1. Benchmarking Generative AI for Scoring Medical Student Interviews in Objective Structured Clinical Examinations (OSCEs)
- Author
-
Geathers, Jadon, Hicke, Yann, Chan, Colleen, Rajashekar, Niroop, Sewell, Justin, Cornes, Susannah, Kizilcec, Rene, and Shung, Dennis
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
Introduction. Objective Structured Clinical Examinations (OSCEs) are widely used to assess medical students' communication skills, but scoring interview-based assessments is time-consuming and potentially subject to human bias. This study explored the potential of large language models (LLMs) to automate OSCE evaluations using the Master Interview Rating Scale (MIRS). Methods. We compared the performance of four state-of-the-art LLMs (GPT-4o, Claude 3.5, Llama 3.1, and Gemini 1.5 Pro) in evaluating OSCE transcripts across all 28 items of the MIRS under the conditions of zero-shot, chain-of-thought (CoT), few-shot, and multi-step prompting. The models were benchmarked against a dataset of 10 OSCE cases with 174 expert consensus scores available. Model performance was measured using three accuracy metrics (exact, off-by-one, thresholded). Results. Averaging across all MIRS items and OSCE cases, LLMs performed with low exact accuracy (0.27 to 0.44), and moderate to high off-by-one accuracy (0.67 to 0.87) and thresholded accuracy (0.75 to 0.88). A zero temperature parameter ensured high intra-rater reliability ($\alpha = 0.98$ for GPT-4o). CoT, few-shot, and multi-step techniques proved valuable when tailored to specific assessment items. The performance was consistent across MIRS items independent of encounter phases and communication domains. Conclusion. We demonstrated the feasibility of AI-assisted OSCE evaluation and provided benchmarking of multiple LLMs across multiple prompt techniques. Our work provides a baseline performance assessment for LLMs that lays a foundation for future research in automated assessment of clinical communication skills., Comment: 11 pages, 4 figures (+3 figures in supplementary appendix)
- Published
- 2025