1. Pore-forming aegerolysin and MACPF proteins in extremotolerant or extremophilic fungi.
- Author
-
Kraševec N
- Subjects
- Genome, Fungal, Phylogeny, Complement Membrane Attack Complex metabolism, Complement Membrane Attack Complex genetics, Extremophiles genetics, Extremophiles metabolism, Fungal Proteins genetics, Fungal Proteins metabolism, Fungi genetics, Fungi metabolism, Hemolysin Proteins genetics, Hemolysin Proteins metabolism, Perforin genetics, Perforin metabolism
- Abstract
Aegerolysin proteins are involved in various interactions by recognising a molecular receptor in the target organism. The formation of pores in combination with larger, non-aegerolysin-like protein partners (such as membrane attack complex/perforin proteins [MACPFs]) is one of the possible responses in the presumed competitive exclusion of other organisms from the ecological niche. Bicomponent pairs are already observed at the gene level. Fungi growing under extreme conditions can be divided into ubiquitous and extremotolerant generalists which can compete with mesophilic species and rare, isolated extremophilic and extremotolerant specialists with narrow ecological amplitude that cannot compete. Under extreme conditions, there are fewer competitors, so fungal specialists generally produce less diverse and complicated profiles of specialised molecules. Since extremotolerant and extremophilic fungi have evolved in numerous branches of the fungal tree of life and aegerolysins are unevenly distributed across fungal genomes, we investigated whether aegerolysins, together with their partner proteins, contribute to the extreme survival ecology of generalists and specialists. We compiled a list of 109 thermo-, psihro-, acido-, alkali-, halo-, metallo- and polyextremo-tolerant/-philic fungal species. Several challenges were identified that affected the outcome: renaming fungal species, defining extremotolerant/extremophilic traits, identifying extremotolerant/extremophilic traits as metadata in databases and linking fungal isolates to fungal genomes. The yield of genomes coding aegerolysins or MACPFs appears to be lower in extremotolerant/extremophilic fungi compared to all fungal genomes. No candidates for pore-forming gene pairs were identified in the genomes of extremophilic fungi. Aegerolysin and MACPFs partner pairs were identified in only two of 69 species with sequenced genomes, namely in the ubiquitous metallotolerant generalists Aspergillus niger and A. foetidus. These results support the hypothesised role of these pore-forming proteins in competitive exclusion., (© 2024 The Author(s). IUBMB Life published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.)
- Published
- 2024
- Full Text
- View/download PDF