1. The origins, relationships, evolution and conservation of the weirdest marine bivalves: The watering pot shells. A review
- Author
-
Fabrizio Marcondes Machado and Brian Morton
- Subjects
Ligament structure ,Fossil Record ,biology ,Ecology ,Convergent evolution ,Morphology (biology) ,Lyonsiidae ,biology.organism_classification ,Bivalvia ,Cenozoic ,Clavagellidae - Abstract
The fossil record shows that the two clavagelloid or watering pot families evolved at different times, the Clavagellidae first in the late Mesozoic (100–66 mya), the Penicillidae later in the Cenozoic (33–23 mya)—the former originally with, thus, a near-global Tethyan distribution, the latter restricted to the Indo-West Pacific. Representatives of the two clavagelloid families, moreover, have wholly different adventitious tube/crypt structures and, thus, methods of formation suggesting that evolutionary experiments have been undertaken to achieve such radical architectural novelties. This has resulted in one of the most surprising examples of convergent evolution in the Bivalvia. But, what were the ancestors of the Clavagelloidea? The shell and internal morphology of representatives of the three recognized genera of the Lyonsiidae, that is, Lyonsia, Entodesma and Mytilimeria, are described. Species of the latter two genera are highly specialized epibenthic, byssate, nestlers and embedded symbionts of ascidian colonies and sponges, respectively. Species of Lyonsia, however, are mostly shallow endobenthic burrowers. On the basis of these studies, it is concluded that species of Lyonsia can be regarded as representative of the ancestral watering pot (Clavagelloidea) condition. Evidence for this conclusion include the mineralogy, characteristics and ligament structure of the shell and features of the anatomy, importantly the modification of the vestigial pedal retractor muscles to form simple (Clavagellidae) and more complex (Penicillidae) proprioreceptors. Such an anatomy-based conclusion is supported to some extent by DNA analyses of representatives of the Lyonsiidae and the two constituent families of the Clavagelloidea. To some extent because all clavagelloids are exceedingly rare hindering such analyses. Such rarity, however, also argues for the strict conservation of all the species of the Clavagelloidea.
- Published
- 2021