1. Future of biomarker evaluation in the realm of artificial intelligence algorithms: application in improved therapeutic stratification of patients with breast and prostate cancer
- Author
-
Amy Connolly, William Watson, Jenny Fitzgerald, Catherine Mooney, Niamh Aspell, Claudia Mazo Vargas, Claudia Aura Gonzalez, William M. Gallagher, Arman Rahman, and Debra Higgins
- Subjects
Male ,0301 basic medicine ,Breast Neoplasms ,Disease ,Medical Oncology ,Pathology and Forensic Medicine ,03 medical and health sciences ,Prostate cancer ,0302 clinical medicine ,Artificial Intelligence ,Image Interpretation, Computer-Assisted ,Biomarkers, Tumor ,Humans ,Medicine ,Precision Medicine ,Stage (cooking) ,Grading (tumors) ,Pathology, Clinical ,business.industry ,Prostatic Neoplasms ,Digital pathology ,Cancer ,General Medicine ,Precision medicine ,medicine.disease ,3. Good health ,030104 developmental biology ,030220 oncology & carcinogenesis ,Biomarker (medicine) ,Female ,Artificial intelligence ,business - Abstract
Clinical workflows in oncology depend on predictive and prognostic biomarkers. However, the growing number of complex biomarkers contributes to costly and delayed decision-making in routine oncology care and treatment. As cancer is expected to rank as the leading cause of death and the single most important barrier to increasing life expectancy in the 21st century, there is a major emphasis on precision medicine, particularly individualisation of treatment through better prediction of patient outcome. Over the past few years, both surgical and pathology specialties have suffered cutbacks and a low uptake of pathology specialists means a solution is required to enable high-throughput screening and personalised treatment in this area to alleviate bottlenecks. Digital imaging in pathology has undergone an exponential period of growth. Deep-learning (DL) platforms for hematoxylin and eosin (H&E) image analysis, with preliminary artificial intelligence (AI)-based grading capabilities of specimens, can evaluate image characteristics which may not be visually apparent to a pathologist and offer new possibilities for better modelling of disease appearance and possibly improve the prediction of disease stage and patient outcome. Although digital pathology and AI are still emerging areas, they are the critical components for advancing personalised medicine. Integration of transcriptomic analysis, clinical information and AI-based image analysis is yet an uncultivated field by which healthcare professionals can make improved treatment decisions in cancer. This short review describes the potential application of integrative AI in offering better detection, quantification, classification, prognosis and prediction of breast and prostate cancer and also highlights the utilisation of machine learning systems in biomarker evaluation.
- Published
- 2021