1. Thermostable Bacterial Collagenolytic Proteases: A Review.
- Author
-
Zhang K and Han Y
- Subjects
- Proteolysis, Hot Temperature, Peptide Hydrolases metabolism, Peptide Hydrolases chemistry, Peptide Hydrolases genetics, Collagenases metabolism, Collagenases chemistry, Collagenases genetics, Collagenases isolation & purification, Collagen metabolism, Enzyme Stability, Bacterial Proteins metabolism, Bacterial Proteins chemistry, Bacterial Proteins genetics, Bacteria enzymology, Bacteria genetics
- Abstract
Collagenolytic proteases are widely used in the food, medical, pharmaceutical, cosmetic, and textile industries. Mesophilic collagenases exhibit collagenolytic activity under physiological conditions, but have limitations in efficiently degrading collagen-rich wastes, such as collagen from fish scales, at high temperatures due to their poor thermostability. Bacterial collagenolytic proteases are members of various proteinase families, including the bacterial collagenolytic metalloproteinase M9 and the bacterial collagenolytic serine proteinase families S1, S8, and S53. Notably, the C-terminal domains of collagenolytic proteases, such as the pre-peptidase C-terminal domain, the polycystic kidney disease-like domain, the collagen-binding domain, the proprotein convertase domain, and the β-jelly roll domain, exhibit collagen-binding or -swelling activity. These activities can induce conformational changes in collagen or the enzyme active sites, thereby enhancing the collagen-degrading efficiency. In addition, thermostable bacterial collagenolytic proteases can function at high temperatures, which increases their degradation efficiency since heat-denatured collagen is more susceptible to proteolysis and minimizes the risk of microbial contamination. To date, only a few thermophile-derived collagenolytic proteases have been characterized. TSS, a thermostable and halotolerant subtilisin-like serine collagenolytic protease, exhibits high collagenolytic activity at 60°C. In this review, we present and summarize the current research on A) the classification and nomenclature of thermostable and mesophilic collagenolytic proteases derived from diverse microorganisms, and B) the functional roles of their C-terminal domains. Furthermore, we analyze the cleavage specificity of the thermostable collagenolytic proteases within each family and comprehensively discuss the thermostable collagenolytic protease TSS.
- Published
- 2024
- Full Text
- View/download PDF