7 results on '"Coward AC"'
Search Results
2. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability
- Author
-
Patrick Heimbach, Aurore Voldoire, Anatoly Gusev, Alicia Karspeck, Eric P. Chassignet, Rainer Bleck, Dmitry Sidorenko, Alexandra Bozec, David Salas y Mélia, Anastasia Romanou, Who M. Kim, Gael Forget, Daohua Bi, Vittorio Canuto, Simon J. Marsland, Gokhan Danabasoglu, Simona Masina, Hiroyuki Tsujino, Stephen M. Griffies, Sophie Valcke, Jianhua Lu, Mats Bentsen, Claus W. Böning, Pier Giuseppe Fogli, Gurvan Madec, Anthony Leboissetier, Mehmet Ilicak, Anna Pirani, Thomas Jung, Igor Yashayaev, Andrew C. Coward, Maxwell Kelley, Shan Sun, Yosuke Fujii, A. J. George Nurser, Petteri Uotila, Sergey Danilov, Elodie Fernandez, Steve G. Yeager, Christophe Cassou, Nikolay Diansky, A. M. Howard, William G. Large, Helge Drange, Anne-Marie Tréguier, Bonita L. Samuels, Erik Behrens, Qiang Wang, Arne Biastoch, Riccardo Farneti, Markus Scheinert, Antonio Navarra, National Center for Atmospheric Research [Boulder] (NCAR), Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Uni Research Climate, Uni Research Ltd, Centre for Australian Weather and Climate Research (CAWCR), NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC), Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University [Tallahassee] (FSU), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), National Oceanography Centre (NOC), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Institute of Numerical Mathematics [Moscou] (INM-RAS), Russian Academy of Sciences [Moscow] (RAS), University of Bergen (UiB), Abdus Salam International Centre for Theoretical Physics [Trieste] (ICTP), Centro Euro-Mediterraneo per i Cambiamenti Climatici [Bologna] (CMCC), Massachusetts Institute of Technology (MIT), Meteorological Research Institute [Tsukuba] (MRI), Japan Meteorological Agency (JMA), NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), Pacific Northwest National Laboratory (PNNL), Nucleus for European Modeling of the Ocean (NEMO R&D ), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Matematica e Informatica [Perugia] (DMI), Università degli Studi di Perugia = University of Perugia (UNIPG), National Oceanography Centre [Southampton] (NOC), University of Southampton, International CLIVAR, Princeton University, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Biomedical Research Imaging Center [North Carolina] (BRIC), University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC)-University of North Carolina System (UNC), Danabasoglu G, Yeager SG, Kim WM, Behrens E, Bentsen M, Bi DH, Biastoch A, Bleck R, Boning C, Bozec A, Canuto VM, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Ilicak M, Jung T, Karspeck AR, Kelley M, Large WG, Leboissetier A, Lu JH, Madec G, Marsland SJ, Masina S, Navarra A, Nurser AJG, Pirani A, Romanou A, Melia DSY, Samuels BL, Scheinert M, Sidorenko D, Sun S, Treguier AM, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q, Yashayaev I, CERFACS [Toulouse], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Università degli Studi di Perugia (UNIPG), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), and CERFACS
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Mixed layer ,Phase (waves) ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Oceanography ,01 natural sciences ,Ocean model comparisons ,Computer Science (miscellaneous) ,14. Life underwater ,Atmospheric forcing ,Variability in the North Atlantic ,0105 earth and related environmental sciences ,Inter-annual to decadal variability and mechanisms ,Atlantic meridional overturning circulation variability ,010505 oceanography ,Global ocean - sea-ice modelling ,Geotechnical Engineering and Engineering Geology ,Deep water ,Ocean dynamics ,Marine Sciences ,Sea surface temperature ,13. Climate action ,North Atlantic oscillation ,Climatology ,Global ocean – sea-ice modelling, Ocean model comparisons, Atmospheric forcing ,Hydrography ,Global ocean – sea-ice modelling ,Geology - Abstract
Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean - sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid-to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958-2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid-to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their temporal representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which include the influence of ocean dynamics from nature superimposed onto anthropogenic effects. Despite these general agreements, there are many differences among the model solutions, particularly in the spatial structures of variability patterns. For example, the location of the maximum AMOC variability differs among the models between Northern and Southern Hemispheres. (C) 2015 Elsevier Ltd. All rights reserved.
- Published
- 2016
- Full Text
- View/download PDF
3. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states
- Author
-
Hiroyuki Tsujino, Jianhua Lu, Anatoly Gusev, David A. Bailey, Simon J. Marsland, Yosuke Fujii, Elodie Fernandez, Nikolay Diansky, Claus W. Böning, Gael Forget, Helge Drange, Anne-Marie Tréguier, Andrew C. Coward, Gokhan Danabasoglu, Mats Bentsen, Eric P. Chassignet, William G. Large, Sergey Danilov, A. J. George Nurser, Christophe Cassou, Riccardo Farneti, Bonita L. Samuels, Patrick Heimbach, David Salas y Mélia, Erik Behrens, Stephen M. Griffies, Gurvan Madec, Qiang Wang, Anthony Leboissetier, Arne Biastoch, Maxwell Kelley, Vittorio Canuto, Markus Scheinert, Aurore Voldoire, A. M. Howard, Steve G. Yeager, Thomas Jung, Petteri Uotila, Simona Masina, Pier Giuseppe Fogli, Daohua Bi, Sophie Valcke, Dmitry Sidorenko, Alexandra Bozec, Antonio Navarra, Anna Pirani, National Center for Atmospheric Research [Boulder] (NCAR), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Uni Research Climate, Uni Research Ltd, Centre for Australian Weather and Climate Research (CAWCR), Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University [Tallahassee] (FSU), NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), CERFACS, National Oceanography Centre (NOC), Massachusetts Institute of Technology (MIT), NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), Nucleus for European Modeling of the Ocean (NEMO R&D ), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna (INGV), Istituto Nazionale di Geofisica e Vulcanologia, International CLIVAR, Princeton University, Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M, Bi D, Biastoch A, Boning C, Bozec A, Canuto VM, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Jung T, Kelley M, Large WG, Leboissetier A, Lu J, Madec G, Marsland SJ, Masina S, Navarra A, Nurser AJG, Pirani A, Melia DSY, Samuels BL, Scheinert M, Sidorenko D, Treguier AM, Tsujino H, Uotila P, Valcke S, Voldoire A, and Wangi Q
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Mixed layer ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[SDE.MCG]Environmental Sciences/Global Changes ,Atlantic meridional overturning circulation ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Oceanography ,01 natural sciences ,Ocean model comparisons ,Computer Science (miscellaneous) ,Sea ice ,Potential temperature ,Hindcast ,14. Life underwater ,Atmospheric forcing ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,010505 oceanography ,Global ocean–sea-ice modelling, Ocean model comparisons, Atmospheric forcing, Experimental design, Atlantic meridional overturning circulation ,North Atlantic simulations ,Albedo ,Geotechnical Engineering and Engineering Geology ,Snow ,Experimental design ,Sea surface temperature ,13. Climate action ,Meridional flow ,Climatology ,Environmental science ,Global ocean-sea-ice modelling - Abstract
Simulation characteristics from eighteen global ocean-sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Oceanice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort. (C) 2013 Elsevier Ltd. All rights reserved.
- Published
- 2014
- Full Text
- View/download PDF
4. A Revised Perspective on the Evolution of Troponin I and Troponin T Gene Families in Vertebrates.
- Author
-
Joyce W, Ripley DM, Gillis T, Black AC, Shiels HA, and Hoffmann FG
- Subjects
- Animals, Phylogeny, Evolution, Molecular, Troponin I classification, Troponin I genetics, Troponin T classification, Troponin T genetics, Vertebrates genetics
- Abstract
The troponin (Tn) complex, responsible for the Ca2+ activation of striated muscle, is composed of three interacting protein subunits: TnC, TnI, and TnT, encoded by TNNC, TNNI, and TNNT genes. TNNI and TNNT are sister gene families, and in mammals the three TNNI paralogs (TNNI1, TNNI2, TNNI3), which encode proteins with tissue-specific expression, are each in close genomic proximity with one of the three TNNT paralogs (TNNT2, TNNT3, TNNT1, respectively). It has been widely presumed that all vertebrates broadly possess genes of these same three classes, although earlier work has overlooked jawless fishes (cyclostomes) and cartilaginous fishes (chimeras, rays, and sharks), which are distantly related to other jawed vertebrates. With a new phylogenetic and synteny analysis of a diverse array of vertebrates including these taxonomic groups, we define five distinct TNNI classes (TNNI1-5), with TNNI4 and TNNI5 being only present in non-amniote vertebrates and typically found in tandem, and four classes of TNNT (TNNT1-4). These genes are located in four genomic loci that were generated by the 2R whole-genome duplications. TNNI3, encoding "cardiac TnI" in tetrapods, was independently lost in cartilaginous and ray-finned fishes. Instead, ray-finned fishes predominantly express TNNI1 in the heart. TNNI5 is highly expressed in shark hearts and contains a N-terminal extension similar to that of TNNI3 found in tetrapod hearts. Given that TNNI3 and TNNI5 are distantly related, this supports the hypothesis that the N-terminal extension may be an ancestral feature of vertebrate TNNI and not an innovation unique to TNNI3, as has been commonly believed., (© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
5. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.
- Author
-
Popova E, Yool A, Byfield V, Cochrane K, Coward AC, Salim SS, Gasalla MA, Henson SA, Hobday AJ, Pecl GT, Sauer WH, and Roberts MJ
- Subjects
- Adaptation, Physiological, Australia, Brazil, Carbon Dioxide analysis, India, Madagascar, Models, Theoretical, Oceans and Seas, South Africa, Climate Change, Ecosystem, Seawater chemistry, Temperature, Water Movements
- Abstract
Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas., (© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
6. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments.
- Author
-
Aksenov Y, Karcher M, Proshutinsky A, Gerdes R, de Cuevas B, Golubeva E, Kauker F, Nguyen AT, Platov GA, Wadley M, Watanabe E, Coward AC, and Nurser AJ
- Abstract
Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.
- Published
- 2016
- Full Text
- View/download PDF
7. Earth's energy imbalance since 1960 in observations and CMIP5 models.
- Author
-
Smith DM, Allan RP, Coward AC, Eade R, Hyder P, Liu C, Loeb NG, Palmer MD, Roberts CD, and Scaife AA
- Abstract
Observational analyses of running 5 year ocean heat content trends ( H
t ) and net downward top of atmosphere radiation ( N ) are significantly correlated ( r ∼ 0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). We find an observation-based reduction in N of - 0.31 ± 0.21 W m-2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. While present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancelation of errors in outgoing longwave and absorbed solar radiation., Key Points: Observed maximum in ocean heat content trend in early 2000s is likely spuriousNet incoming radiation ( N ) reduced by 0.31 ± 0.21 W m-2 during the warming pausePresent-day estimates of N may contain opposing errors in radiative components.- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.