1. Photocurable biomaterials labeled with luminescent sensors dedicated to bioprinting.
- Author
-
Jamróz P, Świeży A, Noworyta M, Starzak K, Środa P, Wielgus W, Szymaszek P, Tyszka-Czochara M, and Ortyl J
- Subjects
- Animals, CHO Cells, Ink, Rheology, Polyethylene Glycols chemistry, Coumarins chemistry, Cell Proliferation, Cricetinae, Bioprinting methods, Printing, Three-Dimensional, Cricetulus, Biocompatible Materials chemistry
- Abstract
In the present study, we focused on the development and characterization of formulations that function as biological inks. These inks were doped with coumarin derivatives to act as molecular luminescent sensors that allow the monitoring of the kinetics of in situ photopolymerization in 3D (DLP) printing and bioprinting using pneumatic extrusion techniques, making it possible to study the changes in the system in real time. The efficiency of the systems was tested on compositions containing monomers: poly(ethylene glycol) diacrylates and photoinitiators: 2,4,6-trimethylbenzoyldi-phenylphosphinate and lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The selected formulations were spectroscopically characterized and examined for their photopolymerization kinetics and rheological properties. This is important because of the fact that spectroscopic characterization, examination of photopolymerization kinetics, and rheological properties provide valuable insights into the behaviour of photocurable resin dedicated for 3D printing processes. The next step involved printing tests on commercially available 3D printers. In turn, printing carried out as part of the work on commercially available 3D printers further verified the effectiveness of the formulations. Moreover the formulation components and the resulting 3D objects were tested for their antiproliferative effects on the selected Chinese hamster ovary cell line, CHO-K1., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:Joanna Ortyl reports financial support was provided by National Science Centre Poland. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper, (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF