3 results on '"Cleveland, Emily L."'
Search Results
2. Aging and sympathetic transduction to blood pressure in humans: methodological and physiological considerations.
- Author
-
Bigalke JA, Young BE, Cleveland EL, Fadel PJ, and Carter JR
- Subjects
- Female, Humans, Aged, Young Adult, Adult, Middle Aged, Blood Pressure physiology, Heart Rate physiology, Sympathetic Nervous System physiology, Muscle, Skeletal innervation, Aging physiology
- Abstract
Recent reports suggest that quantification of signal-averaged sympathetic transduction is influenced by resting muscle sympathetic nerve activity (MSNA) and burst occurrence relative to the average mean arterial pressure (MAP). Herein, we asked how these findings may influence age-related reductions in sympathetic transduction. Beat-to-beat blood pressure and MSNA were recorded during 5 min of rest in 27 younger (13 females: age, 25 ± 5 yr; BMI, 25 ± 4 kg/m
2 ) and 26 older (15 females: age, 59 ± 5 yr; BMI, 26 ± 4 kg/m2 ) healthy adults. All MSNA bursts were signal averaged together. Beat-to-beat MAP values were then split into low (T1), middle (T2), and high (T3) tertiles, and signal-averaged transduction was calculated within each tertile. Resting MSNA was higher in older adults and MAP was similar between groups. Older adults exhibited blunted overall MAP transduction (younger, Δ1.5 ± 0.6 vs. older, Δ0.9 ± 0.7 mmHg; P = 0.005), which was irrespective of relation to prevailing MAP. A greater proportion of bursts occurred above the average MAP in older adults ( P < 0.001), and a larger proportion of these bursts were associated with depressor responses ( P = 0.005). Nonetheless, assessment of bursts above the average MAP associated with pressor responses revealed similar age-associated reductions in transduction (younger, Δ2.6 ± 1.6 vs. older, Δ1.7 ± 0.8 mmHg; P = 0.016). These findings indicate an age-related increase in burst occurrence above the average resting MAP, which alone does not explain blunted transduction, thereby supporting the physiological underpinnings of age-related decrements in sympathetic transduction to blood pressure. NEW & NOTEWORTHY The current study demonstrated that aging is associated with a greater prevalence of sympathetic bursts occurring above the average blood pressure, which offers both methodologically and physiologically relevant information regarding aging and sympathetic control of blood pressure. These data support age-related reductions in sympathetic transduction via a reduced pressor response to sympathetic bursts irrespective of the prevailing absolute blood pressure value, along with increases in sympathetic outflow necessary to maintain blood pressure.- Published
- 2024
- Full Text
- View/download PDF
3. Core body temperature changes before sleep are associated with nocturnal heart rate variability.
- Author
-
Bigalke JA, Cleveland EL, Barkstrom E, Gonzalez JE, and Carter JR
- Subjects
- Male, Adult, Female, Humans, Heart Rate physiology, Autonomic Nervous System physiology, Sleep, REM physiology, Arrhythmias, Cardiac, Body Temperature, Sleep physiology
- Abstract
Core body temperature (CBT) reductions occur before and during the sleep period, with the extent of presleep reductions corresponding to sleep onset and quality. Presleep reductions in CBT coincide with increased cardiac parasympathetic activity measured via heart rate variability (HRV), and while this appears to persist into the sleep period, individual differences in presleep CBT decline and nocturnal HRV remain unexplored. The purpose of the current study was to assess the relationship between individual differences in presleep CBT reductions and nocturnal heart rate (HR) and HRV in a population of 15 objectively poor sleeping adults [10 males, 5 females; age, 33 ± 4 yr; body mass index (BMI) 27 ± 1 kg/m
2 ] with the hypothesis that blunted CBT rate of decline would be associated with elevated HR and reduced nocturnal HRV. Following an adaptation night, all participants underwent an overnight, in-laboratory sleep study with simultaneous recording of polysomnographic sleep including electrocardiography (ECG) and CBT recording. Correlations between CBT rate of change before sleep and nocturnal HRV were assessed. Blunted rate of CBT decline was significantly associated with increased heart rate (HR) in stage 2 ( N2 ; R = 0.754, P = 0.001), stage 3 ( N3 ; R = 0.748, P = 0.001), and rapid-eye movement (REM; R = 0.735, P = 0.002). Similarly, blunted rate of CBT decline before sleep was associated with reduced HRV across sleep stages. These findings indicate a relationship between individual differences in presleep thermoregulatory processes and nocturnal cardiac autonomic function in poor sleeping adults. NEW & NOTEWORTHY Core body temperature (CBT) reductions before sleep onset coincide with increases in heart rate variability (HRV) that persist throughout the sleep period. However, the relationship between individual differences in the efficiency of presleep core temperature regulation and nocturnal heart rate variability remains equivocal. The present study reports an association between the magnitude of presleep core body temperature changes and nocturnal parasympathetic activity, highlighting overlap between thermoregulatory processes before sleep and nocturnal cardiac autonomic function.- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.