1. Mapping of STB/HAP1 Immunoreactivity in the Mouse Brainstem and its Relationships with Choline Acetyltransferase, with Special Emphasis on Cranial Nerve Motor and Preganglionic Autonomic Nuclei.
- Author
-
Islam MN, Miyasato E, Jahan MR, Tarif AMM, Nozaki K, Masumoto KH, Yanai A, and Shinoda K
- Subjects
- Animals, Cranial Nerves metabolism, Medulla Oblongata, Mice, Motor Neurons metabolism, Nerve Tissue Proteins metabolism, Brain Stem metabolism, Choline O-Acetyltransferase metabolism
- Abstract
Huntingtin-associated protein 1 (HAP1) is a core component of stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for various neurodegenerative diseases. Brain regions rich in STB/HAP1 immunoreactivity are usually spared from cell death, whereas brain regions with negligible STB/HAP1 immunoreactivity are the major neurodegenerative targets. Recently, we have shown that STB/HAP1 is abundantly expressed in the spinal preganglionic sympathetic/parasympathetic neurons but absent in the motoneurons of spinal cord, indicating that spinal motoneurons are more vulnerable to neurodegenerative diseases. In light of STB/HAP1 neuroprotective effects, it is also essential to clarify the distribution of STB/HAP1 in another major neurodegenerative target, the brainstem. Here, we examined the expression and detailed immunohistochemical distribution of STB/HAP1 and its relationships with choline acetyltransferase (ChAT) in the midbrain, pons, and medulla oblongata of adult mice. Abundant STB/HAP1 immunoreactive neurons were disseminated in the periaqueductal gray, Edinger-Westphal nucleus, raphe nuclei, locus coeruleus, pedunculopontine tegmental nucleus, superior/inferior salivatory nucleus, and dorsal motor nucleus of vagus. Double-label immunohistochemistry of HAP1 with ChAT (or with urocortin-1 for Edinger-Westphal nucleus centrally projecting population) confirmed that STB/HAP1 was highly present in parasympathetic preganglionic neurons but utterly absent in cranial nerve motor nuclei throughout the brainstem. These results suggest that due to deficient putative STB/HAP1-protectivity, cranial nerve motor nuclei might be more vulnerable to certain neurodegenerative stresses than STB/HAP1-expressing brainstem nuclei, including preganglionic parasympathetic nuclei. Our current results also lay a basic foundation for future studies that seek to clarify the physiological/pathological roles of STB/HAP1 in the brainstem., (Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF