122 results on '"Cournac, Axel"'
Search Results
2. Sister chromatid cohesion halts DNA loop expansion
- Author
-
Bastié, Nathalie, primary, Chapard, Christophe, additional, Cournac, Axel, additional, Nejmi, Sanae, additional, Mboumba, Henri, additional, Gadal, Olivier, additional, Thierry, Agnès, additional, Beckouët, Frederic, additional, and Koszul, Romain, additional
- Published
- 2024
- Full Text
- View/download PDF
3. Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization
- Author
-
Matthey-Doret, Cyril, primary, Baudry, Lyam, additional, Mortaza, Shogofa, additional, Moreau, Pierrick, additional, Koszul, Romain, additional, and Cournac, Axel, additional
- Published
- 2021
- Full Text
- View/download PDF
4. Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins
- Author
-
Lioy, Virginia S., Cournac, Axel, Marbouty, Martial, Duigou, Stéphane, Mozziconacci, Julien, Espéli, Olivier, Boccard, Frédéric, and Koszul, Romain
- Published
- 2018
- Full Text
- View/download PDF
5. FACT mediates cohesin function on chromatin
- Author
-
Garcia-Luis, Jonay, Lazar-Stefanita, Luciana, Gutierrez-Escribano, Pilar, Thierry, Agnes, Cournac, Axel, García, Alicia, González, Sara, Sánchez, Mar, Jarmuz, Adam, Montoya, Alex, Dore, Marian, Kramer, Holger, Karimi, Mohammad M., Antequera, Francisco, Koszul, Romain, and Aragon, Luis
- Published
- 2019
- Full Text
- View/download PDF
6. Anchoring of parasitic plasmids to inactive regions of eukaryotic chromosomes through nucleosome signal
- Author
-
Girard, Fabien, primary, Even, Antoine, additional, Thierry, Agnes, additional, Ruault, Myriam, additional, Meneu, Lea, additional, Adiba, Sandrine, additional, Taddei, Angela, additional, Koszul, Romain, additional, and Cournac, Axel, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Computer vision for pattern detection in chromosome contact maps
- Author
-
Matthey-Doret, Cyril, Baudry, Lyam, Breuer, Axel, Montagne, Rémi, Guiglielmoni, Nadège, Scolari, Vittore, Jean, Etienne, Campeas, Arnaud, Chanut, Philippe Henri, Oriol, Edgar, Méot, Adrien, Politis, Laurent, Vigouroux, Antoine, Moreau, Pierrick, Koszul, Romain, and Cournac, Axel
- Published
- 2020
- Full Text
- View/download PDF
8. Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging
- Author
-
Marbouty, Martial, Le Gall, Antoine, Cattoni, Diego I., Cournac, Axel, Koh, Alan, Fiche, Jean-Bernard, Mozziconacci, Julien, Murray, Heath, Koszul, Romain, and Nollmann, Marcelo
- Published
- 2015
- Full Text
- View/download PDF
9. Tridimensional infiltration of DNA viruses into the host genome shows preferential contact with active chromatin
- Author
-
Moreau, Pierrick, Cournac, Axel, Palumbo, Gianna Aurora, Marbouty, Martial, Mortaza, Shogofa, Thierry, Agnes, Cairo, Stefano, Lavigne, Marc, Koszul, Romain, and Neuveut, Christine
- Published
- 2018
- Full Text
- View/download PDF
10. Crosstalk between Hepatitis B Virus and the 3D Genome Structure
- Author
-
Dias, João Diogo, primary, Sarica, Nazim, additional, Cournac, Axel, additional, Koszul, Romain, additional, and Neuveut, Christine, additional
- Published
- 2022
- Full Text
- View/download PDF
11. Generation and Analysis of Chromosomal Contact Maps of Yeast Species
- Author
-
Cournac, Axel, primary, Marbouty, Martial, additional, Mozziconacci, Julien, additional, and Koszul, Romain, additional
- Published
- 2016
- Full Text
- View/download PDF
12. Filling annotation gaps in yeast genomes using genome-wide contact maps
- Author
-
Marie-Nelly, Hervé, Marbouty, Martial, Cournac, Axel, Liti, Gianni, Fischer, Gilles, Zimmer, Christophe, and Koszul, Romain
- Published
- 2014
- Full Text
- View/download PDF
13. Chromosight: A computer vision program for pattern detection in chromosome contact maps
- Author
-
Matthey-Doret, Cyril, Baudry, Lyam, Breuer, Axel, Montagne, Rémi, Guiglielmoni, Nadège, Scolari, Vittore, Jean, Etienne, Campeas, Arnaud, Chanut, Philippe-Henri, Oriol, Edgar, Meot, Adrien, Politis, Laurent, Vigouroux, Antoine, Moreau, Pierrick, Koszul, Romain, and Cournac, Axel
- Abstract
Chromosomes of all species studied so far display a variety of higher-order organizational features such as domains, loops, or compartments. Many of these structures have been characterized from the genome-wide contact maps generated by chromosome conformation capture approaches (Hi-C, ChIA-PET,…). Indeed, DNA 3D structures translate as distinct patterns visible on these maps. We developed Chromosight, an algorithm based on computer vision approaches that automatically detect and quantify any type of pattern in contact data. Chromosight detects 3 times as many patterns as existing programs, while being faster and fit to any genome, including small, compact ones. Chromosight is user-friendly and can be extended to user-provided patterns. We validated the program by applying it to a variety of chromosomal structures found in mammals. Code and documentation: https://github.com/koszullab/chromosight
- Published
- 2020
- Full Text
- View/download PDF
14. Computer vision for pattern detection in chromosome contact maps
- Author
-
Matthey-Doret, Cyril, primary, Baudry, Lyam, additional, Breuer, Axel, additional, Montagne, Rémi, additional, Guiglielmoni, Nadège, additional, Scolari, Vittore, additional, Jean, Etienne, additional, Campeas, Arnaud, additional, Henri Chanut, Philippe, additional, Oriol, Edgar, additional, Meot, Adrien, additional, Politis, Laurent, additional, Vigouroux, Antoine, additional, Moreau, Pierrick, additional, Koszul, Romain, additional, and Cournac, Axel, additional
- Published
- 2020
- Full Text
- View/download PDF
15. Normalization of a chromosomal contact map
- Author
-
Cournac Axel, Marie-Nelly Hervé, Marbouty Martial, Koszul Romain, and Mozziconacci Julien
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Chromatin organization has been increasingly studied in relation with its important influence on DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their spatial proximity in a population of cells. The recent coupling of 3C with deep sequencing approaches now allows the generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts generated by the experiments. Our study aims at proposing a simple normalization procedure to minimize the influence of these unwanted but inevitable events on the final results. Results Careful analysis of the raw data generated previously for budding yeast S. cerevisiae led to the identification of three main biases affecting the final datasets, including a previously unknown bias resulting from the circularization of DNA molecules. We then developed a simple normalization procedure to process the data and allow the generation of a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used. Conclusions We quantitatively reanalyzed the genomic 3C data obtained for S. cerevisiae, identified some of the biases inherent to the technique and proposed a simple normalization procedure to analyse them. Such an approach can be easily generalized for genomic 3C experiments in other organisms. More experiments and analysis will be necessary to reach optimal resolution and accuracies of the maps generated through these approaches. Working with cell population presenting highest levels of homogeneity will prove useful in this regards.
- Published
- 2012
- Full Text
- View/download PDF
16. High-salt Recovered Sequences are associated with the active chromosomal compartment and with large ribonucleoprotein complexes including nuclear bodies
- Author
-
Baudement, Marie, Cournac, Axel, Court, Franck, Seveno, Marie, Parrinello, Hugues, Reynes, Christelle, Sabatier, Robert, Bouschet, Tristan, Yi, Zhou, Sallis, Sephora, Tancelin, Mathilde, Rebouissou, Cosette, Cathala, Guy, Lesne, Annick, Mozziconacci, Julien, Journot, Laurent, Forné, Thierry, Matière et Systèmes Complexes (MSC (UMR_7057)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Génétique, Reproduction et Développement (GReD ), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Institut de Génomique Fonctionnelle - Montpellier GenomiX (IGF MGX), Institut de Génomique Fonctionnelle (IGF), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), BioCampus Montpellier (BCM), Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aide à la Décision pour une Médecine Personnalisé - Laboratoire de Biostatistique, Epidémiologie et Recherche Clinique - EA 2415 (AIDMP), Université Montpellier 1 (UM1)-Université de Montpellier (UM), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Moléculaire de Montpellier (IGMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Laboratoire de Physique Théorique des Liquides (LPTL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), AFM-Téléthon contrat N°21024, Institut National du Cancer (INCa) PLBIO 2012-129, ANR-16-CE15-0018,CHRODYT,Différenciation des lymphocytes T et plasticité de la chromatine(2016), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Génétique, Reproduction et Développement - Clermont Auvergne (GReD ), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Matière et Systèmes Complexes (MSC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences de Montpellier (INM), BioCampus (BCM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-BioCampus (BCM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics ,High-salt Recovered Sequences ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Phase separation ,super-enhancers ,nuclear bodies ,Active chromosomal compartment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
- Full Text
- View/download PDF
17. A major role for Eco1 in regulating cohesin-mediated mitotic chromosome folding
- Author
-
Dauban, Lise, primary, Montagne, Rémi, additional, Thierry, Agnès, additional, Lazar-Stefanita, Luciana, additional, Gadal, Olivier, additional, Cournac, Axel, additional, Koszul, Romain, additional, and Beckouët, Frederic, additional
- Published
- 2019
- Full Text
- View/download PDF
18. FACT mediates cohesin function on chromatin
- Author
-
Wellcome Trust, Medical Research Council (UK), European Commission, European Research Council, Agence Nationale de la Recherche (France), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), García-Luis, Jonay, Lazar-Stefanita, Luciana, Gutiérrez-Escribano, Pilar, Thierry, Agnes, Cournac, Axel, García, Alicia, González-Arranz, Sara, Sánchez, Mar, Jarmuz, Adam, Montoya, Alex, Dore, Marian, Kramer, Holger, Karimi, Mohammad M., Antequera, Francisco, Koszul, Romain, Aragón, Luis, Wellcome Trust, Medical Research Council (UK), European Commission, European Research Council, Agence Nationale de la Recherche (France), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), García-Luis, Jonay, Lazar-Stefanita, Luciana, Gutiérrez-Escribano, Pilar, Thierry, Agnes, Cournac, Axel, García, Alicia, González-Arranz, Sara, Sánchez, Mar, Jarmuz, Adam, Montoya, Alex, Dore, Marian, Kramer, Holger, Karimi, Mohammad M., Antequera, Francisco, Koszul, Romain, and Aragón, Luis
- Abstract
Cohesin is a regulator of genome architecture with roles in sister chromatid cohesion and chromosome compaction. The recruitment and mobility of cohesin complexes on DNA is restricted by nucleosomes. Here, we show that the role of cohesin in chromosome organization requires the histone chaperone FACT (‘facilitates chromatin transcription’) in Saccharomyces cerevisiae. We find that FACT interacts directly with cohesin, and is dynamically required for its localization on chromatin. Depletion of FACT in metaphase cells prevents cohesin accumulation at pericentric regions and causes reduced binding on chromosome arms. Using the Hi-C technique, we show that cohesin-dependent TAD (topological associated domain)-like structures in G1 and metaphase chromosomes are reduced in the absence of FACT. Sister chromatid cohesion is intact in FACT-depleted cells, although chromosome segregation failure is observed. Our data show that FACT contributes to the formation of cohesin-dependent TADs, thus uncovering a new role for this complex in nuclear organization during interphase and mitotic chromosome folding.
- Published
- 2019
19. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay
- Author
-
Marbouty, Martial, Baudry, Lyam, Cournac, Axel, Koszul, Romain, Régulation spatiale des Génomes - Spatial Regulation of Genomes, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), This research was supported by funding from the European Research Council (ERC) under the 7th Framework Program (FP7/2007-2013)/ERC grant agreement 260822 (to R.K.)., European Project: 260822,EC:FP7:ERC,ERC-2010-StG_20091118,DICIG(2011), and Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,mammal ,Genome, Viral ,MESH: Genome, Bacterial ,Microbiology ,MESH: Gastrointestinal Microbiome ,Mice ,Hi-C ,phage ,Animals ,Bacteriophages ,MESH: Animals ,MESH: Bacteriophages ,MESH: Mice ,Research Articles ,mouse ,virome ,metagenomics ,contact genomics ,meta3C ,Bacteria ,SciAdv r-articles ,MESH: Male ,Gastrointestinal Microbiome ,MESH: Bacteria ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,genome assembly ,proximity ligation ,MESH: Genome, Viral ,Genome, Bacterial ,Research Article - Abstract
Two proximity ligation approaches are used to probe the gut’s phage-bacteria infection network using Meta3C and GRAAL scaffolding., The biochemical activities of microbial communities, or microbiomes, are essential parts of environmental and animal ecosystems. The dynamics, balance, and effects of these communities are strongly influenced by phages present in the population. Being able to characterize bacterium-phage relationships is therefore essential to investigate these ecosystems to the full extent of their complexity. However, this task is currently limited by (i) the ability to characterize complete bacterial and viral genomes from a complex mix of species and (ii) the difficulty to assign phage sequences to their bacterial hosts. We show that both limitations can be circumvented using meta3C, an experimental and computational approach that exploits the physical contacts between DNA molecules to infer their proximity. In a single experiment, dozens of bacterial and phage genomes present in a complex mouse gut microbiota were assembled and scaffolded de novo. The phage genomes were then assigned to their putative bacterial hosts according to the physical contacts between the different DNA molecules, opening new perspectives for a comprehensive picture of the genomic structure of the gut flora. Therefore, this work holds far-reaching implications for human health studies aiming to bridge the virome to the microbiome.
- Published
- 2017
- Full Text
- View/download PDF
20. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast
- Author
-
Spichal, Maya, Brion, Alice, Herbert, Sébastien, Cournac, Axel, Marbouty, Martial, Zimmer, Christophe, Koszul, Romain, Fabre, Emmanuelle, Régulation spatiale des Génomes - Spatial Regulation of Genomes, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Pathologie cellulaire : aspects moléculaires et viraux / Pathologie et Virologie Moléculaire, Institut Universitaire d'Hématologie (IUH), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Diderot - Paris 7 (UPD7)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Imagerie et Modélisation, This research was supported by funding to R.K. from the European Research Council under the 7th Framework Program [grant numbers FP7/2007-2013 and ERC grant agreement number 260822], and to E.F. by Agence Nationale de la Recherche [grant numbers ANR-13-BSV8-0013-01 and ANR-13-BSV3-0012-03], Agence pour la Recherche contre le Cancer (ARC) [grant number FI20121205474], and Labex Who am I [grant number EE-2013]. C.Z. acknowledges funding from the Institut Pasteur and Fondation pour la Recherche Médicale (FRM). M.M. was supported by a fellowship from ARC [grant number 20100600373], M.S. by a fellowship from Université Pierre et Marie Curie (UPMC) and the Ligue Nationale Contre le Cancer (LNCC), and S.H. was supported by the FRM., ANR-11-IDEX-0005,USPC,Université Sorbonne Paris Cité(2011), ANR-13-BSV8-0013,SPAREDAM,Organisation tridimensionnelle des dommages à l'ADN(2013), ANR-13-BSV3-0012,NiCiTy,Interactions entre les rétroélements et la cellule hôte: De l'import nucléaire à l'intégration chromosomique(2013), European Project: 260822,EC:FP7:ERC,ERC-2010-StG_20091118,DICIG(2011), Koszul, Romain, Université Sorbonne Paris Cité - - USPC2011 - ANR-11-IDEX-0005 - IDEX - VALID, Blanc 2013 - Organisation tridimensionnelle des dommages à l'ADN - - SPAREDAM2013 - ANR-13-BSV8-0013 - Blanc 2013 - VALID, Blanc 2013 - Interactions entre les rétroélements et la cellule hôte: De l'import nucléaire à l'intégration chromosomique - - NiCiTy2013 - ANR-13-BSV3-0012 - Blanc 2013 - VALID, Dynamic Interplay between Eukaryotic Chromosomes: Impact on Genome Stability - DICIG - - EC:FP7:ERC2011-06-01 - 2017-05-31 - 260822 - VALID, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Saccharomyces cerevisiae Proteins ,[SDV]Life Sciences [q-bio] ,Membrane Proteins ,Recombinational DNA Repair ,Saccharomyces cerevisiae ,macromolecular substances ,Telomere ,Chromosome ,Actins ,Chromatin ,Dynamics ,[SDV] Life Sciences [q-bio] ,Protein Transport ,Nuclear Pore ,Chromosomes, Fungal ,Protein Multimerization ,Actin - Abstract
International audience; Eukaryotic chromosomes undergo movements that are involved in the regulation of functional processes such as DNA repair. To better understand the origin of these movements, we used fluorescence microscopy, image analysis and chromosome conformation capture to quantify the actin contribution to chromosome movements and interactions in budding yeast. We show that both the cytoskeletal and nuclear actin drive local chromosome movements, independently of Csm4, a putative LINC protein. Inhibition of actin polymerization reduces subtelomere dynamics, resulting in more confined territories and enrichment in subtelomeric contacts. Artificial tethering of actin to nuclear pores increased both nuclear pore complex (NPC) and subtelomere motion. Chromosome loci that were positioned away from telomeres exhibited reduced motion in the presence of an actin polymerization inhibitor but were unaffected by the lack of Csm4. We further show that actin was required for locus mobility that was induced by targeting the chromatin-remodeling protein Ino80. Correlated with this, DNA repair by homologous recombination was less efficient. Overall, interphase chromosome dynamics are modulated by the additive effects of cytoskeletal actin through forces mediated by the nuclear envelope and nuclear actin, probably through the function of actin in chromatin-remodeling complexes.
- Published
- 2016
- Full Text
- View/download PDF
21. Functional Partition of a Bacterial Chromosome Through the Interplay of Nucleoid Associated Proteins and Condensin
- Author
-
Lioy, Virginia S., primary, Cournac, Axel, additional, Marbouty, Martial, additional, Duigou, Sttphane, additional, Mozziconacci, Julien, additional, Esppli, Olivier, additional, Boccard, Frrddric, additional, and Koszul, Romain, additional
- Published
- 2018
- Full Text
- View/download PDF
22. Generation and Analysis of Chromosomal Contact Maps of Yeast Species
- Author
-
Cournac, Axel, Marbouty, Martial, Mozziconacci, Julien, Koszul, Romain, Régulation spatiale des Génomes - Spatial Regulation of Genomes, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), This research was supported by funding to R.K. from the European Research Council under the 7th Framework Program (FP7/2007-2013) / ERC grant agreement 260822. M.M. is the recipient of an Association pour la Recherche sur le Cancer fellowship 20100600373, European Project: 260822,EC:FP7:ERC,ERC-2010-StG_20091118,DICIG(2011), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique de la Matière Condensée ( LPTMC ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), and European Project : 260822,EC:FP7:ERC,ERC-2010-StG_20091118,DICIG ( 2011 )
- Subjects
Chromosome conformation capture ,Genome assembly ,MESH : Chromatin ,[ SDV ] Life Sciences [q-bio] ,MESH : Chromosomes, Fungal ,MESH : Genome, Fungal ,[SDV]Life Sciences [q-bio] ,MESH : Saccharomyces cerevisiae ,Chromosome Mapping ,Saccharomyces cerevisiae ,Genome organization ,MESH: Chromosomes, Fungal ,MESH: Saccharomyces cerevisiae ,Yeast ,Chromatin ,MESH: Chromatin ,MESH: Genome, Fungal ,Chromosomes, Fungal ,Genome, Fungal ,3C ,MESH: Chromosome Mapping ,MESH : Chromosome Mapping ,3C analysis - Abstract
International audience; Genome-wide derivatives of the chromosome conformation capture (3C) technique are now well-established approaches to study the multiscale average organization of chromosomes from bacteria to mammals. However, the experimental parameters of the protocol have to be optimized for different species, and the downstream experimental products (i.e., pair-end sequences) are influenced by these parameters. Here, we describe a complete pipeline to generate 3C-seq libraries and compute chromosomal contact maps of yeast species.
- Published
- 2015
- Full Text
- View/download PDF
23. Additional file 2: of Genome-wide replication landscape of Candida glabrata
- Author
-
StÊphane Descorps-DeclèRe, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
Position and firing time of each replication origin, by chromosome. Coordinates are given according to Genolevures sequence release 10 September 2008 ( www.genolevures.org ). Bona fide origins are in red (see text). (DOC 154 kb)
- Published
- 2015
- Full Text
- View/download PDF
24. Additional file 6: of Genome-wide replication landscape of Candida glabrata
- Author
-
Descorps-Declère, Stéphane, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
ARS library. Number of ARSs (y axis) for each coverage (x axis) in the ARS library, before transformation. Coverage was determined by Illumina sequencing (see “Methods”). The average coverage of the library was 9×. Each bar represents 2× coverage. (PDF 98 kb)
- Published
- 2015
- Full Text
- View/download PDF
25. Additional file 7: of Genome-wide replication landscape of Candida glabrata
- Author
-
StÊphane Descorps-DeclèRe, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
Positions, coverages, and fitnesses of ARSs. (XLS 69 kb)
- Published
- 2015
- Full Text
- View/download PDF
26. Additional file 3: Figure S2. of Spatial reorganization of telomeres in long-lived quiescent cells
- Author
-
Guidi, Micol, Ruault, Myriam, Marbouty, Martial, Loïodice, Isabelle, Cournac, Axel, Billaudeau, Cyrille, Hocher, Antoine, Mozziconacci, Julien, Koszul, Romain, and Taddei, Angela
- Abstract
SIR-mediated telomere clustering drives chromosome conformation in the dense fraction of SP cells. a Mean contacts frequencies between 100-kb centromeres windows in G1 (blue) and G0 quiescent cells (red). Black and green curves: contacts between 100-kb segments randomly sampled in both conditions, to illustrate the absence of coverage biases after normalization. b Chromosome organization of WT and sir3∆ quiescent cells (the cryptic mating type locus HML was deleted to prevent pseudo-diploid effect). ii) Normalized contact matrix obtained for hml∆* (left) and hml∆ sir3∆ (right) cells. Color scale: contact frequencies from rare (white) to frequent (dark blue). Red arrowheads: centromeres contacts; green and yellow arrowheads: telomere–telomere contacts in hml∆ and hml∆ sir3∆ G0 cells, respectively. The 3D representations of the hml∆ and hml∆ sir3∆ matrices are represented next to the contact maps. Each chromosome is represented as a chain of beads (1 bead = 20 kb), with color code reflecting the chromosome arm lengths, from short (blue) to long (red) arms. Yellow beads: subtelomeric regions; black beads: centromeres; purple beads: boundaries of the rDNA cluster. c Contact maps of W303 strain during exponentially growth (EXPO, left) and quiescence (G0, right). Red arrowheads: centromere clustering; green and yellow arrowheads: telomere–telomere contacts of two chromosomes (XIII and XV) in expo and G0 cells, respectively. Because of the low sequencing coverage and quality, the signal is not as strong as for data in Fig. 3 and the bins are larger (1 vector: 80 DpnII RFs). d Quantification of colocalization of 30-kb telomeric regions (red dots) compared with the distribution of the colocalization scores (box plot, two standard deviations) computed for 1000 random sets of 32 windows of 30 kb in the genome (excluding centromeric regions). The colocalization score is normalized by the sequencing depth for each dataset.
- Published
- 2015
- Full Text
- View/download PDF
27. Additional file 7: Table S1. of Spatial reorganization of telomeres in long-lived quiescent cells
- Author
-
Guidi, Micol, Ruault, Myriam, Marbouty, Martial, LoĂŻodice, Isabelle, Cournac, Axel, Billaudeau, Cyrille, Hocher, Antoine, Mozziconacci, Julien, Koszul, Romain, and Taddei, Angela
- Abstract
Strains used in this study. (DOCX 22 kb)
- Published
- 2015
- Full Text
- View/download PDF
28. Additional file 6: Figure S4. of Spatial reorganization of telomeres in long-lived quiescent cells
- Author
-
Guidi, Micol, Ruault, Myriam, Marbouty, Martial, Loïodice, Isabelle, Cournac, Axel, Billaudeau, Cyrille, Hocher, Antoine, Mozziconacci, Julien, Koszul, Romain, and Taddei, Angela
- Abstract
Mechanism driving telomere clustering in long-lived SP cells. a Western blot against Sir3 and H2A on crude extracts from exponential, respiratory, or stationary cultures of a wild-type (WT) strain (yAT1684). b Sir3 spreading at yeast subtelomeres in cells from an exponentially growing culture (Fermentation) or in cells isolated from the dense fraction of a SP culture (Stationary HD). ChIP-chip profiles (Sir3 enrichment Z score) correspond to the mean of two independent experiments. Pearson correlation between conditions is 0.95. Sir3 spreading at TELVIR was confirmed in independent experiments by ChIP-quantitative PCR for both conditions (not shown). Each panel spans the first 30 kb from each telomere and the heading color for each panel indicates the middle repeat element content of the corresponding telomere: Y’ XCR XCS (beige), Y’ XCS (green), XCS (red), or XCR XCS (blue). Each dot represents a data point and lines are drawn for visual purposes. c Quiescent sir3∆ cells are as thermotolerant as quiescent WT cells to heat shock (HS). Dilution assays are shown (starting at DO600nm = 5 and diluted 1/5 each time). Left: growth control of exponential cells or 24 h LD cells. Middle: sensitivity to HS of WT exponential cells, 24 h LD cells or 24 h HD cells. Right: sensitivity to HS of WT or sir3∆ LD cells. d Stationary WT, sir3∆, sir3-A2Q cells are resistant to HS like WT cells. Dilution assays are shown (starting at DO600nm = 1 and diluted 1/5 each time). Left: growth control. Middle: 30 min 52 °C HS. Left: 1 h 52 °C HS. e Stationary WT and sir3∆ cells that spent 14 days in water after glucose exhaustion show the same extent of thermotolerance to a 1 h 52 °C HS. Dilution assays are shown (starting at DO600nm = 1 and diluted 1/5 each time). (PDF 12384 kb)
- Published
- 2015
- Full Text
- View/download PDF
29. Additional file 10: of Genome-wide replication landscape of Candida glabrata
- Author
-
StÊphane Descorps-DeclèRe, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
Effect of smoothing on replication curve shape. The chromosome G replication curve is represented after smoothing with different span values, from 0.0001 (almost no smoothing) to 0.075 (extensive smoothing). With low levels of smoothing, several peaks or shoulders did not correspond to ARS positions and were clearly artifacts (0.015 span value). This effect was particularly pronounced for small chromosomes. With extensive smoothing (0.075 span value), close replication peaks tended to merge into one single peak, like, for example, the large left-most double (or triple) replication peak. Comparison of different smoothing levels with ARS positions (red dots) led us to use a 0.04 span value for all chromosomes. (PDF 1101 kb)
- Published
- 2015
- Full Text
- View/download PDF
30. Additional file 9: of Genome-wide replication landscape of Candida glabrata
- Author
-
StÊphane Descorps-DeclèRe, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
Replication timing of histone genes. (DOC 49 kb)
- Published
- 2015
- Full Text
- View/download PDF
31. Additional file 5: of Genome-wide replication landscape of Candida glabrata
- Author
-
StÊphane Descorps-DeclèRe, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
rDNA locus replication. Top: One tandem repeat unit of the S. cerevisiae rDNA locus on chromosome 12 is represented. Coordinates are shown in boxes, according to the Saccharomyces Genome Database (release 19 November 2012). The ARS present in each repeat unit is indicated as a blue diamond. Bottom: Same representation for the C. glabrata rDNA locus. Coordinates are shown according to GĂŠnolevures database (release 10 September 2008). The two ARSs captured are shown by blue diamonds. (PDF 65 kb)
- Published
- 2015
- Full Text
- View/download PDF
32. Additional file 4: of Genome-wide replication landscape of Candida glabrata
- Author
-
Descorps-Declère, Stéphane, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
Additional experiment performed to confirm replication origins. The time course shown in this experiment was performed as described in “Methods” for the first experiment (Additional file 1). Top: FACS analyses and DNA content are shown. Time points T0 to T6 were sequenced on a MiSeq (Illumina) sequencer and 2.3–4.1 millions reads were obtained (175 bp single reads) for each time point. Bottom: Sequence coverage for time points T2, T3, T4, and T6, for each chromosome (smoothing span: 0.05–0.09, depending on chromosome size). Sequence mapping of two time points (T1 and T5) exhibited too many gaps to allow us to calculate non-linear regressions for each of the 12 millions nucleotides of the C. glabrata genome, in order to determine T50 values. However, using T6 and T0 coverage, which correspond respectively to S and G1 phases of the cell cycle, we were able to determine replication peak positions. A comparison of peaks detected in experiment #1 (Fig. 2) and experiment #2 (the present figure) was made in the bottom right table. Out of 83 bona fide origins, 73 were found in experiment #2 (88 %), and 241 replication origins were detected (instead of 253 in experiment #1). The average distance between bona fide replication peaks found in both experiments was 6.9 ± 2.4 kb (95 % confidence interval), consistent with what was deduced from comparisons between ARS positions and replication peaks (Fig. 5a). (PDF 1224 kb)
- Published
- 2015
- Full Text
- View/download PDF
33. Additional file 5: Figure S3. of Spatial reorganization of telomeres in long-lived quiescent cells
- Author
-
Guidi, Micol, Ruault, Myriam, Marbouty, Martial, Loïodice, Isabelle, Cournac, Axel, Billaudeau, Cyrille, Hocher, Antoine, Mozziconacci, Julien, Koszul, Romain, and Taddei, Angela
- Abstract
Telomere hyperclustering is not due to slow growth. a Representative fluorescent image of Rap1-GFP tagged strain grown either at 30 °C or 25 °C in exponential phase (top) and then starved for 16 h in water before imaging (bottom). b Calcofluor staining of LD and HD fractions of a post DS culture after gradient separation. c Heat shock (HS) assay on the LD and HD fractions used in b. (PDF 11591 kb)
- Published
- 2015
- Full Text
- View/download PDF
34. Additional file 1: Figure S1. of Spatial reorganization of telomeres in long-lived quiescent cells
- Author
-
Guidi, Micol, Ruault, Myriam, Marbouty, Martial, Loïodice, Isabelle, Cournac, Axel, Billaudeau, Cyrille, Hocher, Antoine, Mozziconacci, Julien, Koszul, Romain, and Taddei, Angela
- Abstract
Characterization of the SP silent chromatin hypercluster. a Western blot against Rap1 on crude extracts from exponential, respiratory, or stationary cultures of a WT strain (yAT1684). H2A antibody was used for the loading control. b Representative fluorescent images of wild-type (WT) strains tagged with Rap1-GFP “yAT 1684”, GFP-Sir2 “yAT405”, Sir3-GFP “yAT779” and GFP-Sir4 “yAT431” strains. Overnight liquid cultures were diluted to 0.2 OD600nm/ml and images were acquired after 5 h (1 OD600nm/ml, fermentation phase) and 7 days (40 OD600nm/ml, stationary phase). c Representative fluorescent image of a Rap1-GFP Sir3-mCherry-tagged strain “yAT194” from stationary phase cultures. We note that Sir3 associates with both telomeres and the rDNA in stationary phase cells. d Representative fluorescent images of Rap1-GFP in stationary cultures of WT “yAT1684” and sir4∆ “yAT2092” strains. e Representative fluorescent images of the nucleolar protein Sik1 tagged with mCherry during fermentation, respiration, and stationary phase (“yAT340”). f Representative fluorescent image of Rap1-GFP Dad2-mRFP (Duo1 And Dam1 interacting, an essential component of the microtubule–kinetochore interface) tagged stationary phase cells (“yAT2279”). g Representative fluorescent image of Sir3-mCherry Cse4-GFP-tagged strain “yAT2280” from stationary phase. Scale bar is 1 μm. (PDF 1343 kb)
- Published
- 2015
- Full Text
- View/download PDF
35. Additional file 3: of Genome-wide replication landscape of Candida glabrata
- Author
-
StÊphane Descorps-DeclèRe, Saguez, Cyril, Cournac, Axel, Marbouty, Martial, Rolland, Thomas, Ma, Laurence, Bouchier, Christiane, Moszer, Ivan, Dujon, Bernard, Koszul, Romain, and Guy-Franck Richard
- Abstract
Plasmid replication efficacy of DNA regions surrounding identified replication origins. (DOC 40 kb)
- Published
- 2015
- Full Text
- View/download PDF
36. Aspects temporel et spatial dans des systèmes de régulation génétique
- Author
-
Cournac, Axel, Matière et Systèmes Complexes (MSC (UMR_7057)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Diderot - Paris VII, Jacques-Alexandre Sepulchre, and Cournac, Axel
- Subjects
Genetic networks ,Spatial organisation of genomes ,Réseaux génétiques ,[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Modélisation ,Organisation spatiale des génomes ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Boucle d'ADN ,Periodic stimulations ,DNA looping ,Stimulations périodiques ,Experimental method ,Méthode expérimentale - Abstract
This thesis deals with several aspects concerning genetic regulation on theoretical and experimental points of view. A first work in the field of modelisation of biological systems, proposes to find simple regulatory networks which have the ability to optimise their response when they are submitted to a periodic stimulation. The network called ``Incoherent Feed Forward Loop'' appeared to have the interesting property to let pass trains of pulses which have a particular temporal pattern. Some extensions of this motif (``Diamond'', ``Double Diamond''...) are proposed to also have interesting properties to process more complex time-dependent signals. Next, a work of review and observation concerning DNA looping is presented. After pointing out some common points in systems of DNA looping already known, we have examined the data bases to see if other regulatory regions have the same characteristics. We propose a list of several genes which might be good candidates to be regulated thanks to a DNA looping mechanism. An experimental work of molecular biology is then presented. It tackles a hypothesis found in several works from bioinformatics and statistical physics. The question is the following: can transcription factors bind to binding sites belonging not to a unique regulatory region of one gene (like in the lac operon) but to binding sites belonging to different genes? We tested this hypothesis on the Pel regulatory system which rules the entry into virulence of the enterobacteria Erwinia chrysanthemi. Experiments reproduced and carried out in various physiological conditions lead to the conclusion that the deleted regulatory regions do not seem to act on other genes by a DNA looping mechanism. The last chapter proposes an experimental method to search for such interactions in a broader way inside a bacterial genome. The method is based on molecular biology techniques commonly used, like the random mutagenesis or alpha-complementation. It uses the enhancer system of the promoter of glnA of Escherichia coli and aims at finding significant 3D interactions between DNA segments in a prokaryote genome., Cette thèse s'intéresse à plusieurs aspects concernant la régulation génétique sur les plans théorique et expérimental. Un premier travail théorique qui s'inscrit dans le cadre de la modélisation des systèmes biologiques se propose de trouver des réseaux de régulation simples qui puissent répondre de manière optimale lorsqu'ils sont soumis à une stimulation périodique. Le réseau appelé ``Incoherent Feed Forward Loop'' s'est avéré présenter la propriété intéressante de laisser passer des trains de pulses au profil temporel particulier. Des extensions de ce motif (``Diamond'', ``Double Diamond''...) ont été suggérées pouvant également présenter des propriétés intéressantes pour traiter des signaux plus complexes. Un travail de revue et d'observations concernant les boucles d'ADN est ensuite présenté. Après avoir observé des points communs dans les systèmes de boucle d'ADN déjà connus, nous avons interrogé les bases de données pour savoir quelles étaient les régions de régulation présentant les mêmes caractéristiques. Nous proposons une liste de plusieurs opérons qui mériteraient une démarche expérimentale pour la mise en évidence d'une boucle d'ADN. Un travail expérimental de biologie moléculaire est ensuite présenté. Il s'est attaqué à tester une hypothèse présente dans plusieurs travaux de bioinformatique ou de physique statistique. La question testée est la suivante: est-ce que des facteurs de transcription pourraient se lier à des sites de liaison appartenant non pas à la même région de régulation d'un gène (comme dans le cas de l'opéron lac) mais à des sites de liaison appartenant à des gènes différents? Nous avons testé cette hypothèse sur le système de régulation d'entrée en virulence de la bactérie Erwinia chrysanthemi. Les expériences reproduites et réalisées dans plusieurs conditions physiologiques différentes ont abouti à la conclusion que les régions de régulation supprimées ne semblent pas agir sur d'autres gènes par le mécanisme de boucle d'ADN. Le dernier chapitre propose une méthode expérimentale pour rechercher de telles interactions de façon large dans un génome de bactérie. La méthode est basée sur des techniques de biologie moléculaire couramment utilisées comme la mutagénèse aléatoire ou l'alpha-complémentation. Elle utilise le système enhancer du promoteur de glnA d'Escherichia coli et vise à trouver des interactions 3D significatives entre segments d'ADN au sein d'un génome de procaryote.
- Published
- 2009
37. 3D genome reconstruction from chromosomal contacts
- Author
-
Lesne, Annick, Riposo, Julien, Roger, Paul, Cournac, Axel, Mozziconacci, Julien, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Régulation spatiale des Génomes - Spatial Regulation of Genomes, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), They acknowledge fundingfrom UPMC, grant CONVERGENCE2011-projet CVG1110 and from the Institut National du Cancer, grant INCa_5960. UPMC belongs to Sorbonne-Universités, Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] - Abstract
International audience; A computational challenge raised by chromosome conformation capture (3C) experiments is to reconstruct spatial distances and three-dimensional genome structures from observed contacts between genomic loci. We propose a two-step algorithm, ShRec3D, and assess its accuracy using both in silico data and human genome-wide 3C (Hi-C) data. This algorithm avoids convergence issues, accommodates sparse and noisy contact maps, and is orders of magnitude faster than existing methods.
- Published
- 2014
- Full Text
- View/download PDF
38. Evidence for actin dual role in regulating chromosome organization and dynamics in yeast
- Author
-
Spichal, Maya, primary, Brion, Alice, additional, Herbert, Sébastien, additional, Cournac, Axel, additional, Marbouty, Martial, additional, Zimmer, Christophe, additional, Koszul, Romain, additional, and Fabre, Emmanuelle, additional
- Published
- 2016
- Full Text
- View/download PDF
39. Meta3C analysis of a mouse gut microbiome
- Author
-
Marbouty, Martial, primary, Baudry, Lyam, additional, Cournac, Axel, additional, and Koszul, Romain, additional
- Published
- 2015
- Full Text
- View/download PDF
40. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements
- Author
-
Cournac, Axel, primary, Koszul, Romain, additional, and Mozziconacci, Julien, additional
- Published
- 2015
- Full Text
- View/download PDF
41. Spatial reorganization of telomeres in long-lived quiescent cells
- Author
-
Guidi, Micol, primary, Ruault, Myriam, additional, Marbouty, Martial, additional, Loïodice, Isabelle, additional, Cournac, Axel, additional, Billaudeau, Cyrille, additional, Hocher, Antoine, additional, Mozziconacci, Julien, additional, Koszul, Romain, additional, and Taddei, Angela, additional
- Published
- 2015
- Full Text
- View/download PDF
42. Genome-wide replication landscape of Candida glabrata
- Author
-
Descorps-Declère, Stéphane, primary, Saguez, Cyril, additional, Cournac, Axel, additional, Marbouty, Martial, additional, Rolland, Thomas, additional, Ma, Laurence, additional, Bouchier, Christiane, additional, Moszer, Ivan, additional, Dujon, Bernard, additional, Koszul, Romain, additional, and Richard, Guy-Franck, additional
- Published
- 2015
- Full Text
- View/download PDF
43. High-quality genome (re)assembly using chromosomal contact data.
- Author
-
Marie-Nelly, Hervé, Marbouty, Martial, Cournac, Axel, Flot, Jean-François, Liti, Gianni, Parodi, Dante Poggi, Syan, Sylvie, Guillén, Nancy, Margeot, Antoine, Zimmer, Christophe, Koszul, Romain, Marie-Nelly, Hervé, Marbouty, Martial, Cournac, Axel, Flot, Jean-François, Liti, Gianni, Parodi, Dante Poggi, Syan, Sylvie, Guillén, Nancy, Margeot, Antoine, Zimmer, Christophe, and Koszul, Romain
- Abstract
Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left 'unfinished.' Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm--named GRAAL--generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches., info:eu-repo/semantics/published
- Published
- 2014
44. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms.
- Author
-
Marbouty, Martial, Cournac, Axel, Flot, Jean-François, Marie-Nelly, Hervé, Mozziconacci, Julien, Koszul, Romain, Marbouty, Martial, Cournac, Axel, Flot, Jean-François, Marie-Nelly, Hervé, Mozziconacci, Julien, and Koszul, Romain
- Abstract
Genomic analyses of microbial populations in their natural environment remain limited by the difficulty to assemble full genomes of individual species. Consequently, the chromosome organization of microorganisms has been investigated in a few model species, but the extent to which the features described can be generalized to other taxa remains unknown. Using controlled mixes of bacterial and yeast species, we developed meta3C, a metagenomic chromosome conformation capture approach that allows characterizing individual genomes and their average organization within a mix of organisms. Not only can meta3C be applied to species already sequenced, but a single meta3C library can be used for assembling, scaffolding and characterizing the tridimensional organization of unknown genomes. By applying meta3C to a semi-complex environmental sample, we confirmed its promising potential. Overall, this first meta3C study highlights the remarkable diversity of microorganisms chromosome organization, while providing an elegant and integrated approach to metagenomic analysis., info:eu-repo/semantics/published
- Published
- 2014
45. High-quality genome (re)assembly using chromosomal contact data
- Author
-
Marie-Nelly, Hervé, primary, Marbouty, Martial, additional, Cournac, Axel, additional, Flot, Jean-François, additional, Liti, Gianni, additional, Parodi, Dante Poggi, additional, Syan, Sylvie, additional, Guillén, Nancy, additional, Margeot, Antoine, additional, Zimmer, Christophe, additional, and Koszul, Romain, additional
- Published
- 2014
- Full Text
- View/download PDF
46. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms
- Author
-
Marbouty, Martial, primary, Cournac, Axel, additional, Flot, Jean-François, additional, Marie-Nelly, Hervé, additional, Mozziconacci, Julien, additional, and Koszul, Romain, additional
- Published
- 2014
- Full Text
- View/download PDF
47. Author response: Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms
- Author
-
Marbouty, Martial, primary, Cournac, Axel, additional, Flot, Jean-François, additional, Marie-Nelly, Hervé, additional, Mozziconacci, Julien, additional, and Koszul, Romain, additional
- Published
- 2014
- Full Text
- View/download PDF
48. Electrostatics of DNA compaction in viruses, bacteria and eukaryotes: functional insights and evolutionary perspective
- Author
-
Carrivain, Pascal, primary, Cournac, Axel, additional, Lavelle, Christophe, additional, Lesne, Annick, additional, Mozziconacci, Julien, additional, Paillusson, Fabien, additional, Signon, Laurence, additional, Victor, Jean-Marc, additional, and Barbi, Maria, additional
- Published
- 2012
- Full Text
- View/download PDF
49. Simple molecular networks that respond optimally to time-periodic stimulation
- Author
-
Cournac, Axel, primary and Sepulchre, Jacques-Alexandre, additional
- Published
- 2009
- Full Text
- View/download PDF
50. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements.
- Author
-
Cournac, Axel, Koszul, Romain, and Mozziconacci, Julien
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.