dep. de Horticultura UNESP UNESP Faculdade de Ciências Agronômicas Dep. de Horticultura UNESP
- Published
- 1999
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.