18 results on '"Coheur, P.F."'
Search Results
2. The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies
- Author
-
Jacquinet-Husson, N., Scott, N.A., Chédin, A., Crépeau, L., Armante, R., Capelle, V., Orphal, J., Coustenis, A., Boonne, C., Poulet-Crovisier, N., Barbe, A., Birk, M., Brown, L.R., Camy-Peyret, C., Claveau, C., Chance, K., Christidis, N., Clerbaux, C., Coheur, P.F., Dana, V., Daumont, L., De Backer-Barilly, M.R., Di Lonardo, G., Flaud, J.M., Goldman, A., Hamdouni, A., Hess, M., Hurley, M.D., Jacquemart, D., Kleiner, I., Köpke, P., Mandin, J.Y., Massie, S., Mikhailenko, S., Nemtchinov, V., Nikitin, A., Newnham, D., Perrin, A., Perevalov, V.I., Pinnock, S., Régalia-Jarlot, L., Rinsland, C.P., Rublev, A., Schreier, F., Schult, L., Smith, K.M., Tashkun, S.A., Teffo, J.L., Toth, R.A., Tyuterev, Vl.G., Vander Auwera, J., Varanasi, P., and Wagner, G.
- Published
- 2008
- Full Text
- View/download PDF
3. Detection of elevated tropospheric hydrogen peroxide (H 2O 2) mixing ratios in atmospheric chemistry experiment (ACE) subtropical infrared solar occultation spectra
- Author
-
Rinsland, C.P., Coheur, P.F., Herbin, H., Clerbaux, C., Boone, C., Bernath, P., and Chiou, L.S.
- Published
- 2007
- Full Text
- View/download PDF
4. The 2003 edition of the GEISA/IASI spectroscopic database
- Author
-
Jacquinet-Husson, N., Scott, N.A., Chédin, A., Garceran, K., Armante, R., Chursin, A.A., Barbe, A., Birk, M., Brown, L.R., Camy-Peyret, C., Claveau, C., Clerbaux, C., Coheur, P.F., Dana, V., Daumont, L., Debacker-Barilly, M.R., Flaud, J.M., Goldman, A., Hamdouni, A., Hess, M., Jacquemart, D., Köpke, P., Mandin, J.Y., Massie, S., Mikhailenko, S., Nemtchinov, V., Nikitin, A., Newnham, D., Perrin, A., Perevalov, V.I., Régalia-Jarlot, L., Rublev, A., Schreier, F., Schult, I., Smith, K.M., Tashkun, S.A., Teffo, J.L., Toth, R.A., Tyuterev, Vl.G., Vander Auwera, J., Varanasi, P., and Wagner, G.
- Published
- 2005
- Full Text
- View/download PDF
5. Resolution of the uncertainties in the radiative forcing of HFC-134a
- Author
-
Forster, Piers M. de F., Burkholder, J.B., Clerbaux, C., Coheur, P.F., Dutta, M., Gohar, L.K., Hurley, M.D., Myhre, G., Portmann, R.W., Shine, K.P., Wallington, T.J., and Wuebbles, D.
- Published
- 2005
- Full Text
- View/download PDF
6. Benchmarking climate model top-of-atmosphere radiance in the 9.6 micron ozone band compared to TES and IASI observations
- Author
-
Worden, H.M., Bowman, K.W., Kuai, L., Conley, A., Lamarque, J.F., Shindell, D., Faluvegi, G., Clerbaux, Cathy, Coheur, P.F., Doniki, S., Massie, S., Cardon, Catherine, Atmospheric Chemistry Observations and Modeling Laboratory (ACOML), National Center for Atmospheric Research [Boulder] (NCAR), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), and International Ozone Commission
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] - Abstract
International audience; The TOA (top of atmosphere) flux for the 9.6 micron ozone band is a fundamental quantity which is predicted by IPCC chemistry-climate models but has never been tested directly against satellite measurements. Errors in this quantity propagate to errors in sensitivity of TOA flux to the vertical distribution of ozone, or Instantaneous Radiative Kernel (IRK) and consequently affect the uncertainty in the estimate of ozone radiative forcing from pre-industrial to present day.We compute the ozone band flux and the IRK, from Aura-TES and MetOP-IASI spectral radiance mea- surements. The IRKs from TES and IASI explicitly account for more dominant radiative processes such as clouds and water vapor, due to the spectrally resolved absorption features, and allow attribution of changes in ozone RF to vertical changes in ozone and ozone precursor emissions. The continuation of the TES record of infrared ozone spectra with long-term IASI data will allow accurate predictions of future ozone forcing and an assessment of the feedback from changes in the hydrological cycle on ozone RF. Here we present initial comparisons of satellite observed TOA ozone band fluxes and IRKs with RRTMG (Rapid Radiative Transfer Model-GCM applications) in the NCAR CAM-chem chemistry/climate model and with the GISS radiative transfer model.
- Published
- 2016
7. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements
- Author
-
Dammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S., Toon, G.C., Jones, N., Nussbaumer, E., Warneke, T., Petri, C., Clarisse, L., Clerbaux, C., Hermans, C., Lutsch, E., Strong, K., Hannigan, J.W., Nakajima, H., Morino, I., Herrera, B., Stremme, W., Grutter, M., Schaap, M., Kruit, R.J.W., Notholt, J., Coheur, P.F., Erisman, J.W., Earth and Climate, Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), Institut für Umweltphysik [Bremen] (IUP), Universität Bremen, Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), National Institute of Water and Atmospheric Research [Lauder] (NIWA), University of Toronto, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Centre for Atmospheric Chemistry [Wollongong] (CAC), University of Wollongong [Australia], National Center for Atmospheric Research [Boulder] (NCAR), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Toronto], National Institute for Environmental Studies (NIES), Centro de Ciencias de la Atmosfera [Mexico], Universidad Nacional Autónoma de México (UNAM), TNO Climate, Air and Sustainability [Utrecht], The Netherlands Organisation for Applied Scientific Research (TNO), National Institute for Public Health and the Environment [Bilthoven] (RIVM), Louis Bolk Institute, and Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Physico-chimie générale ,Urban Mobility & Environment ,Télédétection ,Urbanisation ,CAS - Climate, Air and Sustainability ,ELSS - Earth, Life and Social Sciences ,Environment ,Environment & Sustainability - Abstract
Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs Combining double low line 547) give a mean relative difference of ĝ'32.4ĝ€±ĝ€(56.3)ĝ€%, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100%).
- Published
- 2016
- Full Text
- View/download PDF
8. Worldwide spatiotemporal atmospheric ammonia (NH3) columns variability revealed by satellite
- Author
-
van Damme, M., Erisman, J.W., Clarisse, L., Dammers, E., Whitburn, S., Clerbaux, C., Dolman, A.J., Coheur, P.F., Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), Louis Bolk Institute (LBI), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), F.R.S.-FNRS, the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, European Commission, European Project: 282910,EC:FP7:ENV,FP7-ENV-2011,ECLAIRE(2011), European Project: 606719,EC:FP7:SPA,FP7-SPACE-2013-1,PANDA(2014), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Earth and Climate, and Amsterdam Global Change Institute
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,IASI satellite ,spatiotemporal variability ,seasonality ,NH3 source processes ,N cycle ,NH3 ,ammonia - Abstract
International audience; We exploit six years of measurements from the IASI/MetOp-A instrument to identify seasonal patterns and inter-annual variability of atmospheric NH3. This is achieved by analyzing the time evolution of the monthly-mean NH3 columns in 12 subcontinental areas around the world, simultaneously considering measurements from IASI morning and evening overpasses. For most regions, IASI has a sufficient sensitivity throughout the years to capture the seasonal patterns of NH3 columns, and we show that each region is characterized by a well-marked and distinctive cycle, with maxima mainly related to underlying emission processes. The largest column abundances and seasonal amplitudes throughout the years are found in Southwestern Asia,with maxima twice as large as what is observed in Southeastern China. The relation between emission sources and retrieved NH3 columns is emphasized at smaller regional scale by inferring a climatology of the month of maximum columns.
- Published
- 2015
- Full Text
- View/download PDF
9. Substantial Underestimation of Post-Harvest Burning Emissions in the North China Plain Revealed by Multi-Species Space Observations
- Author
-
Stavrakou, T., Müller, J.F., Bauwens, M., De Smedt, I., Lerot, C., Van Roozendael, M., Coheur, P.F., Clerbaux, C., Boersma, K.F., Song, Y., Stavrakou, T., Müller, J.F., Bauwens, M., De Smedt, I., Lerot, C., Van Roozendael, M., Coheur, P.F., Clerbaux, C., Boersma, K.F., and Song, Y.
- Abstract
The large-scale burning of crop residues in the North China Plain (NCP), one of the most densely populated world regions, was recently recognized to cause severe air pollution and harmful health effects. A reliable quantification of the magnitude of these fires is needed to assess regional air quality. Here, we use an eight-year record (2005-2012) of formaldehyde measurements from space to constrain the emissions of volatile organic compounds (VOCs) in this region. Using inverse modelling, we derive that satellite-based post-harvest burning fluxes are, on average, at least a factor of 2 higher than state-of-the-art bottom-up statistical estimates, although with significant interannual variability. Crop burning is calculated to cause important increases in surface ozone (+7%) and fine aerosol concentrations (+18%) in the North China Plain in June. The impact of crop fires is also found in satellite observations of other species, glyoxal, nitrogen dioxide and methanol, and we show that those measurements validate the magnitude of the top-down fluxes. Our study indicates that the top-down crop burning fluxes of VOCs in June exceed by almost a factor of 2 the combined emissions from other anthropogenic activities in this region, underscoring the need for targeted actions towards changes in agricultural management practices.
- Published
- 2016
10. Evaluating 4 years of atmospheric ammonia (NH3) over Europe using IASI satellite observations and LOTOS-EUROS model results
- Author
-
Damme, M. van, Wichink Kruit, R.J., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P.F., Dammers, E., Dolman, A.J., Erisman, J.W., Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), TNO Climate, Air and Sustainability [Utrecht], The Netherlands Organisation for Applied Scientific Research (TNO), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Louis Bolk Institute (LBI), Earth and Climate, and Amsterdam Global Change Institute
- Subjects
regional modeling ,IASI ,satellite remote sensing ,Earth / Environmental ,Regional model ,Ground based measurement ,CAS - Climate, Air and Sustainability ,Remote sensing ,ammonia ,Satellite observations ,Urban Development ,Ammonia ,Quantitative comparison ,[SDE]Environmental Sciences ,Satellite measurements ,NH3 ,ELSS - Earth, Life and Social Sciences ,Industrial emissions ,Built Environment ,SDG 6 - Clean Water and Sanitation ,LOTOS-EUROS ,satellite/model comparison - Abstract
Monitoring ammonia (NH3) concentrations on a global to regional scale is a challenge. Due to the limited availability of reliable ground-based measurements, the determination of NH3 distributions generally relies on model calculations. Novel remotely sensed NH3burdens provide valuable insights to complement traditional assessments for clear-sky conditions. This paper presents a first quantitative comparison between Atmospheric Sounding Interferometer (IASI) satellite observations and LOTOS-EUROS model results over Europe and Western Russia. A methodology to account for the variable retrieval sensitivity of the measurements is described. Four years of data (2008-2011) highlight three main agricultural hot spot areas in Europe: the Po Valley, the continental part of Northwestern Europe, and the Ebro Valley. The spatial comparison reveals a good overall agreement of the NH3 distributions not only in these source regions but also over remote areas and over sea when transport is observed. On average, the measured columns exceed the modeled ones, except for a few cases. Large discrepancies over several industrial areas in Eastern Europe and Russia point to underestimated emissions in the underlying inventories. The temporal analysis over the three hot spot areas reveals that the seasonality is well captured by the model when the lower sensitivity of the satellite measurements in the colder months is taken into account. Comparison of the daily time series indicates possible misrepresentations of the timing and magnitude of the emissions. Finally, specific attention to biomass burning events shows that modeled plumes are less spread out than the observed ones. This is confirmed for the 2010 Russian fires with a comparison using in situ observations. ©2014. American Geophysical Union. All Rights Reserved.
- Published
- 2014
- Full Text
- View/download PDF
11. Towards validation of ammonia (NH3) measurements from the IASI satellite
- Author
-
Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J.B., Clerbaux, C., Flechard, C.R., Galy-Lacaux, C., Xu, W., Neuman, J.A., Tang, Y.S., Sutton, M.A., Erisman, J.W., Coheur, P.F., Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J.B., Clerbaux, C., Flechard, C.R., Galy-Lacaux, C., Xu, W., Neuman, J.A., Tang, Y.S., Sutton, M.A., Erisman, J.W., and Coheur, P.F.
- Abstract
Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.
- Published
- 2015
12. Monitoring of atmospheric composition using the thermal infrared IASI/METOP sounder
- Author
-
Clerbaux, Cathy, Coheur, P.F., Turquety, Solène, Hadji-Lazaro, Juliette, Hurtmans, D., George, Maya, Boynard, Anne, Pommier, Matthieu, Razavi, A., Wespes, C., TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Cardon, Catherine, Service d'aéronomie (SA), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] - Abstract
(Conférence invitée); International audience
- Published
- 2009
13. Validation of the MetOp-A total ozone data from GOME-2 and IASI using reference ground-based measurements at the Iberian Peninsula
- Author
-
Antón, M., primary, Loyola, D., additional, Clerbaux, C., additional, López, M., additional, Vilaplana, J.M., additional, Bañón, M., additional, Hadji-Lazaro, J., additional, Valks, P., additional, Hao, N., additional, Zimmer, W., additional, Coheur, P.F., additional, Hurtmans, D., additional, and Alados-Arboledas, L., additional
- Published
- 2011
- Full Text
- View/download PDF
14. Detection of elevated tropospheric hydrogen peroxide (H2O2) mixing ratios in atmospheric chemistry experiment (ACE) subtropical infrared solar occultation spectra
- Author
-
Rinsland, C.P., primary, Coheur, P.F., additional, Herbin, H., additional, Clerbaux, C., additional, Boone, C., additional, Bernath, P., additional, and Chiou, L.S., additional
- Published
- 2007
- Full Text
- View/download PDF
15. Detection of elevated tropospheric hydrogen peroxide (H2O2) mixing ratios in atmospheric chemistry experiment (ACE) subtropical infrared solar occultation spectra
- Author
-
Rinsland, C.P., Coheur, P.F., Herbin, H., Clerbaux, C., Boone, C., Bernath, P., and Chiou, L.S.
- Subjects
- *
TROPOSPHERIC circulation , *HYDROGEN peroxide , *ATMOSPHERIC chemistry , *OCCULTATIONS (Astronomy) - Abstract
Abstract: We report measurements of hydrogen peroxide (H2O2) profiles from infrared solar occultation spectra recorded at 0.02cm−1 resolution by the atmospheric chemistry experiment (ACE) during 2004 and 2005. Mixing ratios as high as 1.7ppbv (1ppbv=1×10−9 per unit volume) were measured in the subtropical troposphere. Back trajectories, fire count statistics, and simultaneous measurements of other species from the same occultation provide evidence that the elevated H2O2 mixing ratios originated from a young biomass-burning plume. The ACE time series show only a few cases with elevated H2O2 mixing ratios likely because of the short lifetime of H2O2 and the limited sampling during biomass-burning time periods. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
16. Photophysical properties of C"6"0Cl"6, C"6"0Ph"5Cl and C"6"0Ph"5H
- Author
-
Coheur, P.F., Cornil, J., dos Santos, D.A., Birkett, P.R., Lievin, J., Bredas, J.L., Janot, J.M., Seta, P., Leach, S., Walton, D.R.M., Taylor, R., Kroto, H.W., and Colin, R.
- Abstract
The geometry and electronic structure of three C"6"0 derivatives (C"6"0Cl"6, C"6"0Ph"5Cl and C"6"0Ph"5H) are studied by means of spectroscopic measurements in cyclohexane solution and semi-empirical Hartree-Fock quantum-chemical calculations. A good agreement between observed and simulated spectra is reported. Based on the latter, the importance of symmetry and nature of the functional groups on the properties of the C"6"0 cages is discussed.
- Published
- 1999
- Full Text
- View/download PDF
17. Measuring atmospheric Ammonia with Remote Sensing: Validation of satellite observations with ground-based measurements
- Author
-
Dammers, E., Erisman, Jan Willem, Coheur, P.F., Schaap, M., Faculty of Sciences, and Earth and Climate
- Published
- 2017
18. Assessment of global atmospheric ammonia using IASI infrared satellite observations
- Author
-
Van Damme, Martin, Coheur, P.F., Erisman, Jan Willem, Earth and Climate, Amsterdam Global Change Institute, Erisman, J. W., Coheur, Pierre-François, van der Werf, G., Boersma, K.F., Clerbaux, C., Gilbert, M., Van Oss, R., Fowler, D., Erisman, J.W., and van Oss, R.
- Subjects
Ammoniac ,validation ,IASI satellite ,Atmospheric chemistry ,LOTOS-EUROS model ,Nitrogen cycle ,Chimie de l'atmosphère ,ammonia ,remote sensing ,source processes ,Cycle de l'azote ,NH3 ,N cycle ,atmosphere ,seasonal cycle ,Chimie ,Sciences exactes et naturelles - Abstract
ENGLISH:The natural nitrogen cycle has been and is significantly perturbed by anthropogenic emissions of reactive nitrogen (Nr) compounds into the atmosphere, resulting from our production of energy and food. In the last century global ammonia (NH3) emissions have doubled and represent nowadays more than half of total the Nr emissions. NH3 is also the principal atmospheric base in the atmosphere and rapidly forms aerosols by reaction with acids. It is therefore a species of high relevance for the Earth's environment, climate and human health (Chapter 1). As a short-lived species, NH3 is highly variable in time and space, and while ground based measurements are possible, they are sparse and their spatial coverage is largely heterogeneous. Consequently, global spatial and temporal patterns of NH3 emissions are poorly understood and account for the largest uncertainties in the nitrogen cycle. The aim of this work is to assess distributions and saptiotemporal variability of NH3 using satellite measurements to improve our understanding of its contribution to the global nitrogen cycle and its related effects.Recently, satellite instruments have demonstrated their abilities to measure NH3 and to supplement the sparse surface measuring network by providing global total columns daily. The Infrared Atmospheric Sounding Interferometer (IASI), on board MetOp platforms, is measuring NH3 at a high spatiotemporal resolution. IASI circles the Earth in a polar Sun-synchronous orbit, covering the globe twice a day with a circular pixel size of 12km diameter at nadir and with overpass times at 9:30 and 21:30 (local solar time when crossing the equator). An improved retrieval scheme based on the calculation of Hyperspectral Range Index (HRI) is detailed in Chapter 2 and compared with previous retrieval methods. This approach fully exploits the hyperspectral nature of IASI by using a broader spectral range (800-1200 cm-1) where NH3 is optically active. It allows retrieving total columns from IASI spectra globally and twice a day without large computational resources and with an improved detection limit. More specifically the retrieval procedure involves two steps: the calculation of a dimensionless spectral index (HRI) and the conversion of this index into NH3 total columns using look-up tables (LUTs) built from forward radiative transfer simulations under various atmospheric conditions. The retrieval also includes an error characterization of the retrieved column, which is of utmost importance for further analysis and comparisons. Global distributions using five years of data (1 November 2007 to 31 October 2012) from IASI/MetOp-A are presented and analyzed separately for the morning and evening overpasses. The advantage of the HRI-based retrieval scheme over other methods, in particular to identify smaller emission sources and transport patterns over the oceans is shown. The benefit of the high spatial sampling and resolution of IASI is highlighted with the regional distribution over China and the first four-year time series are briefly discussed.We evaluate four years (1 January 2008 to 31 December 2011) of IASI-NH3 columns from the morning observations and of LOTOS-EUROS model simulations over Europe and Western Russia. We describe the methodology applied to account for the variable retrieval sensitivity of IASI measurements in Chapter 3. The four year mean distributions highlight three main agricultural hotspots in Europe: The Po Valley, the continental part of Northwestern Europe, and the Ebro Valley. A general good agreement between IASI and LOTOS-EUROS is shown, not only over source regions but also over remote areas and over seas when transport is observed. The yearly analyses reveal that, on average, the measured NH3 columns are higher than the modeled ones. Large discrepancies are observed over industrial areas in Eastern Europe and Russia pointing to underestimated if not missing emissions in the underlying inventories. For the three hotspots areas, we show that the seasonality between IASI and LOTOS-EUROS matches when the sensitivity of the satellite measurements is taken into account. The best agreement is found in the Netherlands, both in magnitude and timing, most likely as the fixed emission timing pattern was determined from experimental data sets from this country. Moreover, comparisons of the daily time series indicate that although the dynamic of the model is in reasonable agreement with the measurements, the model may suffer from a possible misrepresentation of emission timing and magnitude. Overall, the distinct temporal patterns observed for the three sites underline the need for improved timing of emissions. Finally, the study of the Russian fires event of 2010 shows that NH3 modeled plumes are not enough dispersed, which is confirmed with a comparison using in situ measurements.Chapter 4 describes the comparisons of IASI-NH3 measurements with several independent ground-based and airborne data sets. Even though the in situ data are sparse, we show that the yearly distributions are broadly consistent. For the monthly analyzes we use ground-based measurements in Europe, China and Africa. Overall, IASI-derived concentrations are in fair agreement but are also characterized by less variability. Statistically significant correlations are found for several sites, but low slopes and high intercepts are calculated in all cases. At least three reasons can explain this: (1) the lack of representativity of the point surface measurement for the large IASI pixel, (2) the use of a single profile shape in the retrieval scheme over land, which does therefore not account for a varying boundary layer height, (3) the impact of the averaging procedure applied to satellite measurements to obtain a consistent quantity to compare with the in situ monthly data. The use of hourly surface measurements and of airborne data sets allows assessing IASI individual observations. Much higher correlation coefficients are found in particular when comparing IASI-derived volume mixing ratio with vertically resolved measurements performed from the NOAA WP-3D airplane during CalNex campaign in 2010. The results demonstrate the need, for validation of the satellite columns, of measurements performed at various altitudes and covering a large part of the satellite footprint.The six-year of IASI observations available at the end of this thesis are used to analyze regional time series for the first time (Chapter 5). More precisely, we use the IASI measurements over that period (1 January 2008 to 31 December 2013) to identify seasonal patterns and inter-annual variability at subcontinental scale. This is achieved by looking at global composite seasonal means and monthly time series over 12 regions around the world (Europe, Eastern Russia and Northern Asia, Australia, Mexico, South America, 2 sub-regions for Northern America and South Asia, 3 sub-regions for Africa), considering separately but simultaneously measurements from IASI morning and evening overpasses. The seasonal cycle is inferred for the majority of these regions. The relations between the NH3 atmospheric abundance and emission processes is emphasized at smaller regional scale by extracting at high spatial resolution the global climatology of the month of maxima columns. In some region, the predominance of a single source appears clearly (e.g. agriculture in Europe and North America, fires in central South Africa and South America), while in others a composite of source processes on small scale is demonstrated (e.g. Northern Central Africa and Southwestern Asia).Chapter 6 presents the achievements of this thesis, as well as ongoing activities and future perspectives.FRANCAIS:Le cycle naturel de l'azote est fortement perturbé suite aux émissions atmosphériques de composés azotés réactifs (Nr) résultant de nos besoins accrus en énergie et en nourriture. Les émissions d'ammoniac (NH3) ont doublé au cours du siècle dernier, représentant aujourd'hui plus de la moitié des émissions totales de Nr. De plus, le NH3 étant le principal composé basique de notre atmosphère, il réagit rapidement avec les composés acides pour former des aérosols. C'est dès lors un constituant prépondérant pour l'environnement, le climat et la santé publique. Les problématiques environnementales y étant liées sont décrites au Chapitre 1. En tant que gaz en trace le NH3 se caractérise par une importante variabilité spatiale et temporelle. Bien que des mesures in situ soient possibles, elles sont souvent rares et couvrent le globe de façon hétérogène. Il en résulte un manque de connaissance sur l'évolution temporelle et la variabilité spatiale des émissions, ainsi que de leurs amplitudes, qui représentent les plus grandes incertitudes pour le cycle de l'azote (également décrites au Chapitre 1).Récemment, les sondeurs spatiaux opérant dans l'infrarouge ont démontré leurs capacités à mesurer le NH3 et par là à compléter le réseau d'observations de surface. Particulièrement, l'Interféromètre Atmosphérique de Sondage Infrarouge (IASI), à bord de la plateforme MetOp, mesure le NH3 à une relativement haute résolution spatiotemporelle. Il couvre le globe deux fois par jour, grâce à son orbite polaire et son balayage autour du nadir, avec un temps de passage à 9h30 et à 21h30 (temps solaire local quand il croise l'équateur). Une nouvelle méthode de restitution des concentrations basée sur le calcul d'un index hyperspectral sans dimension (HRI) est détaillée et comparée aux méthodes précédentes au Chapitre 2. Cette méthode permet d'exploiter de manière plus approfondie le caractère hyperspectral de IASI en se basant sur une bande spectrale plus étendue (800-1200 cm-1) au sein de laquelle le NH3 est optiquement actif. Nous décrivons comment restituer ces concentrations deux fois par jour sans nécessiter de grandes ressources informatiques et avec un meilleur seuil de détection. Plus spécifiquement, la procédure de restitution des concentrations consiste en deux étapes: le HRI est calculé dans un premier temps pour chaque spectre puis est ensuite converti en une colonne totale de NH3 à l'aide de tables de conversions. Ces tables ont été construites sur base de simulations de transfert radiatif effectuées pour différentes conditions atmosphériques. Le processus de restitution des concentrations comprend également le calcul d'une erreur sur la colonne mesurée. Des distributions globales moyennées sur cinq ans (du 1 novembre 2007 au 31 Octobre 2012) sont présentées et analysées séparément pour le passage diurne et nocturne de IASI. L'avantage de ce nouvel algorithme par rapport aux autres méthodes, permettant l'identification de sources plus faibles de NH3 ainsi que du transport depuis les sources terrestres au-dessus des océans, est démontré. Le bénéfice de la haute couverture spatiale et temporelle de IASI est mis en exergue par une description régionale au-dessus de la Chine ainsi que par l'analyse de premières séries temporelles hémisphériques sur quatre ans.Au Chapitre 3, nous évaluons quatre ans (du 1 janvier 2008 au 31 décembre 2011) de mesures matinales de IASI ainsi que de simulations du modèle LOTOS-EUROS, effectuées au-dessus de l'Europe et de l'ouest de la Russie. Nous décrivons une méthodologie pour prendre en compte, dans la comparaison avec le modèle, la sensibilité variable de l'instrument IASI pour le NH3. Les comparaisons montrent alors une bonne concordance générale entre les mesures et les simulations. Les distributions pointent trois régions sources: la vallée du Pô, le nord-ouest de l'Europe continentale et la vallée de l'Ebre. L'analyse des distributions annuelles montre qu'en moyenne, les colonnes de NH3 mesurées sont plus élevées que celles simulées, à part pour quelques cas spécifiques. Des différences importantes ont été identifiées au-dessus de zones industrielles en Europe de l'est et en Russie, ce qui tend à incriminer une sub-estimation voire une absence de ces sources dans les inventaires d'émissions utilisés en entrée du modèle. Nous avons également montré que la saisonnalité est bien reproduite une fois la sensibilité des mesures satellites prise en compte. La meilleure concordance entre le modèle et IASI est observée pour les Pays-Bas, ce qui est certainement dû au fait que le profil temporel des émissions utilisé pour les simulations LOTOS-EUROS est basé sur des études expérimentales réalisées dans ce pays. L'étude des séries temporelles journalières indique que la dynamique du modèle est raisonnablement en accord avec les mesures mais pointe néanmoins une possible mauvaise représentation du profil temporel ainsi que de l'ampleur des émissions. Finalement, l'étude des importants feux ayant eu cours en Russie à l'été 2010 a montré que les panaches modélisés sont moins étendus que ceux observés, ce qui a été confirmé grâce à une comparaison avec des mesures sols.Le chapitre 4 est dédié à la confrontation des mesures IASI avec différents jeux de données indépendants acquis depuis le sol et par avion. Les distributions globales annuelles sont concordantes, bien que la couverture spatiale des mesures sols soit limitée. Des mesures effectuées à la surface en Europe, en Chine et en Afrique sont utilisées pour les comparaisons mensuelles. Ces dernières révèlent une bonne concordance générale, bien que les mesures satellites montrent une plus faible amplitude de variations de concentrations. Des corrélations statistiquement significatives ont été calculées pour de nombreux sites, mais les régressions linéaires sont caractérisées par des pentes faibles et des ordonnées à l'origine élevées dans tous les cas. Au minimum, trois raisons contribuent à expliquer cela: (1) le manque de représentativité des mesures ponctuelles pour l'étendue des pixels IASI, (2) l'utilisation d'une seule forme de profil vertical pour la restitution des concentrations, qui ne prend dès lors pas en compte la hauteur de la couche limite, (3) l'impact de la procédure utilisée pour moyenner les observations satellites afin d'obtenir des quantités comparables aux mesures sols mensuelles. La prise en compte de mesures en surface effectuées à plus haute résolution temporelle ainsi que de mesures faites depuis un avion permet d'évaluer les observations IASI individuelles. Les coefficients de corrélation calculés sont bien plus élevés, en particulier pour la comparaison avec les mesures effectuées depuis l'avion NOAA WP-3D pendant la campagne CalNex en 2010. Ces résultats démontrent la nécessité de ce type d'observations, effectuées à différentes altitudes et couvrant une plus grande surface du pixel, pour valider les colonnes IASI-NH3.Les six ans de données IASI disponibles à la fin de cette thèse sont utilisées pour tracer les premières séries temporelles sub-continentales (Chapitre 5). Plus spécifiquement, nous explorons les mesures IASI durant cette période (du 1 janvier 2008 jusqu'au 31 décembre 2013) pour identifier des structures saisonnières ainsi que la variabilité inter-annuelle à l'échelle sous-continentale. Pour arriver à cela, des moyennes saisonnières composites ont été produites ainsi que des séries temporelles mensuelles au-dessus de 12 régions du globe (Europe, est de la Russie et nord de l'Asie, Australie, Mexique, Amérique du Sud, 2 sous-régions en Amérique du nord et en Asie du sud et 3 sous-régions en Afrique), considérant séparément mais simultanément les mesures matinales et nocturnes de IASI. Le cycle saisonnier est raisonnablement bien décrit pour la plupart des régions. La relation entre la quantité de NH3 atmosphérique et ses sources d'émission est mise en exergue à l'échelle plus régionale par l'extraction à haute résolution spatiale d'une climatologie des mois de colonnes maximales. Dans certaines régions, la prédominance d'un processus source apparait clairement (par exemple l'agriculture en Europe et en Amérique du nord, les feux en Afrique du Sud et en Amérique du Sud), alors que, pour d'autres, la diversité des sources d'émissions est démontrée (par exemple pour le nord de l'Afrique centrale et l'Asie du sud-ouest).Le Chapitre 6 reprend brièvement les principaux aboutissements de cette thèse et présente les différentes recherches en cours et les perspectives associées., Doctorat en Sciences agronomiques et ingénierie biologique, info:eu-repo/semantics/nonPublished
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.