Gabriel Stoltz, Djalil Chafaï, Grégoire Ferré, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), MATHematics for MatERIALS (MATHERIALS), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC), Labex Bezout, ANR-10-LABX-58-01, ANR-14-CE23-0012,COSMOS,Statistique numérique et simulation moléculaire(2014), ANR-17-CE40-0030,EFI,Entropie, flots, inégalités(2017), European Project: 614492,EC:FP7:ERC,ERC-2013-CoG,MSMATH(2014), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
We consider Coulomb gas models for which the empirical measure typically concentrates, when the number of particles becomes large, on an equilibrium measure minimizing an electrostatic energy. We study the behavior when the gas is conditioned on a rare event. We first show that the special case of quadratic confinement and linear constraint is exactly solvable due to a remarkable factorization, and that the conditioning has then the simple effect of shifting the cloud of particles without deformation. To address more general cases, we perform a theoretical asymptotic analysis relying on a large deviations technique known as the Gibbs conditioning principle. The technical part amounts to establishing that the conditioning ensemble is an I-continuity set of the energy. This leads to characterizing the conditioned equilibrium measure as the solution of a modified variational problem. For simplicity, we focus on linear statistics and on quadratic statistics constraints. Finally, we numerically illustrate our predictions and explore cases in which no explicit solution is known. For this, we use a Generalized Hybrid Monte Carlo algorithm for sampling from the conditioned distribution for a finite but large system., ccepted in SIAM Journal on Mathematical Analysis (SIMA), September 30, 2020