When it comes to product prices, two major topics have dominated the public debate in recent years: One is pricing with the help of artificial intelligence, and the other is the price level, which has risen more than usual with the onset of the COVID-19 pandemic. Higher prices create a loss of consumer surplus and possibly total welfare, which is the reason this topic has become ubiquitous in political discussions. This dissertation contributes to the debate by extending the existing literature on algorithmic pricing, which is said to facilitate personalized pricing, as well as collusive behavior and to enhance the general understanding of how government measures enforced during the COVID-19 pandemic contributed to (short-time) price developments. Thereby, the first part of the thesis addresses the concern that tacit collusion might occur if firms employ learning algorithms, as several simulation studies have demonstrated that algorithms using reinforcement learning are able to coordinate their pricing behavior and, as a result, achieve a collusive outcome without having been programmed for it. We discuss several conceptual challenges as well as challenges in the real-world application of algorithms and show by or own simulations that resulting market prices strongly depend on the type of algorithm or heuristic that is used by the firms to set prices. In the subsequent part of the thesis we examine how a self-learning pricing algorithm performs when faced with inequity-averse consumers. From our simulations we can conclude that consumers sense of fairness, which have prevented firms from engaging in price discrimination in the past years, can be incorporated into firms pricing decisions with the help of learning algorithms, making differential pricing strategies more feasible. The discussion surrounding the above-average price levels in many countries during the COVID-19 pandemic is extended in the third part of the thesis. We present empirical evidence for the impa, Beim Thema Verbraucherpreise haben in den letzten Jahren vor allem zwei große Themen die öffentliche Debatte dominiert: Zum einen die Preisgestaltung mit Hilfe künstlicher Intelligenz und zum anderen das hohe Preisniveau, welches mit dem Ausbruch der COVID-19-Pandemie stärker als üblich angestiegen ist. Höhere Preise führen zu einem Verlust an Konsumentenrente und möglicherweise auch an Gesamtwohlfahrt, weshalb dieses Thema in der politischen Diskussion allgegenwärtig wurde. Die Dissertation leistet einen Beitrag zu dieser Debatte, indem sie die vorhandene Literatur zu algorithmischer Preisbildung erweitert, von der angenommen wird, dass sie eine personalisierte Preisbildung sowie kollusives Verhalten begünstigt, und indem sie das allgemeine Verständnis dafür verbessert, wie die während der COVID-19-Pandemie durchgesetzten staatlichen Maßnahmen zur (kurzfristigen) Preisentwicklung beigetragen haben. Der erste Teil der Arbeit befasst sich mit den Befürchtungen, dass es zu stillschweigenden Absprachen kommen könnte, wenn Unternehmen lernende Algorithmen einsetzen, da mehrere Simulationsstudien gezeigt haben, dass Algorithmen, die sogenanntes Reinforcement Learning einsetzen, in der Lage sind, ihr Preisverhalten zu koordinieren und infolgedessen ein kollusives Ergebnis zu erzielen, ohne dafür programmiert worden zu sein. Wir erörtern verschiedene konzeptionelle Herausforderungen sowie Hürden bei der realen Anwendung von Algorithmen und zeigen anhand eigener Simulationen, dass die resultierenden Marktpreise stark von der Art des Algorithmus oder der Heuristik abhängen, die von den Unternehmen zur Preisbildung verwendet wird. Im anschließenden Teil der Arbeit wird untersucht, wie sich ein selbstlernender Preisalgorithmus gegenüber ungleichheitsaversen Konsumenten verhält. Aus unseren Simulationen können wir schließen, dass das Fairnessempfinden der Verbraucher, das die Unternehmen in den vergangenen Jahren von Preisdiskriminierung abgehalten hat, mit Hilfe von lernenden