1. $NVU$ view on energy polydisperse Lennard-Jones systems
- Author
-
Lang, Danqi, Costigliola, Lorenzo, and Dyre, Jeppe C.
- Subjects
Condensed Matter - Soft Condensed Matter ,Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Statistical Mechanics - Abstract
Lennard-Jones (LJ) systems exhibit strikingly invariant structure and dynamics when energy polydispersity is introduced [Ingebrigtsen and Dyre, J. Phys. Chem. B 127, 2837 (2023)]. For instance, at a given state point the radial distribution function and the mean-square displacement as a function of time are virtually unaffected by energy polydispersity, which is in contrast to what happens when size polydispersity is introduced. We here argue - and validate by simulations of up to 30% polydispersity - that this invariance reflects an approximate invariance of the constant-potential-energy surface. $NVU$ dynamics is defined as geodesic motion at constant potential energy; because this dynamics is equivalent to Newtonian dynamics in the thermodynamic limit, the approximate invariance of the constant-potential-energy surface implies virtually the same structure and dynamics of energy polydisperse LJ systems as for the single-component version. In contrast, the constant-potential-energy surface is shown to be significantly affected by the introduction of size polydispersity.
- Published
- 2024