1. Markovian Repeated Interaction Quantum Systems
- Author
-
Jean-François Bougron, Alain Joye, Claude-Alain Pillet, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université de Cergy Pontoise (UCP), Université Paris-Seine, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E8 Dynamique quantique et analyse spectrale, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Analyse, Géométrie et Modélisation (AGM - UMR 8088), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), CPT - E5 Physique statistique et systèmes complexes, and ANR-17-CE40-0006,NONSTOPS,Systèmes stochastiques et ouverts hors équilibre(2017)
- Subjects
fluctuation relations ,Quantum Physics ,Statistical Mechanics (cond-mat.stat-mech) ,fluctuation ,Markov chain ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,entropy production ,dynamical system ,Open quantum systems ,linear response ,quantum ,thermodynamics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,adiabatic ,spectral ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,entropy ,Quantum Physics (quant-ph) ,Mathematical Physics ,Condensed Matter - Statistical Mechanics ,nonequilibrium statistical mechanics - Abstract
International audience; We study a class of dynamical semigroups $(\mathbb{L}^n)_{n\in\mathbb{N}}$ that emerge, by a Feynman--Kac type formalism, from a random quantum dynamical system $(\mathcal{L}_{\omega_n}\circ\cdots\circ\mathcal{L}_{\omega_1}(\rho_{\omega_0}))_{n\in\mathbb{N}}$ driven by a Markov chain $(\omega_n)_{n\in\mathbb{N}}$. We show that the almost sure large time behavior of the system can be extracted from the large $n$ asymptotics of the semigroup, which is in turn directly related to the spectral properties of the generator $\mathbb{L}$. As a physical application, we consider the case where the $\mathcal{L}_\omega$'s are the reduced dynamical maps describing the repeated interactions of a system $\mathcal{S}$ with thermal probes $\mathcal{C}_\omega$. We study the full statistics of the entropy in this system and derive a fluctuation theorem for the heat exchanges and the associated linear response formulas.
- Published
- 2022
- Full Text
- View/download PDF