47 results on '"Collewet, Guylaine"'
Search Results
2. Monitoring the effect of consumption temperature of full-fat milk on in vitro gastric digestion using Magnetic Resonance Imaging
- Author
-
Fitzpatrick, Conor J., Musse, Maja, Feng, Jiajun, Collewet, Guylaine, Lucas, Tiphaine, Timlin, Mark, Challois, Sylvain, Quellec, Stephane, Dupont, Didier, Brodkorb, André, Freitas, Daniela, and Le Feunteun, Steven
- Published
- 2024
- Full Text
- View/download PDF
3. Quantitative magnetic resonance imaging of in vitro gastrointestinal digestion of a bread and cheese meal
- Author
-
Musse, Maja, Le Feunteun, Steven, Collewet, Guylaine, Ravilly, Mattéi, Quellec, Stéphane, Ossemond, Jordane, Morzel, Martine, Challois, Sylvain, Nau, Françoise, and Lucas, Tiphaine
- Published
- 2023
- Full Text
- View/download PDF
4. Multi-exponential MRI T2 maps: A tool to classify and characterize fruit tissues
- Author
-
Collewet, Guylaine, Musse, Maja, El Hajj, Christian, and Moussaoui, Saïd
- Published
- 2022
- Full Text
- View/download PDF
5. Quantitative MRI imaging of parenchyma and venation networks in Brassica napus leaves: effects of development and dehydration.
- Author
-
Boulc'h, Pierre-Nicolas, Collewet, Guylaine, Guillon, Baptiste, Quellec, Stéphane, Leport, Laurent, and Musse, Maja
- Subjects
- *
RAPESEED , *LEAF development , *DEHYDRATION , *HYDRAULIC structures , *WATER distribution - Abstract
Background: Characterisation of the structure and water status of leaf tissues is essential to the understanding of leaf hydraulic functioning under optimal and stressed conditions. Magnetic Resonance Imaging is unique in its capacity to access this information in a spatially resolved, non-invasive and non-destructive way. The purpose of this study was to develop an original approach based on transverse relaxation mapping by Magnetic Resonance Imaging for the detection of changes in water status and distribution at cell and tissue levels in Brassica napus leaves during blade development and dehydration. Results: By combining transverse relaxation maps with a classification scheme, we were able to distinguish specific zones of areoles and veins. The tissue heterogeneity observed in young leaves still occurred in mature and senescent leaves, but with different distributions of T2 values in accordance with the basipetal progression of leaf blade development, revealing changes in tissue structure. When subjected to severe water stress, all blade zones showed similar behaviours. Conclusion: This study demonstrates the great potential of Magnetic Resonance Imaging in assessing information on the structure and water status of leaves. The feasibility of in planta leaf measurements was demonstrated, opening up many opportunities for the investigation of leaf structure and hydraulic functioning during development and/or in response to abiotic stresses. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. The size of eye-shaped bubbles in Danish pastry in relation to the size of fat fragments; A reverse engineering approach of the alveolar structure
- Author
-
Lucas, Tiphaine, Collewet, Guylaine, Bousquières, Josselin, and Deligny, Cécile
- Published
- 2018
- Full Text
- View/download PDF
7. Multi-tissue partial volume quantification in multi-contrast MRI using an optimised spectral unmixing approach
- Author
-
Collewet, Guylaine, Moussaoui, Saïd, Deligny, Cécile, Lucas, Tiphaine, and Idier, Jérôme
- Published
- 2018
- Full Text
- View/download PDF
8. Quantitative MRI study of layers and bubbles in Danish pastry during the proving process
- Author
-
Deligny, Cécile, Collewet, Guylaine, and Lucas, Tiphaine
- Published
- 2017
- Full Text
- View/download PDF
9. Quantification of mass fat fraction in fish using water–fat separation MRI
- Author
-
Picaud, Julien, Collewet, Guylaine, and Idier, Jérôme
- Published
- 2016
- Full Text
- View/download PDF
10. Characterization of Potato Tuber Tissues Using Spatialized MRI T2 Relaxometry
- Author
-
Collewet, Guylaine, primary, Moussaoui, Saïd, additional, Quellec, Stephane, additional, Hajjar, Ghina, additional, Leport, Laurent, additional, and Musse, Maja, additional
- Published
- 2023
- Full Text
- View/download PDF
11. Spectroscopie de diffusion par résonance magnétique : focus sur un nouvel outil d'IRM pour le suivi de thérapies in vivo
- Author
-
Bonnet, Samuel, Franconi, Florence, Lemaire, Laurent, Pottier, Sandrine, Bondon, Arnaud, Musse, Maja, Collewet, Guylaine, Mariette, Francois, Eliat, Pierre-Antoine, Noury, Fanny, Plate-forme de Recherche en Imagerie et Spectroscopie Multi-modales [SFR ICAT - UA] (PRISM), SFR UA 4208 Interactions Cellulaires et Applications Thérapeutiques (ICAT), Université d'Angers (UA)-Université d'Angers (UA), Micro et Nanomédecines Translationnelles (MINT), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Traitement du Signal et de l'Image (LTSI), and Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging - Abstract
International audience
- Published
- 2022
12. Tissue characterization of potato tubers using localized MRI T2 Relaxometry
- Author
-
Collewet, Guylaine, Hajjar, Ghina, Quellec, Stephane, Moussaoui, Saïd, Challois, Sylvain, Deleu, Carole, Leport, Laurent, Musse, Maja, Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
relaxation transversale ,[PHYS.PHYS]Physics [physics]/Physics [physics] ,pomme de terre ,plante ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,IRM - Abstract
International audience
- Published
- 2022
13. Spectroscopie de diffusion par résonance magnétique : focus sur un nouvel outil d'analyse transposable pour le suivi de thérapies in vivo
- Author
-
Bonnet, Samuel, Franconi, Florence, Lemaire, Laurent, Pottier, Sandrine, Bondon, Arnaud, Musse, Maja, Collewet, Guylaine, Mariette, Francois, Noury, Fanny, Eliat, Pierre-Antoine, Plate-forme de Recherche en Imagerie et Spectroscopie Multi-modales [SFR ICAT - UA] (PRISM), SFR UA 4208 Interactions Cellulaires et Applications Thérapeutiques (ICAT), Université d'Angers (UA)-Université d'Angers (UA), Micro et Nanomédecines Translationnelles (MINT), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Traitement du Signal et de l'Image (LTSI), and Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging - Abstract
International audience
- Published
- 2022
14. Rapid quantification of muscle fat content and subcutaneous adipose tissue in fish using MRI
- Author
-
Collewet, Guylaine, Bugeon, Jérôme, Idier, Jérôme, Quellec, Stéphane, Quittet, Benjamin, Cambert, Mireille, and Haffray, Pierrick
- Published
- 2013
- Full Text
- View/download PDF
15. MRI study of tomato dehydration
- Author
-
Leforestier, Rodolphe, Fleury, Anna, Mariette, Francois, Collewet, Guylaine, Challois, Sylvain, Musse, Maja, and Musse, Maja
- Subjects
[PHYS] Physics [physics] - Published
- 2022
16. In vitro investigation of digestion of a bread and cheese meal by MRI
- Author
-
Musse, Maja, Collewet, Guylaine, Le Feunteun, Steven, Ravilly, Mattéi, Quellec, Stéphane, Morzel, Martine, Challois, Sylvain, Lucas, Tiphaine, and Musse, Maja
- Subjects
[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering ,enzymatic breakdown of food ,digestion ,Magnetic Resonance Imaging ,[PHYS] Physics [physics] - Abstract
Gastrointestinal digestion is a complex dynamic process consisting of mechanically and enzymatically breaking down the food structures into nutrients which are usable by the organism. Monitoring food degradation during the different digestion phases is essential for understanding the mechanisms regulating the digestion of specific nutrients and the impact of food structure on nutrient absorption. In last years, in vitro systems simulating digestion processes [1] have been developped, making it possible to resolve several difficulties associated with in vivo experiments, espetially biological complexity and ethical concerns. MRI is a highly promising non-invasive approach for both in vivo and in vitro digestion research [2] as it can be used to obtain information on the status and amount of water and lipid protons in foods. These information can be used for spatially resolved measurements of multi-scale structural features and composition of food, as demonstrated in recent studies on simplified food such as gelsThe present study aimed to evaluate MRI for monitoring digestion of a complex meal composed of bread, cheese and water. All macronutrients (saccharide, protein, lipid) were gathered in such a meal, with particularities: bread samples containing mainly starch and to a lesser extent (10%) proteins while cheese mainly contained proteins and lipids. Food destructuration associated to erosion and hydrolysis were studied using a semi-dynamic protocol simulating a gastrointestinal human digestive cycle. The study was performed on a 1.5 T MRI scanner (Avanto, Siemens). Evolution of morphological and physico-chemical properties of the particules and the liquid were investigated using: 1) 2D T2 maps 2) 3D fat fraction maps obtained by water-fat separation approach and 3) 3D morphological images obtained by ultra short echo time sequence. Combining different MRI image modalities (Fig. 1), it was possible to investigate separately several phases of the digesta, i. e. supernatant, large food pieces (cheese and bread crust) and molecules or small fragments in suspension which laid deposited at the bottom of the vessel during the MRI measurement.
- Published
- 2022
17. Quantitative MRI analysis of structural changes in tomato tissues resulting from dehydration
- Author
-
Leforestier, Rodolphe, primary, Fleury, Anna, additional, Mariette, François, additional, Collewet, Guylaine, additional, Challois, Sylvain, additional, and Musse, Maja, additional
- Published
- 2022
- Full Text
- View/download PDF
18. Genetic parameters and genome-wide association studies of quality traits characterised using imaging technologies in Rainbow trout, Oncorhynchus mykiss
- Author
-
blay, Carole, Haffray, Pierrick, Bugeon, Jérôme, D’Ambrosio, Jonathan, Dechamp, Nicolas, Collewet, Guylaine, Enez, Florian, Petit, Vincent, Cousin, Xavier, Corraze, Geneviève, Phocas, Florence, Dupont-Nivet, Mathilde, Génétique Animale et Biologie Intégrative (GABI), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF), Laboratoire de Physiologie et Génomique des Poissons (LPGP), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Sources de l'Avance, MARine Biodiversity Exploitation and Conservation (UMR MARBEC), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Nutrition, Métabolisme, Aquaculture (NuMéA), Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), This study was supported by the European Maritime andFisheries Fund and FranceAgrimer co-funded this work(OmegaTruite project, n° P FEA 470017FA1000008), and Université Paris-Saclay-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
fat content ,aquaculture ,QTL ,[SDV]Life Sciences [q-bio] ,food and beverages ,magnetic resonance imaging ,Fatmeter ,flesh colour ,computer vision ,genetic correlations - Abstract
International audience; One of the top priorities of the aquaculture industry is the genetic improvement of economically important traits in fish, such as those related to processing and quality. However, the accuracy of genetic evaluations has been hindered by a lack of data on such traits from a sufficiently large population of animals. The objectives of this study were thus threefold: (i) to estimate genetic parameters of growth-, yield-, and quality-related traits in rainbow trout (Oncorhynchus mykiss) using three different phenotyping technologies [invasive and non-invasive: microwave-based, digital image analysis, and magnetic resonance imaging (MRI)], (ii) to detect quantitative trait loci (QTLs) associated with these traits, and (iii) to identify candidate genes present within these QTL regions. Our study collected data from 1,379 fish on growth, yield-related traits (body weight, condition coefficient, head yield, carcass yield, headless gutted carcass yield), and quality-related traits (total fat, percentage of fat in subcutaneous adipose tissue, percentage of fat in flesh, flesh colour); genotypic data were then obtained for all fish using the 57K SNP Axiom® Trout Genotyping array. Heritability estimates for most of the 14 traits examined were moderate to strong, varying from 0.12 to 0.67. Most traits were clearly polygenic, but our genome-wide association studies (GWASs) identified two genomic regions on chromosome 8 that explained up to 10% of the genetic variance (cumulative effects of two QTLs) for several traits (weight, condition coefficient, subcutaneous and total fat content, carcass and headless gutted carcass yields). For flesh colour traits, six QTLs explained 1–4% of the genetic variance. Within these regions, we identified several genes (htr1, gnpat, ephx1, bcmo1, and cyp2x) that have been implicated in adipogenesis or carotenoid metabolism, and thus represent good candidates for further functional validation. Finally, of the three techniques used for phenotyping, MRI demonstrated particular promise for measurements of fat content and distribution, while the digital image analysis-based approach was very useful in quantifying colour-related traits. This work provides new insights that may aid the development of commercial breeding programmes in rainbow trout, specifically with regard to the genetic improvement of yield and flesh-quality traits as well as the use of invasive and/or non-invasive technologies to predict such traits.
- Published
- 2021
19. Spatial and temporal evolution of quantitative magnetic resonance imaging parameters of peach and apple fruit – relationship with biophysical and metabolic traits
- Author
-
Musse, Maja, primary, Bidault, Kévin, additional, Quellec, Stéphane, additional, Brunel, Béatrice, additional, Collewet, Guylaine, additional, Cambert, Mireille, additional, and Bertin, Nadia, additional
- Published
- 2020
- Full Text
- View/download PDF
20. Multi-Exponential Transverse Relaxation Times Estimation From Magnetic Resonance Images Under Rician Noise and Spatial Regularization
- Author
-
Hajj, Christian El, primary, Moussaoui, Said, additional, Collewet, Guylaine, additional, and Musse, Maja, additional
- Published
- 2020
- Full Text
- View/download PDF
21. Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue
- Author
-
Monziols, M., Collewet, Guylaine, Mariette, F., Kouba, M., and Davenel, A.
- Published
- 2005
- Full Text
- View/download PDF
22. MRI study of bread baking: experimental device and MRI signal analysis
- Author
-
Wagner, Muriel J., Loubat, Michel, Sommier, Alain, Le Ray, Dominique, Collewet, Guylaine, Broyart, Bertrand, Quintard, Honoré, Davenel, Armel, Trystram, Gilles, and Lucas, Tiphaine
- Published
- 2008
23. Spaitally Regularized Multi-Exponential Transverse Relaxation Times Estimation From Magnitude Magnetic Resonance Images Under Rician Noise
- Author
-
El Hajj, Christian, Moussaoui, Saïd, Collewet, Guylaine, Musse, Maja, Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE), and Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
- Subjects
Spatial Regular- ization ,Physics::Medical Physics ,Rician noise ,Multi-T2 ,Majoration-Minimization ,Index Terms-Maximum-Likelihood ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; The extraction of multi-exponential decay parameters from multi-temporal images corrupted with Rician noise and with limited time samples proves to be a challenging problem frequently encountered in clinical and food MRI studies. This work aims at proposing a method for the estimation of multi-exponential transverse relaxation times from noisy magnitude MRI images. A spatially regularized Maximum-Likelihood estimator accounting for the Rician distribution of the noise is introduced. To deal with the large-scale optimization problem , a Majoration-Minimization approach coupled with an adapted non-linear least squares algorithm is implemented. The proposed algorithm is numerically fast, stable and leads to accurate results. Its effectiveness is illustrated by an application to a simulated phantom and to magnitude multi spin echo MRI images acquired from a tomato sample.
- Published
- 2019
24. Reconstruction et classification des temps de relaxation multi-exponentielle en IRM
- Author
-
El Hajj, Christian, Moussaoui, Saïd, Collewet, Guylaine, Musse, Maja, Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), and Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
- Subjects
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; -Extracting and interpreting multi-exponential relaxation time maps from noisy magnitude MRI images is an ill posed problem that requires solving a large scale inverse problem. A spatially regularized Maximum-Likelihood estimator accounting for the Rician distribution of the noise is introduced. To deal with the large-scale optimization problem, a Majoration-Minimization approach coupled with an adapted non-linear least squares algorithm is implemented. Also, we propose a method for the detection of fruit tissues and their T2 distributions using an unsupervised classification method.; L'obtention puis l'exploitation des cartographies des temps de relaxation multi-exponentielles à l'échelle d'une image entière, à partir des données IRM bruitées de module, nécessite la résolution d'un problème inverse de grande taille. Nous proposons une reconstruction précise des cartographies T2 multi-exponentielles et des intensités relatives associées à l'échelle du voxel. Cette méthode de reconstruction est fondée sur l'estimateur du maximum de vraisemblance exploitant l'hypothèse d'un bruit de Rice et une régularisation spatiale favorisant la régularité des cartographies. Le problème d'optimisation en grande dimension qui en résulte est résolu en utilisant une approche de majoration-minimisation. Enfin, nous proposons une méthode de caractérisation des tissus végétaux à partir des paramètres estimés en utilisant un algorithme de classification non supervisée
- Published
- 2019
25. Fruit tissues classification from multi-exponential T2 maps
- Author
-
El-Hajj, Christian, Collewet, Guylaine, Musse, Maja, Moussaoui, Saïd, Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université de Nantes - Faculté des Sciences et des Techniques, and Moussaoui, Saïd
- Subjects
RICIAN NOISE ,RELAXATION TRANSVERSALE ,SPATIALLY REGULARIZED ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Water status in vegetal cells can be studied using Mutli-exponential NMR relaxation parameters. An original method improving the estimation of the transverse relaxation times from magnitude Magnetic Resonance Images (MRI) has been recently proposed1. In this method, the extraction of the T2 and I0 maps from MRI images, acquired with a multi-spin echo sequence2, is carried out using a spatially regularized optimization algorithm accounting for the Rician noise. K-means clustering is applied to the results in order to regroup voxels with similar T2 and I0 values by classes. To study the distribution of T2 values inside each class, graphs of I0 values in function of their corresponding T2 values are plotted for each class. The main composition of the fruit can be seen, with each class representing a water compartment with different T2 and I0 distributions.
- Published
- 2018
26. Spatially regularized multi-exponential transverse relaxation times estimation from magnitude MRI images under Rician noise
- Author
-
El Hajj, Christian, Collewet, Guylaine, Musse, Maja, Moussaoui, Saïd, Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
- Subjects
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Synopsis This work aims at improving the estimation of multi-exponential transverse relaxation times from noisy magnitude MRI images. A spatially regularized Maximum-Likelihood estimator accounting for the Rician distribution of the noise was introduced. This approach is compared to a Rician corrected least-square criterion with the introduction of spatial regularization. To deal with the large-scale optimization problem, a majoration-minimization approach was used, allowing the implementation of both the maximum-likelihood estimator and the spatial regularization. The importance of the regularization alongside the rician noise incorporation is shown both visually and numerically on magnitude MRI images acquired on fruit samples. Purpose Multi-exponential relaxation times and their associated amplitudes in an MRI image provide very useful information for assessing the constituents of the imaged sample. Typical examples are the detection of water compartments of plant tissues and the quanti cation of myelin water fraction for multiple sclerosis disease diagnosis. The estimation of the multi-exponential signal model from magnitude MRI images faces the problem of a relatively low signal to noise ratio (SNR), with a Rician distributed noise and a large-scale optimization problem when dealing with the entire image. Actually, maps are composed of coherent regions with smooth variations between neighboring voxels. This study proposes an e cient reconstruction method of values and amplitudes from magnitude images by incorporating this information in order to reduce the noise e ect. The main feature of the method is to use a regularized maximum likelihood estimator derived from a Rician likelihood and a Majorization-Minimization approach coupled with the Levenberg-Marquardt algorithm to solve the large-scale optimization problem. Tests were conducted on apples and the numerical results are given to illustrate the relevance of this method and to discuss its performances. Methods For each voxel of the MRI image, the measured signal at echo time is represented by a multi-exponential model: with The data are subject to an additive Gaussian noise in the complex domain and therefore magnitude MRI data follows a Rician distribution : is the rst kind modi ed Bessel function of order 0 and is the standard deviation of the noise which is usually estimated from the image background. For an MRI image with voxels, the model parameters are usually estimated by minimizing the least-squares (LS) criterion under the assumption of a Gaussian noise using nonlinear LS solvers such as Levenberg-Marquardt (LM). However, this approach does not yield satisfying results when applied to magnitude data. Several solutions to overcome this issue are proposed by adding a correction term to the LS criterion. In this study, the retained correction uses the expectation value of data model under the hypothesis of Rician distribution since it outperforms the other correction strategies: stands for the sum of squares. We refer to this method as Rician corrected LS (RCLS). A more direct way for solving this estimation problem is to use a maximum likelihood (ML) estimator which comes down to minimize: To solve this optimization problem when dealing with the entire image, a majorization-minimization (MM) technique was adopted. The resulting MM-ML algorithm is summarized in gure 1, the LM algorithm used in this method minimizes a set of LS criteria derived from the quadratic majorization strategy. A spatial regularization term based on a cost function was also added to both criteria (and) to ensure spatial smoothness of the estimated maps. In order to reduce the numerical complexity by maintaining variable separability between each voxel and it's neighboring voxels , the function is majorized by : where stands for the iteration number of the iterative optimization algorithm.
- Published
- 2018
27. Multi-Exponential Relaxation Times Maps Reconstruction and Unsupervised Classification in Magnitude Magnetic Resonance Imaging
- Author
-
HAJJ, Christian EL, primary, MOUSSAOUI, Said, additional, COLLEWET, Guylaine, additional, and MUSSE, Maja, additional
- Published
- 2019
- Full Text
- View/download PDF
28. Spatially Regularized Multi-Exponential Transverse Relaxation Times Estimation from Magnitude Magnetic Resonance Images Under Rician Noise
- Author
-
EL HAJJ, Christian, primary, MOUSSAOUI, Said, additional, COLLEWET, Guylaine, additional, and MUSSE, Maja, additional
- Published
- 2019
- Full Text
- View/download PDF
29. Spatial and temporal evolution of quantitative magnetic resonance imaging parameters of peach and apple fruit – relationship with biophysical and metabolic traits.
- Author
-
Musse, Maja, Bidault, Kévin, Quellec, Stéphane, Brunel, Béatrice, Collewet, Guylaine, Cambert, Mireille, and Bertin, Nadia
- Subjects
MAGNETIC resonance imaging ,PEACH ,APPLES ,FRUIT ,FRUIT composition ,FRUIT development ,WATER distribution - Abstract
SUMMARY: Fruits are complex organs that are spatially regulated during development. Limited phenotyping capacity at cell and tissue levels is one of the main obstacles to our understanding of the coordinated regulation of the processes involved in fruit growth and quality. In this study, the spatial evolution of biophysical and metabolic traits of peach and apple fruit was investigated during fruit development. In parallel, the multi‐exponential relaxation times and apparent microporosity were assessed by quantitative magnetic resonance imaging (MRI). The aim was to identify the possible relationships between MRI parameters and variations in the structure and composition of fruit tissues during development so that transverse relaxation could be proposed as a biomarker for the assessment of the structural and functional evolution of fruit tissues during growth. The study provides species‐specific data on developmental and spatial variations in density, cell number and size distribution, insoluble and soluble compound accumulation and osmotic and water potential in the fruit mesocarp. Magnetic resonance imaging was able to capture tissue evolution and the development of pericarp heterogeneity by accessing information on cell expansion, water status and distribution at cell level, and microporosity. Changes in vacuole‐related transverse relaxation rates were mostly explained by cell/vacuole size. The impact of cell solute composition, microporosity and membrane permeability on relaxation times is also discussed. The results demonstrate the usefulness of MRI as a tool to phenotype fruits and to access important physiological data during development, including information on spatial variability. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
30. High-throughput phenotyping of health biomarkers in Crassostrea gigas by magnetic resonance imaging
- Author
-
Francois, Cyrille, Quellec, Stéphane, Collewet, Guylaine, Peyramaure, Paul, Musse, Maja, Lamy, Jean-baptiste, Sauriau, Pierre-guy, and Haure, Joel
- Abstract
High-throughput phenotyping of shellfish’s traits constitutes a challenge due to the specificities of aquatic animals. Appropriate measuring tools have often to be developed or adapted, in order to continuously and automatically acquire data of biomarkers of interest. IMAGIGAS project aimed to explore a non-destructive and non-invasive approach by using magnetic resonance imaging (MRI) to monitor at high-throughput two biomarkers (body weight and temperature) of the pacific oyster, before and during infectious challenges by Ostreid Herpesvirus type 1 (OsHV-1). Pacific oysters and OsHV-1 suspension and contaminated seawater were produced at Ifremer facilities. The experiments were conducted in 2016-2017 by three staffs (Ifremer LGPMM, Irstea IRM Food, Université de La Rochelle LIENSs) at PRISM platform of Irstea at Rennes who provided a Siemens Avanto 1,5 T MRI. One objective was to monitor body weight of numerous individuals. Protocols were inspired by previous Ifremer / Irstea collaborative works and allowed to increase the throughput of measure to 69 oysters every 45 minutes. The estimation of body weight is based on a relation established between the sum of pixels whose grey level is greater than a particular value in pictures taken by MRI and the weight of drained then lyophilized flesh of oysters measured by precision balance. Each development experiments were completed by application experiments with infection of oysters by OsHV-1 and measures of body weight.
- Published
- 2017
31. Estimating fat, paste and gas in a proving Danish paste by MRI – Description of the method and evaluation of its performances (bias and accuracy, sensitivity threshold)
- Author
-
Collewet, Guylaine, Perrouin, Vincent, Deligny, Cécile, Idier, Jérôme, Lucas, Tiphaine, Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (Polytech Nantes), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), and Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN)
- Subjects
spin echo ,noise ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,food ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,regularisation ,proving ,conjugate gradient ,image restoration ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,quantification ,MRI ,puff pastry - Abstract
This paper presents a method to characterize the development of the structures of puff pastries during proving using MRI. Since the resolution is large, each pixel contains an unknown proportion of three components: fat, paste and gas. The signal to noise ratio is low since gas which reaches 80% at the end of proving gives no signal. The signal is the sum of reference signals, corresponding to pixels filled with one component, weighted by the proportions. The reference signals were supposed to be known. We adopted an edge-preserving approach based on the minimization of a penalized least-square criterion. This criterion is the weighted sum of a term accounting for the fidelity to data and a regularization term. The minimization of the criterion is based on a non-linear conjugate gradient algorithm. The settings of the weights of the two terms is based on simulations. Then simulation results are presented. The mean error was similar with or without regularization and depended on the components and their proportion (less that 1% up to 6%). Fat and gas proportions were overestimated, paste proportion was underestimated. The dispersion of the results was lower with regularization (from 0.3% up to 1.5 %). Monte-Carlo simulations showed that these results were not influenced very much by the uncertainty on the reference signals at the end of the proving. Larger uncertainties were found at the beginning of proving. We showed that the regularization of the solutions did improve the visualization of the structures confirming the interest of this approach.We also found that layers down to 40 microns thick and bubbles of which size exceeded 2.5mm could be easily distinguished in fat and gas proportion maps respectively. Experiments on genuine MRI images of Danish paste confirmed the results obtained with the simulation study. We were able to validate the method at the scale of the Danish paste by observing the evolution of the sum of the fat proportion over time, as well as the evolution of the gas content compared with the evolution of the size of the pastry. This confirmed the possibility to use the method to study the proving of a Danish paste.
- Published
- 2016
32. Majorization-minimization algorithms for maximum likelihood estimation of magnetic resonance images
- Author
-
Jiang, Qianyi, primary, Moussaoui, Said, additional, Idier, Jerome, additional, Collewet, Guylaine, additional, and Xu, Mai, additional
- Published
- 2017
- Full Text
- View/download PDF
33. Properties of Fisher information for Rician distributions and consequences in MRI
- Author
-
Idier, Jérôme, Collewet, Guylaine, Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (Polytech Nantes), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), Technologie des équipements agroalimentaires (UR TERE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université européenne de Bretagne - European University of Brittany (UEB), and Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN)
- Subjects
Fisher information ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Cramér-Rao lower bound ,Rician distribution ,maximum likelihood estimation ,Magnetic resonance imaging (MRI) ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,multiple-receiver coils - Abstract
In magnetic resonance imaging, it is usual to perform several repeated acquisitions in order to reduce the impact of the noise on the evaluation of the average signal intensity. The main goal of this paper is to examine whether it is preferable to consider the magnitude of each complex measurement, or the single magnitude of the averaged data at each voxel. A thorough information theoretic study is proposed, which shows that the second option is preferable in all cases. In order to reach such a conclusion, several properties of the Fisher information of Rician distributions are proved, the main mathematical result being that it is an increasing function of the signal intensity, at constant noise level, when the latter is known. The case of an unknown noise level is also considered, with essentially the same conclusion. We also propose a more empirical comparison involving maximum likelihood estimation from simulated data, which is in agreement with the information theoretic analysis. Finally, an extension to imaging systems where multiple-receiver coils are employed is considered.
- Published
- 2014
34. Genetic parameters of lipids heterogeneity estimated by direct (MRI) or indirect (artificial vision, Fat meter) technologies in the fillet of large rainbow trout
- Author
-
Chevrel, Adrien, Quittet, Benjamin, Cachelou, Frédéric, Collewet, Guylaine, Vandeputte, Marc, Dupont-Nivet, Mathilde, Bugeon, Jérôme, Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF), Viviers de Sarrance, Technologie des équipements agroalimentaires (UR TERE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université de Brest (UBO), Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Laboratoire de Physiologie et Génomique des Poissons (LPGP), Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), and Syndicats des sélectionneurs avicoles et aquacoles français (SYSAAF)
- Subjects
analyse de données ,endocrine system ,vision artificielle ,animal structures ,animal diseases ,[SDV]Life Sciences [q-bio] ,data analysis ,analyse d'image ,paramètre génétique ,digestive system ,computer vision ,inhomogeneity ,poisson ,lipid ,rainbow ,salmonids ,hétérogénéité ,croissance animale ,filet de poisson ,lipide ,fish ,salmonidae ,trout ,oncorhynchus mykiss ,urogenital system ,fish fillets ,rainbow trout ,genetic variance ,animal growth ,truite arc en ciel - Abstract
Genetic parameters of lipids heterogeneity estimated by direct (MRI) or indirect (artificial vision, Fat meter) technologies in the fillet of large rainbow trout. Aquaculture conference: To the Next 40 Years of Sustainable Global Aquaculture
- Published
- 2013
35. Genetic parameters of lipids heterogeneity estimated by direct (MRI) or indirect (artificial vision, Fat meter) technologies in the fillet of large rainbow trout
- Author
-
Haffray, Pierrick, Chevrel, Adrien, Quittet, Benjamin, Cachelou, Frédéric, Collewet, Guylaine, Vandeputte, Marc, Dupont-Nivet, Mathilde, Bugeon, Jérôme, Laboratoire de Physiologie et Génomique des Poissons (LPGP), Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Syndicats des sélectionneurs avicoles et aquacoles français (SYSAAF), Viviers de Sarrance, Technologie des équipements agroalimentaires (UR TERE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université de Brest (UBO), Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, Institut National de la Recherche Agronomique (INRA), VIVIERS DE SARRENCE FRA, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Irstea Publications, Migration, Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Institut National de la Recherche Agronomique (INRA), and Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF)
- Subjects
[SDE] Environmental Sciences ,analyse de données ,endocrine system ,vision artificielle ,animal structures ,GENETICS ,animal diseases ,[SDV]Life Sciences [q-bio] ,data analysis ,analyse d'image ,paramètre génétique ,digestive system ,computer vision ,inhomogeneity ,poisson ,rainbow ,lipid ,salmonids ,hétérogénéité ,croissance animale ,filet de poisson ,lipide ,fish ,salmonidae ,trout ,oncorhynchus mykiss ,urogenital system ,fish fillets ,rainbow trout ,VISION ,FATMETER ,[SDE]Environmental Sciences ,genetic variance ,LIPIDS ,IRM ,MRI ,animal growth ,truite arc en ciel - Abstract
International audience; Introduction Fish selection for/or against fillet fatness required sib selection to measure lipids in the fillets or alternative indirect technologies usable on live candidates. Genetic parameters of different fillet adiposity components were evaluated by MRI (total fat; dorsal or ventral subcutaneous fat representing different trimming losses), artificial vision with A3 scanner (myosepta surfaces, dorsal or ventral or subcutaneous fat) and Fat Meter (external indirect measure applicable on live fish) technologies to optimize sib or individual selection on fillet adiposity. Methods 1625 rainbow trout from a partial factorial mating design of 90 dams x 100 sires (900 families) were slaughtered at 18 months old (1580g), processed and pedigree assigned with microsatellites. Genetic parameters were estimated with animal model (VCE). Results Heritabilities of myosepta (0.15-0.29) and adipose tissues surfaces (0.37-0.43) estimated with artificial vision are intermediates, as those of Fat Meter measures (0.38-0.45). Heritabilities of the total fat in the fillet or of the subcutaneous fat reported to the total surface of the cutlet or the dorsal or ventral related surfaces estimated with MRI were highest (h2> 0.60). The genetic correlations between total fat and the relative surface of subcutaneous fat are intermediate (0.64) and higher between the Fat Meter measure and the relative subcutaneous fat surface (0.77) than the total fat (0.43). Discussion All components of the fillet adiposity exhibited intermediate heritability. The two time lower heritability of the Fat Meter measure in this experiment and its intermediate genetic correlation with the total fat of the fillet is making selection on this indirect trait less efficient than selection on sibs. The high genetic correlation with the relative subcutaneous fat informed that the Fat Meter estimates mostly this later trait in large rainbow trout. MRI and artificial vision technologies are then recommended for more efficient selection programs in large fish to manipulate filet adiposity of trimming yields.
- Published
- 2013
36. L'IRM s'aventure hors des sentiers du monde médical
- Author
-
Mariette, François, Rodts, Stéphane, FAURE, PAMELA, Moucheront, Pascal, Musse, Maja, Davenel, Armel, Collewet, Guylaine, Lucas, Tiphaine, Technologie des équipements agroalimentaires (UR TERE), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), Physique des milieux poreux, Laboratoire Navier (navier umr 8205), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS), and Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,porosity ,plant tissue ,muscle ,cement based materials ,flux ,porous media ,process engineering ,fat ,flow ,heat transfer ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,mater transfer ,MRI - Abstract
National audience; L'agroalimentaire et le génie civil constituent deux domaines d'applications très particuliers pour l'imagerie par résonance magnétique (IRM). Essentiellement axées sur les problèmes d'élaboration, de conditionnement et d'évolution de produits et de matériaux en contexte industriel, les études doivent souvent être menées sur des échantillons massifs. Elles mettent en oeuvre des imageurs de grande taille et réclament le développement de méthodologies spécifiques par rapport aux applications médicales. Des systèmes originaux d'instrumentation et de sollicitation in situ des matériaux ont pu être conçus dans ce cadre, nourris par des collaborations étroites entre différents corps de métiers. Deux laboratoires, l'Unité Technologie des équipements agroalimentaires de l'Irstea et le Laboratoire Navier de l'Université Paris-Est, livrent leur témoignage, fruit de plusieurs années d'expertise. Food-processing and civil engineering are very particular application fields for magnetic resonance imaging (MRI). Studies mainly focus on preparation, packaging, and further evolution of products and materials in industry. They are often carried out on massive samples. They involve the use of large MRI facilities, and require the development of specific methodology as compared with routine medical studies. Stimulating close collaborations between various technical specialties, they saw the raise of original experimental setups for in situ measurements and sample solicitations. Two French laboratories, the " Technologie des équipements agroalimentaires " Unity at Irstea and " Laboratoire Navier " at Paris-Est University, report on their long standing expertise.
- Published
- 2012
37. 'Qualitytruite' : l'IRM comme méthode de quantification rapide du gras intramusculaire et du tissu adipeux sous cutané des darnes de truite arc-en-ciel (Oncorhynchus mykiss)
- Author
-
Collewet, Guylaine, Bugeon, Jérôme, Idier, Jérôme, Quellec, Stéphane, Quittet, Benjamin, Cambert, Mireille, Haffray, Pierrick, Vandeputte, Marc, Dupont-Nivet, Mathilde, Technologie des équipements agroalimentaires (UR TERE), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Station commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement (SCRIBE), Institut National de la Recherche Agronomique (INRA)-IFR140, Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (Polytech Nantes), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), UR TERRE - 17 Avenue de Cucillé - CS 64427, Laboratoire de Physiologie et Génomique des Poissons (LPGP), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Institut National de la Recherche Agronomique (INRA), Génétique Animale et Biologie Intégrative (GABI), AgroParisTech-Institut National de la Recherche Agronomique (INRA), OFIMER-FEP-CIPA, Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, and Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
[SDV.BA]Life Sciences [q-bio]/Animal biology - Abstract
Le but du projet était d’évaluer chez la truite arc-en-ciel la faisabilité du dosage de la teneur en lipides intramusculaires et de la surface de gras sous cutané par Imagerie en Résonance Magnétique (IRM) sur des darnes entières après décongélation. La possibilité d’analyser plusieurs darnes simultanément dans l’IRM a été validée en utilisant un support spécifique pour disposer les darnes au sein de l’imageur. Un modèle de correction du signal permet de pallier l’inhomogénéité du signal dans l’espace de mesure. La comparaison de la teneur en lipides de darnes fraîches et décongelées avec un dosage RMN met en évidence de très bonnes corrélations avec une erreur moyenne de 0.8 et 0.89% respectivement. Ce qui démontre que la congélation ne dégrade pas la précision du dosage. La surface de gras sous cutané mesurée en IRM et en vision numérique présente de bonnes corrélations R²=0.77 et 0.87 respectivement pour les tissus adipeux ventraux et dorsaux.
- Published
- 2012
38. QualityTruite 2. Optimisation des nouveaux programmes de sélection généalogique de type Prosper+ sur les rendements de découpe et la qualité de la chair
- Author
-
Haffray, Pierrick, Chapuis, Hervé, Quittet, Benjamin, Pincent, Cédric, Cachelou, Frédéric, Collewet, Guylaine, Levadoux, Marine, Bugeon, Jérôme, Vandeputte, Marc, Dupont-Nivet, Mathilde, Syndicats des sélectionneurs avicoles et aquacoles français (SYSAAF), Viviers de Sarrance, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Comité Interprofessionnel des Produits de l'Aquaculture (CIPA), Laboratoire de Physiologie et Génomique des Poissons (LPGP), Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, FranceAgriMer, Absent, Syndicat des Sélectionneurs Avicoles et Aquacoles Français (SYSAAF), Station commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement (SCRIBE), Institut National de la Recherche Agronomique (INRA), and Commanditaire : FranceAgriMer (France)
- Subjects
VISION NUMERIQUE ,GENETIQUE ANIMALE ,RENDEMENT DE DECOUPE ,[SDV]Life Sciences [q-bio] ,GENETIQUE ,SALMONIDE ,IRM - Abstract
absent
- Published
- 2011
39. Correction of RF inhomogeneities for high throughput water and fat quantification by MRI
- Author
-
Picaud, Julien, primary, Collewet, Guylaine, additional, and Idier, Jerome, additional
- Published
- 2015
- Full Text
- View/download PDF
40. Compensation of MRI images for intensity inhomogeneities and noise. Application to food products analysis
- Author
-
Collewet, Guylaine, Technologie des équipements agroalimentaires (UR TERE), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), Ecole Centrale de Nantes (ECN), and Jérôme Idier(jerome.idier@irccyn.ec-nantes.fr)
- Subjects
EXPERIMENT PLAN ,INHOMOGENEITE ,CRITERE PENALISE ,CONJUGATE GRADIENT ,INHOMOGENEITY ,NOISE ,PLANIFICATION EXPERIENCE ,BRUIT ,GRADIENT CONJUGUE. PROBLEMES INVERSES ,T1-WEIGHTED ,PENALIZED CRITERION ,INVERSE PROBLEM ,IRM ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,PONDERATION T1 ,MRI - Abstract
Magnetic resonance imaging (MRI) is a non-invasive modality designed for clinical diagnosis. Other domains also exploit this technique, such as food products analysis. The applicative aim of our work is the study of the repartition of fat tissues in fish. We are particularly interested in the quantification of the tissues. An accurate quantification requires the denoising of the images and the correction of the intensity inhomogeneities due to the spatial variation of the radiofrequency magnetic field (RF). We use T1-weighted images. In this case, the effects of the RF inhomogeneities are complex since the bias that is induced in the images depends on the tissue. The proposed method takes place in the inverse problem framework where denoising and correcting are tackled jointly. It is based on a physical model of the MRI signal and a model of the sample considered as made of a finite number of tissues. The method relies on the minimisation of a penalised criterion. This criterion consists of a data-fitting term added with regularisation terms in order to ensure spatially smooth solutions while preserving the edges in the image. The method needs several images acquired with different protocols. The minimisation is based on a block-coordinate descent approach where each block consists in iterations of the conjugate gradient algorithm. Results obtained on images of fish validate our approach. We also present preliminary results on the optimisation of the choice of the protocols which lead to the best estimation of the variables. These results rely on the theory of experiment planning.; L'imagerie par résonance magnétique (IRM) est une modalité non-invasive développée pour le diagnostic clinique. D'autres domaines se sont approprié cette technique, comme l'analyse de produits agroalimentaires. Le cadre applicatif de nos travaux est l'étude de la répartition des tissus adipeux chez le poisson en IRM bas champ. Au-delà de la visualisation, c'est la quantification des tissus qui nous intéresse ici. Une quantification précise requiert le débruitage des images et la correction des inhomogénéités d'intensité liées à la variation spatiale du champ magnétique radiofréquence (RF). En IRM pondérée-T1 utilisée ici, les inhomogénéités de la RF ont un effet complexe et introduisent un biais qui dépend du tissu en présence. La méthode proposée aborde de façon unifiée la correction et le débruitage dans le cadre de la résolution des problèmes inverses. Elle prend en compte un modèle de biais issu de la physique de l'IRM auquel s'ajoute un modèle de l'échantillon vu comme une somme pondérée de tissus. La méthode est basée sur la minimisation d'un critère pénalisé comprenant des termes d'attache aux données et des termes de régularisation assurant des solutions spatialement lisses tout en conservant les contours dans l'image. Elle impose d'acquérir plusieurs images avec des protocoles différents. La minimisation est basée sur une résolution par blocs de variables, chaque bloc faisant appel à l'algorithme du gradient conjugué. Des résultats obtenus sur des images de poisson valident l'approche. Nous présentons de plus les résultats préliminaires d'une démarche de planification d'expérience pour choisir les protocoles permettant une estimation optimale des variables.
- Published
- 2008
41. Débruitage et correction du biais non multiplicatif en IRM pondérée T1
- Author
-
Collewet, Guylaine, Idier, Jérôme, Technologie des équipements agroalimentaires (UR TERE), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), and Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
CORRECTION D'INHOMOGENEITES ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,GRADIENT CONJUGUE ,GAUSS SEIDEL ,DEBRUITAGE ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,PONDERATION T1 ,IRM - Abstract
International audience; Nous proposons une méthode pour réduire le bruit dans les images IRM et éliminer les effets des inhomogénéités spatiales des antennes d'émission et de réception de la radiofréquence (RF). Nous traitons particulièrement le cas des images pondérées T1 acquises en IRM bas champ. Le biais engendré par l'inhomogénéité spatiale dela RF en émission dépend du tissu imagé. Il ne peut être considéré comme purement multiplicatif et indépendant du contenu de l'image. Afin de le corriger, nous considérons que chaque voxel contient un mélange des tissus susceptibles d'être présents dans l'image. Le signal IRM est modélisé par la somme pondérée des signaux de chaque tissu. Le nombre de tissus ainsi que certaines caractéristiques RMN des tissus sont supposés connus. Plusieurs images, acquises avec des paramètres d'acquisition différents, sont nécessaires. Un critère des moindres carrés pénalisé est utilisé afin d'estimer les inhomogénéités de la RF en émission, en réception ainsi que la proportion des tissus. La minimisation de ce critère est réalisée à l'aide du gradient conjugué utilisé dans un schéma itératif de type Gauss-Seidel par blocs. Des résultats obtenus sur des images simulées puis réelles sont présentés.
- Published
- 2008
42. Quantification des tissus musculaire et adipeux dans les carcasses et les pièces de découpe de porc à l'aide de l'imagerie par résonance magnétique
- Author
-
Monziols, Mathieu, Collewet, Guylaine, Bonneau, Michel, Mariette, François, Davenel, Armel, Kouba, Marilyne, Systèmes d'Elevage, Nutrition Animale et Humaine (SENAH), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Rennes, and Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
- Subjects
TISSU MUSCULAIRE ,[SDV]Life Sciences [q-bio] ,IMAGERIE ,RESONANCE MAGNETIQUE ,[INFO]Computer Science [cs] ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2005
43. Quantitative MRI in Food Science & Food Engineering
- Author
-
Mariette, François, primary, Collewet, Guylaine, additional, Davenel, Armel, additional, Lucas, Tiphaine, additional, and Musse, Maja, additional
- Published
- 2012
- Full Text
- View/download PDF
44. Description of the heterogeneity of lipid distribution in the flesh of brown trout (Salmo trutta) by MR imaging
- Author
-
Toussaint, Caroline, primary, Fauconneau, Benoît, additional, Médale, Françoise, additional, Collewet, Guylaine, additional, Akoka, Serge, additional, Haffray, Pierrick, additional, and Davenel, Armel, additional
- Published
- 2005
- Full Text
- View/download PDF
45. Compensation of MRI T1-weighted spin-echo images for radio-frequency inhomogeneities.
- Author
-
Collewet, Guylaine and Idier, Jerome
- Published
- 2006
46. Genetic Parameters and Genome-Wide Association Studies of Quality Traits Characterised Using Imaging Technologies in Rainbow Trout, Oncorhynchus mykiss .
- Author
-
Blay C, Haffray P, Bugeon J, D'Ambrosio J, Dechamp N, Collewet G, Enez F, Petit V, Cousin X, Corraze G, Phocas F, and Dupont-Nivet M
- Abstract
One of the top priorities of the aquaculture industry is the genetic improvement of economically important traits in fish, such as those related to processing and quality. However, the accuracy of genetic evaluations has been hindered by a lack of data on such traits from a sufficiently large population of animals. The objectives of this study were thus threefold: (i) to estimate genetic parameters of growth-, yield-, and quality-related traits in rainbow trout ( Oncorhynchus mykiss ) using three different phenotyping technologies [invasive and non-invasive: microwave-based, digital image analysis, and magnetic resonance imaging (MRI)], (ii) to detect quantitative trait loci (QTLs) associated with these traits, and (iii) to identify candidate genes present within these QTL regions. Our study collected data from 1,379 fish on growth, yield-related traits (body weight, condition coefficient, head yield, carcass yield, headless gutted carcass yield), and quality-related traits (total fat, percentage of fat in subcutaneous adipose tissue, percentage of fat in flesh, flesh colour); genotypic data were then obtained for all fish using the 57K SNP Axiom
® Trout Genotyping array. Heritability estimates for most of the 14 traits examined were moderate to strong, varying from 0.12 to 0.67. Most traits were clearly polygenic, but our genome-wide association studies (GWASs) identified two genomic regions on chromosome 8 that explained up to 10% of the genetic variance (cumulative effects of two QTLs) for several traits (weight, condition coefficient, subcutaneous and total fat content, carcass and headless gutted carcass yields). For flesh colour traits, six QTLs explained 1-4% of the genetic variance. Within these regions, we identified several genes ( htr1 , gnpat , ephx1 , bcmo1 , and cyp2x ) that have been implicated in adipogenesis or carotenoid metabolism, and thus represent good candidates for further functional validation. Finally, of the three techniques used for phenotyping, MRI demonstrated particular promise for measurements of fat content and distribution, while the digital image analysis-based approach was very useful in quantifying colour-related traits. This work provides new insights that may aid the development of commercial breeding programmes in rainbow trout, specifically with regard to the genetic improvement of yield and flesh-quality traits as well as the use of invasive and/or non-invasive technologies to predict such traits., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Blay, Haffray, Bugeon, D’Ambrosio, Dechamp, Collewet, Enez, Petit, Cousin, Corraze, Phocas and Dupont-Nivet.)- Published
- 2021
- Full Text
- View/download PDF
47. Multi-exponential Transverse Relaxation Times Estimation from Magnetic Resonance Images under Rician Noise and Spatial Regularization.
- Author
-
El-Hajj C, Moussaoui S, Collewet G, and Musse M
- Abstract
Relaxation signal inside each voxel of magnetic resonance images (MRI) is commonly fitted by a multi-exponential decay curve. The estimation of a discrete multi-component relaxation model parameters from magnitude MRI data is a challenging nonlinear inverse problem since it should be conducted on the entire image voxels under non-Gaussian noise statistics. This paper proposes an efficient algorithm allowing the joint estimation of relaxation time values and their amplitudes using different criteria taking into account a Rician noise model, combined with a spatial regularization accounting for low spatial variability of relaxation time constants and amplitudes between neighboring voxels. The Rician noise hypothesis is accounted for either by an adapted nonlinear least squares algorithm applied to a corrected least squares criterion or by a majorization-minimization approach applied to the maximum likelihood criterion. In order to solve the resulting large-scale non-negativity constrained optimization problem with a reduced numerical complexity and computing time, an optimization algorithm based on a majorization approach ensuring separability of variables between voxels is proposed. The minimization is carried out iteratively using an adapted Levenberg-Marquardt algorithm that ensures convergence by imposing a sufficient decrease of the objective function and the non-negativity of the parameters. The importance of the regularization alongside the Rician noise incorporation is shown both visually and numerically on a simulated phantom and on magnitude MRI images acquired on fruit samples.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.