1. Influences of defective interphase and contact region among nanosheets on the electrical conductivity of polymer graphene nanocomposites
- Author
-
Yasser Zare, Muhammad Tajammal Munir, and Kyong Yop Rhee
- Subjects
Polymer graphene nanocomposites ,Imperfect interfacial adhesion ,Conductivity ,Contact region ,Tunneling mechanism ,Medicine ,Science - Abstract
Abstract In the current article, a defective interface is characterized by “Dc,” representing the smallest diameter of nanosheets crucial for effective conduction transfer from the conductive filler to the medium, and by “ψ” as interfacial conduction. These parameters define the effective aspect ratio and operational volume fraction of graphene in the samples. The resistances of the graphene and polymer layer in contact zones are also considered to determine the contact resistance between adjacent nanosheets. Subsequently, a model for the tunneling conductivity of composites is proposed based on these concepts. This innovative model is validated by experimental data. Additionally, the effects of various factors on the conductivity of the composites and contact resistance are analyzed. Certain parameters such as filler concentration, graphene conductivity, interfacial conduction, and “Dc” do not affect the contact resistance due to the superconductivity of the nanosheets. However, factors like thin and large nanosheets, short tunneling distance (d), high interfacial conduction (ψ), low “Dc,” and low tunnel resistivity (ρ) contribute to increased conductivity in nanocomposites. The maximum conductivity of 0.09 is obtained at d = 2 nm and ψ = 900 S/m, but d > 6 nm and ψ more...
- Published
- 2024
- Full Text
- View/download PDF