9 results on '"Colón-Gaud C"'
Search Results
2. Disease-Driven Amphibian Declines Alter Ecosystem Processes in a Tropical Stream
- Author
-
Whiles, M. R., primary, Hall, R. O., additional, Dodds, W. K., additional, Verburg, P., additional, Huryn, A. D., additional, Pringle, C. M., additional, Lips, K. R., additional, Kilham, S. S., additional, Colón-Gaud, C., additional, Rugenski, A. T., additional, Peterson, S., additional, and Connelly, S., additional
- Published
- 2012
- Full Text
- View/download PDF
3. Evidence for the persistence of food web structure after amphibian extirpation in a Neotropical stream
- Author
-
Barnum, T. R., Drake, J. M., Colón-Gaud, C., Rugenski, A. T., Frauendorf, T. C., Connelly, S., Kilham, S. S., Whiles, M. R., Karen Lips, and Pringle, C. M.
4. Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics.
- Author
-
Boyero L, López-Rojo N, Tonin AM, Pérez J, Correa-Araneda F, Pearson RG, Bosch J, Albariño RJ, Anbalagan S, Barmuta LA, Basaguren A, Burdon FJ, Caliman A, Callisto M, Calor AR, Campbell IC, Cardinale BJ, Jesús Casas J, Chará-Serna AM, Chauvet E, Ciapała S, Colón-Gaud C, Cornejo A, Davis AM, Degebrodt M, Dias ES, Díaz ME, Douglas MM, Encalada AC, Figueroa R, Flecker AS, Fleituch T, García EA, García G, García PE, Gessner MO, Gómez JE, Gómez S, Gonçalves JF Jr, Graça MAS, Gwinn DC, Hall RO Jr, Hamada N, Hui C, Imazawa D, Iwata T, Kariuki SK, Landeira-Dabarca A, Laymon K, Leal M, Marchant R, Martins RT, Masese FO, Maul M, McKie BG, Medeiros AO, Erimba CMM, Middleton JA, Monroy S, Muotka T, Negishi JN, Ramírez A, Richardson JS, Rincón J, Rubio-Ríos J, Dos Santos GM, Sarremejane R, Sheldon F, Sitati A, Tenkiano NSD, Tiegs SD, Tolod JR, Venarsky M, Watson A, and Yule CM
- Subjects
- Animals, Biodiversity, Biomass, Body Size, Chironomidae physiology, Climate, Ephemeroptera physiology, Insecta physiology, Plant Leaves chemistry, Rainforest, Tropical Climate, Tundra, Biota, Ecosystem, Rivers chemistry, Rivers microbiology, Rivers parasitology, Rivers virology
- Abstract
The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.
- Published
- 2021
- Full Text
- View/download PDF
5. Latitude dictates plant diversity effects on instream decomposition.
- Author
-
Boyero L, Pérez J, López-Rojo N, Tonin AM, Correa-Araneda F, Pearson RG, Bosch J, Albariño RJ, Anbalagan S, Barmuta LA, Beesley L, Burdon FJ, Caliman A, Callisto M, Campbell IC, Cardinale BJ, Casas JJ, Chará-Serna AM, Ciapała S, Chauvet E, Colón-Gaud C, Cornejo A, Davis AM, Degebrodt M, Dias ES, Díaz ME, Douglas MM, Elosegi A, Encalada AC, de Eyto E, Figueroa R, Flecker AS, Fleituch T, Frainer A, França JS, García EA, García G, García P, Gessner MO, Giller PS, Gómez JE, Gómez S, Gonçalves JF Jr, Graça MAS, Hall RO Jr, Hamada N, Hepp LU, Hui C, Imazawa D, Iwata T, Junior ESA, Kariuki S, Landeira-Dabarca A, Leal M, Lehosmaa K, M'Erimba C, Marchant R, Martins RT, Masese FO, Camden M, McKie BG, Medeiros AO, Middleton JA, Muotka T, Negishi JN, Pozo J, Ramírez A, Rezende RS, Richardson JS, Rincón J, Rubio-Ríos J, Serrano C, Shaffer AR, Sheldon F, Swan CM, Tenkiano NSD, Tiegs SD, Tolod JR, Vernasky M, Watson A, Yegon MJ, and Yule CM
- Abstract
Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2021
- Full Text
- View/download PDF
6. Global patterns and drivers of ecosystem functioning in rivers and riparian zones.
- Author
-
Tiegs SD, Costello DM, Isken MW, Woodward G, McIntyre PB, Gessner MO, Chauvet E, Griffiths NA, Flecker AS, Acuña V, Albariño R, Allen DC, Alonso C, Andino P, Arango C, Aroviita J, Barbosa MVM, Barmuta LA, Baxter CV, Bell TDC, Bellinger B, Boyero L, Brown LE, Bruder A, Bruesewitz DA, Burdon FJ, Callisto M, Canhoto C, Capps KA, Castillo MM, Clapcott J, Colas F, Colón-Gaud C, Cornut J, Crespo-Pérez V, Cross WF, Culp JM, Danger M, Dangles O, de Eyto E, Derry AM, Villanueva VD, Douglas MM, Elosegi A, Encalada AC, Entrekin S, Espinosa R, Ethaiya D, Ferreira V, Ferriol C, Flanagan KM, Fleituch T, Follstad Shah JJ, Frainer Barbosa A, Friberg N, Frost PC, Garcia EA, García Lago L, García Soto PE, Ghate S, Giling DP, Gilmer A, Gonçalves JF Jr, Gonzales RK, Graça MAS, Grace M, Grossart HP, Guérold F, Gulis V, Hepp LU, Higgins S, Hishi T, Huddart J, Hudson J, Imberger S, Iñiguez-Armijos C, Iwata T, Janetski DJ, Jennings E, Kirkwood AE, Koning AA, Kosten S, Kuehn KA, Laudon H, Leavitt PR, Lemes da Silva AL, Leroux SJ, LeRoy CJ, Lisi PJ, MacKenzie R, Marcarelli AM, Masese FO, McKie BG, Oliveira Medeiros A, Meissner K, Miliša M, Mishra S, Miyake Y, Moerke A, Mombrikotb S, Mooney R, Moulton T, Muotka T, Negishi JN, Neres-Lima V, Nieminen ML, Nimptsch J, Ondruch J, Paavola R, Pardo I, Patrick CJ, Peeters ETHM, Pozo J, Pringle C, Prussian A, Quenta E, Quesada A, Reid B, Richardson JS, Rigosi A, Rincón J, Rîşnoveanu G, Robinson CT, Rodríguez-Gallego L, Royer TV, Rusak JA, Santamans AC, Selmeczy GB, Simiyu G, Skuja A, Smykla J, Sridhar KR, Sponseller R, Stoler A, Swan CM, Szlag D, Teixeira-de Mello F, Tonkin JD, Uusheimo S, Veach AM, Vilbaste S, Vought LBM, Wang CP, Webster JR, Wilson PB, Woelfl S, Xenopoulos MA, Yates AG, Yoshimura C, Yule CM, Zhang YX, and Zwart JA
- Subjects
- Human Activities, Humans, Carbon Cycle physiology, Ecosystem, Environmental Monitoring methods, Rivers microbiology, Temperature
- Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
- Published
- 2019
- Full Text
- View/download PDF
7. Riparian plant litter quality increases with latitude.
- Author
-
Boyero L, Graça MAS, Tonin AM, Pérez J, J Swafford A, Ferreira V, Landeira-Dabarca A, A Alexandrou M, Gessner MO, McKie BG, Albariño RJ, Barmuta LA, Callisto M, Chará J, Chauvet E, Colón-Gaud C, Dudgeon D, Encalada AC, Figueroa R, Flecker AS, Fleituch T, Frainer A, Gonçalves JF Jr, Helson JE, Iwata T, Mathooko J, M'Erimba C, Pringle CM, Ramírez A, Swan CM, Yule CM, and Pearson RG
- Subjects
- Nitrogen metabolism, Phosphorus metabolism, Ecosystem, Plant Leaves metabolism, Plants metabolism, Rivers, Tropical Climate
- Abstract
Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
- Published
- 2017
- Full Text
- View/download PDF
8. Evidence for the persistence of food web structure after amphibian extirpation in a Neotropical stream.
- Author
-
Barnum TR, Drake JM, Colón-Gaud C, Rugenski AT, Frauendorf TC, Connelly S, Kilham SS, Whiles MR, Lips KR, and Pringle CM
- Subjects
- Animals, Diatoms, Invertebrates physiology, Larva physiology, Panama, Amphibians physiology, Extinction, Biological, Food Chain, Rivers
- Abstract
Species losses are predicted to simplify food web structure, and disease-driven amphibian declines in Central America offer an opportunity to test this prediction. Assessment of insect community composition, combined with gut content analyses, was used to generate periphyton-insect food webs for a Panamanian stream, both pre- and post-amphibian decline. We then used network analysis to assess the effects of amphibian declines on food web structure. Although 48% of consumer taxa, including many insect taxa, were lost between pre- and post-amphibian decline sampling dates, connectance declined by less than 3%. We then quantified the resilience of food web structure by calculating the number of expected cascading extirpations from the loss of tadpoles. This analysis showed the expected effects of species loss on connectance and linkage density to be more than 60% and 40%, respectively, than were actually observed. Instead, new trophic linkages in the post-decline food web reorganized the food web topology, changing the identity of "hub" taxa, and consequently reducing the effects of amphibian declines on many food web attributes. Resilience of food web attributes was driven by a combination of changes in consumer diets, particularly those of insect predators, as well as the appearance of generalist insect consumers, suggesting that food web structure is maintained by factors independent of the original trophic linkages.
- Published
- 2015
- Full Text
- View/download PDF
9. Do omnivorous shrimp influence mayfly nymph life history traits in a tropical island stream?
- Author
-
Macías NA, Colón-Gaud C, Duggins JW, and Ramírez A
- Subjects
- Animals, Decapoda classification, Food Preferences, Insecta classification, Life Cycle Stages, Nymph classification, Puerto Rico, Decapoda physiology, Ecosystem, Insecta physiology, Nymph growth & development
- Abstract
Interspecific interactions can play an important role in determining habitat selection and resource use between competing species. We examined interactions between an omnivorous shrimp and a grazing mayfly, two co-dominant taxa found in Puerto Rican headwater streams, to assess how predator presence may influence mayfly resource use and instantaneous growth in a tropical rainforest ecosystem. We conducted a series of behavioral and growth experiments to determine the effects of the freshwater shrimp, Xiphocaris elongata, on the growth rate and resource selection of mayfly nymphs in the family Leptophlebiidae. For resource choice assessments, we conducted a series of five day laboratory experiments where mayflies were given access to two resource substrate choices (cobble vs. leaves) in the presence or absence of shrimp. To assess for the effects of shrimp on mayfly fitness, we measured mayfly growth in laboratory aquaria after five days using four treatments (cobble, leaves, cobble + leaves, no resource) in the presence or absence of shrimp. In resource choice experiments, mayflies showed preference for cobble over leaf substrata (p < 0.05) regardless of the presence of shrimps, however, the preference for cobble was significantly greater when shrimp were present in the leaf habitat. In growth experiments, there were no statistical differences in mayfly growth in the presence or absence of shrimp (p = 0.07). However, we measured increased mayfly nymph growth in the absence of predators and when both cobble and leaves were available. Our results suggest that interspecific interactions between these taxa could potentially influence organic matter resource dynamics (e.g., leaf litter processing and export) in Puerto Rican streams.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.