80 results on '"Claude d’Uston"'
Search Results
2. Martian Eolian Dust Probed by ChemCam
- Author
-
María Paz Zorzano, Erwin Dehouck, Gilles Berger, William Rapin, S. Le Mouélic, Olivier Gasnault, Jeffrey R. Johnson, P.-Y. Meslin, Horton E. Newsom, Olivier Forni, Javier Martin-Torres, Ann Ollila, Jérémie Lasue, N. Mangold, Nina Lanza, Claude d’Uston, Ruth A. Anderson, Agnes Cousin, Violaine Sautter, Morten Madsen, Cécile Fabre, Noureddine Melikechi, B. C. Clark, Diana L. Blaney, Walter Goetz, Sylvestre Maurice, Roger C. Wiens, Samuel M. Clegg, S. Schroeder, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, The University of New Mexico [Albuquerque], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Centre d'étude spatiale des rayonnements (CESR), Laboratoire Kastler Brossel (LKB (Jussieu)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Optical Science Center for Applied Research (OSCAR), Delaware State University (DSU), Institute of Meteoritics [Albuquerque] (IOM), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Max-Planck-Institut für Sonnensystemforschung (MPS), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Rock cycle ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Mineralogy ,Mars Exploration Program ,15. Life on land ,01 natural sciences ,Atmosphere ,Geophysics ,[SDU]Sciences of the Universe [physics] ,ChemCam ,13. Climate action ,Planet ,0103 physical sciences ,General Earth and Planetary Sciences ,Environmental science ,Aeolian processes ,dust ,010303 astronomy & astrophysics ,Chemical composition ,Volatiles ,0105 earth and related environmental sciences - Abstract
International audience; The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent. Plain Language Summary Eolian dust on Mars is very fine dust that covers the entire surface of the planet, gives it its typical red hue, and is mobilized by wind. It plays a significant role in the current rock cycle of the planet and for the temperature of the atmosphere. ChemCam uses a series of pulsed laser shots to analyze the chemical composition of target materials. Each first laser shot by ChemCam gives the composition of the deposited dust. These measurements have been constant over the duration of the Mars Science Laboratory mission. The dust is homogeneous at the millimeter scale (approximately the size of the ChemCam analysis spot). Compared to local soils and sands at Gale crater, the dust contains higher levels of iron and titanium, associated with volatile elements like hydrogen, sulfur, and chlorine. We infer from this difference that the dust does not entirely originate locally and may be part of a separate global cycle.
- Published
- 2018
- Full Text
- View/download PDF
3. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars
- Author
-
Horton E. Newsom, Fred Calef, Mariek E. Schmidt, Linda C. Kah, Gilles Dromart, Gilles Berger, James F. Bell, Jérémie Lasue, Cécile Fabre, Ryan B. Anderson, S. Le Mouélic, Nina Lanza, A. Mezzacappa, Olivier Forni, Ann Ollila, Sanjeev Gupta, Sylvestre Maurice, K. E. Herkenhoff, Olivier Gasnault, Agnes Cousin, Martin R. Fisk, Scott M. McLennan, Claude d’Uston, Eric Lewin, John Bridges, Jeffrey R. Johnson, Ralph E. Milliken, Susanne Schröder, B. L. Barraclough, John P. Grotzinger, Marion Nachon, Noureddine Melikechi, Rebecca M. E. Williams, Richard Leveille, Scott K. Rowland, K. M. Stack, Diana L. Blaney, P.-Y. Meslin, Bethany L. Ehlmann, Dawn Y. Sumner, D. T. Vaniman, Michael C. Malin, Roger C. Wiens, Samuel M. Clegg, Lauren A. Edgar, B. C. Clark, N. Mangold, Violaine Sautter, Kenneth S. Edgett, Joel A. Hurowitz, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Space Remote Sensing Group (ISR-2), Los Alamos National Laboratory (LANL), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), United States Geological Survey [Reston] (USGS), Planetary Science Institute [Tucson] (PSI), ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Space Research Centre [Leicester], University of Leicester, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Space Science Institute [Boulder] (SSI), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), College of Earth, Ocean and Atmospheric Sciences [Corvallis] (CEOAS), Oregon State University (OSU), Department of Earth Science and Technology [Imperial College London], Imperial College London, Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), College of Marine and Environmental Sciences [Cairns], James Cook University (JCU), C2O Consulting, Department of Natural Resource Sciences, McGill University = Université McGill [Montréal, Canada], Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), State University of New York (SUNY), Optical Science Center for Applied Research (OSCAR), Delaware State University (DSU), Department of Civil and Environmental Engineering and Earth Science [Notre Dame] (CEEES), University of Notre Dame [Indiana] (UND), Department of Earth and Planetary Sciences [Albuquerque] (EPS), The University of New Mexico [Albuquerque], Institute of Meteoritics [Albuquerque] (IOM), Muséum national d'Histoire naturelle (MNHN), Institut für Umweltphysik [Heidelberg], Universität Heidelberg [Heidelberg] = Heidelberg University, ICG-2, Centre d'étude spatiale des rayonnements (CESR), Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Macquarie University, Université d'Angers (UA)-Université de Nantes - Faculté des Sciences et des Techniques, Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), California Institute of Technology (CALTECH)-NASA, University of California [Davis] (UC Davis), University of California, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan), Division of Geological and Planetary Sciences [Pasadena], Department of Physics and Materials Science & Centre for Functional Photonics (CFP), The University of Hong Kong (HKU), Astrogeology Science Center [Flagstaff], Centre for Infection and Immunity, Canadian Space Agency (CSA), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), University of Hawaii, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley], University of California-University of California, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Universität Heidelberg [Heidelberg], Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, and Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS)
- Subjects
LIBS ,Outcrop ,Earth science ,sediments ,Geochemistry ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars Exploration Program ,Gale crater ,Diagenesis ,Sedimentary depositional environment ,Geophysics ,[SDU]Sciences of the Universe [physics] ,ChemCam ,Space and Planetary Science ,Geochemistry and Petrology ,Stratigraphic section ,Earth and Planetary Sciences (miscellaneous) ,Sedimentary rock ,Lithification ,ComputingMilieux_MISCELLANEOUS ,Geology ,Stratigraphic column - Abstract
International audience; The Yellowknife Bay formation represents a similar to 5m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (similar to 1m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.
- Published
- 2015
- Full Text
- View/download PDF
4. The global distribution of calcium on the Moon: Implications for high-Ca pyroxene in the eastern mare region
- Author
-
Nobuyuki Hasebe, Olivier Gasnault, Y. Karouji, Olivier Forni, Naoyuki Yamashita, Shingo Kobayashi, Makoto Hareyama, Claude d’Uston, Robert C. Reedy, Kyeong Ja Kim, and H. Nagaoka
- Subjects
Kaguya ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Global distribution ,Abundance (ecology) ,Earth and Planetary Sciences (miscellaneous) ,Mineralogy ,Pyroxene ,Geology ,Mare Crisium - Abstract
The first unambiguous global distribution of Ca on the Moon has been revealed by the Kaguya Gamma-Ray Spectrometer. The observation of the 3737 keV gamma rays from 40 Ca with a high energy resolution Ge detector, corrected for fast neutrons, improved greatly our confidence in these remote sensing data. While the derived Ca abundance generally confirms the mare-highland dichotomy, we found that the eastern mare regions such as Crisium, Nectaris, and Fecunditatis exhibit unexpected high Ca abundances. This may be explained by regional concentrations of high-Ca clinopyroxene. Our Ca map also shows that the lowest CaO abundance found in the returned samples (∼8 wt%) may actually be common in Oceanus Procellarum, suggesting the possible sampling bias of Apollo and Luna missions. These observational results on Ca serve as a complementary criterion for better characterization of mare regions on the Moon.
- Published
- 2012
- Full Text
- View/download PDF
5. Lunar farside Th distribution measured by Kaguya gamma-ray spectrometer
- Author
-
Yuzuru Karouji, Naoyuki Yamashita, Olivier Forni, Claude d’Uston, Robert C. Reedy, Olivier Gasnault, Kyeong Ja Kim, Masanori Kobayashi, Makoto Hareyama, Yoshiaki Ishihara, Shingo Kobayashi, Nobuyuki Hasebe, Hiroshi Takeda, Tomokatsu Morota, and Eido Shibamura
- Subjects
Kaguya ,Spectrometer ,Gamma ray spectrometer ,Equator ,Thorium ,chemistry.chemical_element ,Geophysics ,Lunar magma ocean ,chemistry ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Variation (astronomy) ,Geology - Abstract
Kaguya gamma-ray spectrometer measured thorium (Th) distribution on the lunar farside with the highest sensitivity among past gamma-ray remote sensing missions. The newly obtained Th map has revealed that two regions near the equator on the farside have the lowest Th abundances. We found that the variation of the Th abundance perfectly correlates with the crustal thickness in the farside and the southern nearside, and it could be a result of the crystallization of the lunar magma ocean.
- Published
- 2012
- Full Text
- View/download PDF
6. The miniaturised Mössbauer spectrometer MIMOS IIA: Increased sensitivity and new capability for elemental analysis
- Author
-
B. Bernhardt, J. Maul, Jordi Girones Lopez, M. Blumers, Claude d’Uston, H. Henkel, L. Strüder, Peter Lechner, Heike Soltau, Göstar Klingelhöfer, R. Eckhardt, and J. Brückner
- Subjects
On board ,Physics ,Nuclear and High Energy Physics ,Silicon drift detector ,Spectrometer ,Elemental analysis ,Mössbauer spectroscopy ,Nondestructive analysis ,Mars Exploration Program ,Exploration of Mars ,Instrumentation ,Remote sensing - Abstract
The Miniaturised Mossbauer Spectrometers MIMOS II on board the two Mars Exploration Rovers (MER) have now been collecting valuable scientific data for more than five years. Mossbauer Spectrometers are part of two future missions: Phobos Grunt (Russian Space Agency) and a joint ESA—NASA Rover in 2018. The new advanced MIMOS IIA instrument described in this paper uses Silicon Drift Detectors (SDD) allowing also X-ray fluorescence chemical analysis (XRF) simultaneously to Mossbauer acquisitions. This paper highlights the features and technological improvements of the new spectrometer MIMOS IIA.
- Published
- 2010
- Full Text
- View/download PDF
7. Determining the Absolute Abundances of Natural Radioactive Elements on the Lunar Surface by the Kaguya Gamma-ray Spectrometer
- Author
-
Shingo Kobayashi, Kyeong Ja Kim, Osamu Okudaira, Masanori Kobayashi, Olivier Forni, M. Hareyama, Claude d’Uston, Olivier Gasnault, Robert C. Reedy, Yuzuru Karouji, Naoyuki Yamashita, Sylvestre Maurice, B. Diez, K. Hayatsu, Nobuyuki Hasebe, and Eido Shibamura
- Subjects
Physics ,Surface (mathematics) ,Kaguya ,Planetary science ,Spectrometer ,Meteorite ,Space and Planetary Science ,Abundance (ecology) ,Monte Carlo method ,Astronomy and Astrophysics ,Radioactive decay ,Remote sensing - Abstract
The Kaguya gamma-ray spectrometer (KGRS) has great potential to precisely determine the absolute abundances of natural radioactive elements K, Th and U on the lunar surface because of its excellent spectroscopic performance. In order to achieve the best performance of the KGRS, it is important to know the spatial response function (SRF) that describes the directional sensitivity of the KGRS. The SRF is derived by a series of Monte Carlo simulations of gamma-ray transport in the sensor of the KGRS using the full-fledged simulation model of the KGRS, and is studied in detail. In this paper, the method for deriving absolute abundance of natural radioactive elements based on the SRF is described for the analysis of KGRS data, which is also applicable to any gamma-ray remote sensings. In the preliminary analysis of KGRS data, we determined the absolute abundances of K and Th on the lunar surface without using any previous knowledge of chemical information gained from Apollo samples, lunar meteorites and/or previous lunar remote sensings. The results are compared with the previous measurements and the difference and the correspondence are discussed. Future detailed analysis of KGRS data will provide new and more precise maps of K, Th and U on the lunar surface.
- Published
- 2010
- Full Text
- View/download PDF
8. Evidence in favor of small amounts of ephemeral and transient water during alteration at Meridiani Planum, Mars
- Author
-
Claude d’Uston, Erwan Treguier, Gilles Berger, Patrick Pinet, and Michael J. Toplis
- Subjects
Basalt ,Meridiani Planum ,geography ,geography.geographical_feature_category ,Aqueous solution ,Bedrock ,Sulfuric acid ,Atmosphere of Mars ,Mars Exploration Program ,Astrobiology ,chemistry.chemical_compound ,Geophysics ,chemistry ,Geochemistry and Petrology ,Surface water ,Geology - Abstract
In light of the controversy surrounding the origin of sulfate-rich rocks analyzed by the Mars Exploration Rover Opportunity, thermodynamic and kinetic models explored the consequences of in situ alteration of basaltic sand by pristine sulfuric acid. Simulations at 273 K and current martian atmosphere show that it is possible to simultaneously account for both chemical and mineralogical observations at the Meridiani landing site, but only when the amounts of water are small (water/rock mass ratio ≤ 1), the aqueous solutions are highly acidic (pH < 3), and the lifetimes of liquid water are extremely short (on the order of tens of years). Furthermore, the best agreement between observations and models is obtained if evolved fluids are removed after alteration. If this simple self-consistent scenario is relevant to bedrock formation at Meridiani, it provides stringent constraints on the issues of where and when liquid water was present at the surface of Mars.
- Published
- 2009
- Full Text
- View/download PDF
9. The high precision gamma-ray spectrometer for lunar polar orbiter SELENE
- Author
-
Eido Shibamura, Naoyuki Yamashita, Mitsuhiro Miyajima, Takashi Miyachi, Sylvestre Maurice, Hiroyuki Yamamoto, Kunitomo Sakurai, Nobuyuki Hasebe, Manuel Grande, K. Hirano, Claude d’Uston, Olivier Gasnault, Shingo Kobayashi, Robert C. Reedy, Osamu Okudaira, Masanori Kobayashi, Takeshi Takashima, Takeshi Ishizaki, and Masayuki Fujii
- Subjects
Physics ,Atmospheric Science ,Spectrometer ,Physics::Instrumentation and Detectors ,Gamma ray spectrometer ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Aerospace Engineering ,Astronomy ,Astronomy and Astrophysics ,Bismuth germanate ,Physics::Geophysics ,law.invention ,Crystal ,chemistry.chemical_compound ,Orbiter ,Geophysics ,chemistry ,Space and Planetary Science ,law ,General Earth and Planetary Sciences ,Polar ,Astrophysics::Earth and Planetary Astrophysics - Abstract
The high precision gamma-ray spectrometer (GRS) is scheduled to be launched on the lunar polar orbiter of the SELENE mission in 2007. The GRS consists of a large Ge crystal as a main detector and massive bismuth germanate crystals as an anticoincidence detector. A Stirling cryocooler was adopted in cooling the Ge detector. The flight model of SELENE GRS has been completed and an energy resolution of 3.0 keV (FWHM) at 1.332 MeV has been achieved. The spectrometer aims to observe nuclear line gamma rays emitted from the lunar surface in a wide energy range from 100 keV to 12 MeV for one year and more to obtain chemical composition on the entire lunar surface. The gamma-ray data enable us to study lunar geoscience problems including crust and mantle composition, and volatile reservoirs at polar regions.
- Published
- 2008
- Full Text
- View/download PDF
10. Complexities of gamma-ray line intensities from the lunar surface
- Author
-
Osamu Okudaira, Masanori Kobayashi, Shingo Kobayashi, Kunitomo Sakurai, Mitsuhiro Miyajima, Sylvestre Maurice, Olivier Gasnault, Claude d’Uston, Naoyuki Yamashita, Takashi Miyachi, Nobuyuki Hasebe, Takeshi Ishizaki, and Robert C. Reedy
- Subjects
Physics ,Proton ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Geology ,Cosmic ray ,Astrophysics ,Abundance of the chemical elements ,Spectral line ,Space and Planetary Science ,Neutron flux ,Lunar soil ,Neutron ,Astrophysics::Galaxy Astrophysics - Abstract
Assuming different abundances of the Apollo lunar soil samples and the average spectrum of galactic cosmic ray protons, energy spectra of neutrons and gamma rays and emission rates of gamma-ray lines from major elements have been estimated by using the reviewed Monte Carlo simulation library Geant4 and nuclear data. Previously, such libraries were not able to reproduce gamma-ray lines properly for the planetary application. Results clearly show that the emission rate of gamma rays heavily depends not only on the chemical abundance but also neutron flux within the lunar subsurface. While the intensities of gamma-ray lines are mostly proportional to elemental abundances, the intensity per unit elemental abundance can vary. Such a complex correlation is attributed to the change in neutron flux within the lunar subsurface and petrological restriction of elemental variation.
- Published
- 2008
- Full Text
- View/download PDF
11. Solar proton damage in high-purity germanium detectors
- Author
-
J. Cabrera, Olivier Gasnault, J. J. Thocaven, B. Pirard, Claude d’Uston, J. Brückner, and P. Leleux
- Subjects
Physics ,Nuclear and High Energy Physics ,Proton ,business.industry ,chemistry.chemical_element ,Germanium ,Fluence ,Semiconductor detector ,Nuclear physics ,Optics ,chemistry ,Radiation damage ,Irradiation ,business ,Spectroscopy ,Interplanetary spaceflight ,Instrumentation - Abstract
High-purity germanium (HPGe) detectors used in space for gamma-ray spectroscopy in astrophysics and planetary exploration are known to be damaged by energetic particles. For interplanetary missions close to the Sun such as Messenger or BepiColombo to explore planet Mercury, solar protons represent an important source of damage. In this work, irradiation tests were performed on two large-volume coaxial n-type HPGe detectors with mono-energetic beams of 50-60 MeV protons. One of the detectors, designed for spatial applications, was incrementally exposed to a proton fluence up to 7.5 x 1010 p/cm2 and the other to a unique fluence of 10(10) p/cm(2.) The results showed that the degradation of the energy resolution appeared for fluences higher than 5 x 108 p/cm(2). Moreover, a loss in detection efficiency was observed for fluences above 1010 p/cm(2). Annealings above 80 degrees C allowed the recovery of the initial resolution but not the initial efficiency. By extrapolating the results beyond the experimental conditions, this study also establishes the limits for the use of spaceborne HPGc detectors in harsh low-energy proton environment. (c) 2006 Elsevier B.V. All rights reserved.
- Published
- 2007
- Full Text
- View/download PDF
12. The Rosetta Alpha Particle X-Ray Spectrometer (APXS)
- Author
-
Claude d’Uston, Rudolf Rieder, J. Brückner, Göstar Klingelhöfer, and Ralf Gellert
- Subjects
Physics ,Elemental composition ,Planetary science ,Spectrometer ,Space and Planetary Science ,Comet ,Local environment ,Astronomy and Astrophysics ,Alpha particle ,Alpha particle X-ray spectrometer ,Compositional data ,Astrobiology - Abstract
The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.
- Published
- 2007
- Full Text
- View/download PDF
13. Mars Pathfinder
- Author
-
Claude D’Uston
- Published
- 2015
- Full Text
- View/download PDF
14. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars
- Author
-
Harry Y. McSween, J. Brückner, Wendy M. Calvin, William M. Folkner, Scott M. McLennan, J. W. Rice, G. Landis, Matthew P. Golombek, Philip R. Christensen, R. Li, David J. Des Marais, Jeffrey E. Moersch, Steven W. Squyres, Paul S. Smith, John A. Grant, Göstar Klingelhöfer, James F. Bell, Jeffrey R. Johnson, Thanasis E. Economou, Kenneth E. Herkenhoff, Heinrich Wänke, Michael C. Malin, Jack D. Farmer, Laurence A. Soderblom, N. A. Cabrol, Benton C. Clark, John P. Grotzinger, Morten Madsen, Ronald Greeley, Michael H. Carr, Claude d’Uston, T. J. Parker, M. Sims, S. P. Gorevan, M. J. Wolff, Thomas J. Wdowiak, Stubbe F. Hviid, M. D. Smith, Andrew H. Knoll, Albert S. Yen, Mark T. Lemmon, Rudolf Rieder, Larry S. Crumpler, William H. Farrand, Larry A. Haskin, D. W. Ming, Ryan C. Sullivan, Raymond E. Arvidson, Richard V. Morris, and Lutz Richter
- Subjects
Meridiani Planum ,Geologic Sediments ,Minerals ,Multidisciplinary ,Extraterrestrial Environment ,Atmosphere ,Silicates ,Geochemistry ,Mars ,Water ,Mineralogy ,Wind ,Mars Exploration Program ,engineering.material ,Ferric Compounds ,Diagenesis ,Impact crater ,Concretion ,engineering ,Siliciclastic ,Sedimentary rock ,Composition of Mars ,Spacecraft ,Evolution, Planetary ,Geology - Abstract
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
- Published
- 2004
- Full Text
- View/download PDF
15. Elemental content from 0 to neutrons: Lunar Prospector results
- Author
-
Claude d’Uston, Olivier Gasnault, David J. Lawrence, Sylvestre Maurice, R. C. Elphic, I. Genetay, A. B. Binder, and W. C. Feldman
- Subjects
Physics ,Spectrometer ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy and Astrophysics ,Regolith ,Atomic mass ,Astrobiology ,Neutron spectroscopy ,Nuclear physics ,Space and Planetary Science ,Thermal ,Neutron ,Image resolution ,Data reduction - Abstract
Neutron spectroscopy is a new way to study planetary bodies that have sufficiently thin atmospheres. This technique was demonstrated for the first time with Lunar Prospector around the Moon. Here, we report results for moderated neutrons having energies from 0 to 500 keV that were measured using the anti-coincidence shield (ACS) of the gamma-ray spectrometer. We describe the detection method, followed by data reduction with an emphasis on each data processing step; most steps rely on in-flight calibrations. The behavior of the ACS is well known regarding the measurement of moderated neutrons. We present a map of 0– 500 keV neutrons over the whole Moon with a spatial resolution of ∼60 km . Statistical errors per pixel are less than 2%. The resulting map includes information about the hydrogen content, concentrations of Fe, Ti, traces of Sm and Gd, and the atomic mass of the regolith. These data complement other neutron products of Lunar Prospector, namely thermal (0– 0.4 eV ), epithermal (0.4– 100 eV ) and fast (0.5– 8 MeV ) neutrons. The previous unexplored region between 100 eV and 500 keV reveals several high counting rate regions that are also visible in epithermal neutron data.
- Published
- 2003
- Full Text
- View/download PDF
16. High-purity germanium Gamma-Ray Spectrometer with stirling cycle cryocooler
- Author
-
A. Oka, Eido Shibamura, Takeshi Takashima, Takashi Miyachi, Jun Kikuchi, N. Yamashita, Nobuyuki Hasebe, Kunishiro Mori, T. Kashiwagi, H. Okada, Manuel Grande, K. Tsurumi, Tadayoshi Doke, Sylvestre Maurice, Robert C. Reedy, H. Souri, Osamu Okudaira, Masanori Kobayashi, Katsuhiro Narasaki, and Claude d’Uston
- Subjects
Physics ,Atmospheric Science ,Stirling engine ,Spectrometer ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Aerospace Engineering ,chemistry.chemical_element ,Astronomy and Astrophysics ,Germanium ,Cryocooler ,Scintillator ,law.invention ,Orbiter ,Geophysics ,Optics ,chemistry ,Space and Planetary Science ,law ,Stirling cycle ,General Earth and Planetary Sciences ,Nuclear Experiment ,business - Abstract
The Japanese lunar polar orbiter SELENE carries a gamma-ray spectrometer which uses a high-purity Ge detector cooled to 80-90 K by a Stirling mechanical cooler. The Gamma-Ray Spectrometer (GRS) consists of a large volume n-type Ge detector (252 cc) as the main detector and bismuth-germanate (BGO) and plastic scintillators as an active shielding. The engineering model still maintains excellent energy resolution even after severe vibration testing. The Gamma-Ray Spectrometer will globally map of the Moon for the major elements of O, Mg, Al, Si, Ti, Fe, etc. and natural radioisotopes of K, Th and U with a high precision. The energy resolution of the GRS is such that it would identify prompt gamma-ray line from hydrogen and the location and the amount of ice, if it exists at the polar regions.
- Published
- 2002
- Full Text
- View/download PDF
17. Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits
- Author
-
P. Englert, R. D. Starr, Claude d’Uston, Albert E. Metzger, Robert L. Marcialis, Thomas H. Prettyman, C. Shinohara, R. C. Reedy, Heinrich Wänke, Sylvestre Maurice, Jacob I. Trombka, S. W. Squyres, James R. Arnold, Olivier Gasnault, William V. Boynton, D. K. Hamara, I. G. Mitrofanov, J. Brückner, G. J. Taylor, D. M. Drake, Daniel M. Janes, Larry G. Evans, W. C. Feldman, R. L. Tokar, and I. Mikheeva
- Subjects
Atmosphere ,Multidisciplinary ,Hydrogen ,chemistry ,Square Centimeter ,Water on Mars ,Dry ice ,chemistry.chemical_element ,Mineralogy ,Mars Exploration Program ,Layer (electronics) ,Geology ,Latitude - Abstract
Using the Gamma-Ray Spectrometer on the Mars Odyssey, we have identified two regions near the poles that are enriched in hydrogen. The data indicate the presence of a subsurface layer enriched in hydrogen overlain by a hydrogen-poor layer. The thickness of the upper layer decreases with decreasing distance to the pole, ranging from a column density of about 150 grams per square centimeter at –42° latitude to about 40 grams per square centimeter at –77°. The hydrogen-rich regions correlate with regions of predicted ice stability. We suggest that the host of the hydrogen in the subsurface layer is ice, which constitutes 35 ± 15% of the layer by weight.
- Published
- 2002
- Full Text
- View/download PDF
18. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
- Author
-
J. P. Grotzinger, D. Y. Sumner, L. C. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, R. Milliken, P. G. Conrad, D. DesMarais, J. Farmer, K. Siebach, F. Calef, J. Hurowitz, S. M. McLennan, D. Ming, D. Vaniman, J. Crisp, A. Vasavada, K. S. Edgett, M. Malin, D. Blake, R. Gellert, P. Mahaffy, R. C. Wiens, S. Maurice, J. A. Grant, S. Wilson, R. C. Anderson, L. Beegle, R. Arvidson, B. Hallet, R. S. Sletten, M. Rice, J. Bell, J. Griffes, B. Ehlmann, R. B. Anderson, T. F. Bristow, W. E. Dietrich, G. Dromart, J. Eigenbrode, A. Fraeman, C. Hardgrove, K. Herkenhoff, L. Jandura, G. Kocurek, S. Lee, L. A. Leshin, R. Leveille, D. Limonadi, J. Maki, S. McCloskey, M. Meyer, M. Minitti, H. Newsom, D. Oehler, A. Okon, M. Palucis, T. Parker, S. Rowland, M. Schmidt, S. Squyres, A. Steele, E. Stolper, R. Summons, A. Treiman, R. Williams, A. Yingst, MSL Science Team, Osku Kemppinen, Nathan Bridges, Jeffrey R. Johnson, David Cremers, Austin Godber, Meenakshi Wadhwa, Danika Wellington, Ian McEwan, Claire Newman, Mark Richardson, Antoine Charpentier, Laurent Peret, Penelope King, Jennifer Blank, Gerald Weigle, Shuai Li, Kevin Robertson, Vivian Sun, Michael Baker, Christopher Edwards, Kenneth Farley, Hayden Miller, Megan Newcombe, Cedric Pilorget, Claude Brunet, Victoria Hipkin, Richard Léveillé, Geneviève Marchand, Pablo Sobrón Sánchez, Laurent Favot, George Cody, Lorenzo Flückiger, David Lees, Ara Nefian, Mildred Martin, Marc Gailhanou, Frances Westall, Guy Israël, Christophe Agard, Julien Baroukh, Christophe Donny, Alain Gaboriaud, Philippe Guillemot, Vivian Lafaille, Eric Lorigny, Alexis Paillet, René Pérez, Muriel Saccoccio, Charles Yana, Carlos Armiens-Aparicio, Javier Caride Rodríguez, Isaías Carrasco Blázquez, Felipe Gómez Gómez, Javier Gómez-Elvira, Sebastian Hettrich, Alain Lepinette Malvitte, Mercedes Marín Jiménez, Jesús Martínez-Frías, Javier Martín-Soler, F. Javier Martín-Torres, Antonio Molina Jurado, Luis Mora-Sotomayor, Guillermo Muñoz Caro, Sara Navarro López, Verónica Peinado-González, Jorge Pla-García, José Antonio Rodriguez Manfredi, Julio José Romeral-Planelló, Sara Alejandra Sans Fuentes, Eduardo Sebastian Martinez, Josefina Torres Redondo, Roser Urqui-O’Callaghan, María-Paz Zorzano Mier, Steve Chipera, Jean-Luc Lacour, Patrick Mauchien, Jean-Baptiste Sirven, Heidi Manning, Alberto Fairén, Alexander Hayes, Jonathan Joseph, Robert Sullivan, Peter Thomas, Audrey Dupont, Angela Lundberg, Noureddine Melikechi, Alissa Mezzacappa, Julia DeMarines, David Grinspoon, Günther Reitz, Benito Prats, Evgeny Atlaskin, Maria Genzer, Ari-Matti Harri, Harri Haukka, Henrik Kahanpää, Janne Kauhanen, Mark Paton, Jouni Polkko, Walter Schmidt, Tero Siili, Cécile Fabre, James Wray, Mary Beth Wilhelm, Franck Poitrasson, Kiran Patel, Stephen Gorevan, Stephen Indyk, Gale Paulsen, David Bish, Brigitte Gondet, Yves Langevin, Claude Geffroy, David Baratoux, Gilles Berger, Alain Cros, Claude d’Uston, Olivier Forni, Olivier Gasnault, Jérémie Lasue, Qiu-Mei Lee, Pierre-Yves Meslin, Etienne Pallier, Yann Parot, Patrick Pinet, Susanne Schröder, Mike Toplis, Éric Lewin, Will Brunner, Ezat Heydari, Cherie Achilles, Brad Sutter, Michel Cabane, David Coscia, Cyril Szopa, François Robert, Violaine Sautter, Stéphane Le Mouélic, Marion Nachon, Arnaud Buch, Fabien Stalport, Patrice Coll, Pascaline François, François Raulin, Samuel Teinturier, James Cameron, Sam Clegg, Agnès Cousin, Dorothea DeLapp, Robert Dingler, Ryan Steele Jackson, Stephen Johnstone, Nina Lanza, Cynthia Little, Tony Nelson, Richard B. Williams, Andrea Jones, Laurel Kirkland, Burt Baker, Bruce Cantor, Michael Caplinger, Scott Davis, Brian Duston, Donald Fay, David Harker, Paul Herrera, Elsa Jensen, Megan R. Kennedy, Gillian Krezoski, Daniel Krysak, Leslie Lipkaman, Elaina McCartney, Sean McNair, Brian Nixon, Liliya Posiolova, Michael Ravine, Andrew Salamon, Lee Saper, Kevin Stoiber, Kimberley Supulver, Jason Van Beek, Tessa Van Beek, Robert Zimdar, Katherine Louise French, Karl Iagnemma, Kristen Miller, Fred Goesmann, Walter Goetz, Stubbe Hviid, Micah Johnson, Matthew Lefavor, Eric Lyness, Elly Breves, M. Darby Dyar, Caleb Fassett, Laurence Edwards, Robert Haberle, Tori Hoehler, Jeff Hollingsworth, Melinda Kahre, Leslie Keely, Christopher McKay, Lora Bleacher, William Brinckerhoff, David Choi, Jason P. Dworkin, Melissa Floyd, Caroline Freissinet, James Garvin, Daniel Glavin, Daniel Harpold, David K. Martin, Amy McAdam, Alexander Pavlov, Eric Raaen, Michael D. Smith, Jennifer Stern, Florence Tan, Melissa Trainer, Arik Posner, Mary Voytek, Andrew Aubrey, Alberto Behar, Diana Blaney, David Brinza, Lance Christensen, Lauren DeFlores, Jason Feldman, Sabrina Feldman, Gregory Flesch, Insoo Jun, Didier Keymeulen, Michael Mischna, John Michael Morookian, Betina Pavri, Marcel Schoppers, Aaron Sengstacken, John J. Simmonds, Nicole Spanovich, Manuel de la Torre Juarez, Christopher R. Webster, Albert Yen, Paul Douglas Archer, Francis Cucinotta, John H. Jones, Richard V. Morris, Paul Niles, Elizabeth Rampe, Thomas Nolan, Martin Fisk, Leon Radziemski, Bruce Barraclough, Steve Bender, Daniel Berman, Eldar Noe Dobrea, Robert Tokar, Timothy Cleghorn, Wesley Huntress, Gérard Manhès, Judy Hudgins, Timothy Olson, Noel Stewart, Philippe Sarrazin, Edward Vicenzi, Mark Bullock, Bent Ehresmann, Victoria Hamilton, Donald Hassler, Joseph Peterson, Scot Rafkin, Cary Zeitlin, Fedor Fedosov, Dmitry Golovin, Natalya Karpushkina, Alexander Kozyrev, Maxim Litvak, Alexey Malakhov, Igor Mitrofanov, Maxim Mokrousov, Sergey Nikiforov, Vasily Prokhorov, Anton Sanin, Vladislav Tretyakov, Alexey Varenikov, Andrey Vostrukhin, Ruslan Kuzmin, Benton Clark, Michael Wolff, Oliver Botta, Darrell Drake, Keri Bean, Mark Lemmon, Susanne P. Schwenzer, Ella Mae Lee, Robert Sucharski, Miguel Ángel de Pablo Hernández, Juan José Blanco Ávalos, Miguel Ramos, Myung-Hee Kim, Charles Malespin, Ianik Plante, Jan-Peter Muller, Rafael Navarro-González, Ryan Ewing, William Boynton, Robert Downs, Mike Fitzgibbon, Karl Harshman, Shaunna Morrison, Onno Kortmann, Amy Williams, Günter Lugmair, Michael A. Wilson, Bruce Jakosky, Tonci Balic-Zunic, Jens Frydenvang, Jaqueline Kløvgaard Jensen, Kjartan Kinch, Asmus Koefoed, Morten Bo Madsen, Susan Louise Svane Stipp, Nick Boyd, John L. Campbell, Glynis Perrett, Irina Pradler, Scott VanBommel, Samantha Jacob, Tobias Owen, Hannu Savijärvi, Eckart Boehm, Stephan Böttcher, Sönke Burmeister, Jingnan Guo, Jan Köhler, César Martín García, Reinhold Mueller-Mellin, Robert Wimmer-Schweingruber, John C. Bridges, Timothy McConnochie, Mehdi Benna, Heather Franz, Hannah Bower, Anna Brunner, Hannah Blau, Thomas Boucher, Marco Carmosino, Sushil Atreya, Harvey Elliott, Douglas Halleaux, Nilton Rennó, Michael Wong, Robert Pepin, Beverley Elliott, John Spray, Lucy Thompson, Suzanne Gordon, Ann Ollila, Joshua Williams, Paulo Vasconcelos, Jennifer Bentz, Kenneth Nealson, Radu Popa, Jeffrey Moersch, Christopher Tate, Mackenzie Day, Raymond Francis, Emily McCullough, Ed Cloutis, Inge Loes ten Kate, Daniel Scholes, Susan Slavney, Thomas Stein, Jennifer Ward, Jeffrey Berger, John E. Moores, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley], University of California-University of California, The University of Tennessee [Knoxville], Department of Earth Science and Technology [Imperial College London], Imperial College London, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), US Geological Survey [Santa Cruz], United States Geological Survey [Reston] (USGS), Princeton University, Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Providence], Brown University, NASA Goddard Space Flight Center (GSFC), NASA Ames Research Center (ARC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), State University of New York (SUNY), NASA Johnson Space Center (JSC), NASA, Planetary Science Institute [Tucson] (PSI), Department of Physics [Guelph], University of Guelph, Space Remote Sensing Group (ISR-2), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Center for Earth and Planetary Studies [Washington] (CEPS), Smithsonian National Air and Space Museum, Smithsonian Institution-Smithsonian Institution, Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Department of Geological Sciences [Austin], Jackson School of Geosciences (JSG), University of Texas at Austin [Austin]-University of Texas at Austin [Austin], Rensselaer Polytechnic Institute (RPI), Canadian Space Agency (CSA), NASA Headquarters, Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], University of Hawaii, Brock University [Canada], Cornell University [New York], Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Massachusetts Institute of Technology (MIT), Lunar and Planetary Institute [Houston] (LPI), GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Carnegie Institution for Science, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, and Petrology
- Subjects
Geologic Sediments ,Salinity ,Extraterrestrial Environment ,Nitrogen ,General Science & Technology ,Iron ,Curiosity rover ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Astrobiology ,MSL Science Team ,Exobiology ,MSL ,Martian ,Multidisciplinary ,fluvial-lacustrine environments ,Biosphere ,Water ,Phosphorus ,Mars Exploration Program ,15. Life on land ,Hydrogen-Ion Concentration ,Carbon ,Oxygen ,Planetary science ,Bays ,13. Climate action ,Rocknest ,Sample Analysis at Mars ,Sedimentary rock ,Oxidation-Reduction ,Geology ,Sulfur ,Hydrogen - Abstract
International audience; The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
- Published
- 2014
- Full Text
- View/download PDF
19. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
- Author
-
M. A. Meyer, Mark I. Richardson, Robert C. Anderson, Marisa C. Palucis, Sara Navarro Lopez, Rodney C. Ewing, Sanjeev Gupta, Caroline Freissinet, Edward M. Stolper, James F. Bell, M. A. Ravine, I. G. Mitrofanov, Thomas F. Bristow, Dawn Y. Sumner, Joel A. Hurowitz, Robert M. Haberle, Claire E. Newman, Andrew Steele, Muriel Saccoccio, Leslie Keely, E. Pallier, Jason P. Dworkin, Claude Geffroy, Mary A. Voytek, Michael Caplinger, Fred Goesmann, Yann Parot, Maria-Paz Zorzano Mier, A. B. Sanin, S. W. Squyres, Javier Caride Rodriguez, J. L. Griffes, Julio José Romeral-Planello, Jason Feldman, Katherine L. French, V. Sautter, Nicolas Mangold, David L. Bish, Vivian Lafaille, Michael D. Smith, François Raulin, V. Prokhorov, Gilles Berger, S. Slavney, Heather B. Franz, S. Johnstone, Susanne P. Schwenzer, Felipe Gómez, Harri Haukka, Francis A. Cucinotta, J. Hudgins, T. Cleghorn, Pascaline Francois, Alain Lepinette Malvitte, Shuai Li, Paul R. Mahaffy, K. M. Robertson, Bruce M. Jakosky, J. Guo, Juergen Schieber, Rafael Navarro-González, G. J. Flesch, Scott M. McLennan, Jennifer G. Blank, M. Carmosino, Kenneth A. Farley, Yves Langevin, P. D. Archer, A. E. Brunner, M. D. Dyar, S. Le Mouélic, V. Hipkin, Sara Alejandra Sans Fuentes, Kenneth S. Edgett, Sabrina Feldman, Gale Paulsen, Paul Herrera, Alberto G. Fairén, Kirsten L. Siebach, Jan-Peter Muller, M. J. Schoppers, Eldar Noe Dobrea, Nina Lanza, Marc Gailhanou, Genevieve Marchand, Sönke Burmeister, Craig Hardgrove, Justin N. Maki, Ari-Matti Harri, Michael C. Malin, M. J. Wolff, Roger E. Summons, H. Blau, Jacqueline Cameron, Jeff A. Berger, Didier Keymeulen, Agnes Cousin, Guillermo M. Muñoz Caro, Eric Lyness, Cedric Pilorget, Michael B. Baker, Christopher S. Edwards, M. L. Litvak, Brian M. Duston, Rebecca M. E. Williams, T. Nolan, Robert T. Downs, V. E. Hamilton, Walter Goetz, Pamela G. Conrad, J. Baroukh, Nathan T. Bridges, Meenakshi Wadhwa, Roger C. Wiens, Samuel M. Clegg, Philippe Sarrazin, L. Bleacher, Eric Lorigny, Mike Toplis, Michael H. Wong, Timothy H. McConnochie, Ian Mcewan, Kiran Patel, Mary Beth Wilhelm, John P. Grotzinger, Jeffrey E. Moersch, Michael A. Wilson, Mark Paton, I. Plante, Eric Lewin, Franck Poitrasson, Tori M. Hoehler, P. Guillemot, Mackenzie Day, David F. Blake, José Antonio Rodríguez Manfredi, G. W. Lugmair, Robert F. Wimmer-Schweingruber, Dorothy Z. Oehler, Samuel Teinturier, Bent Ehresmann, Jérémie Lasue, K. E. Herkenhoff, Daniel C. Berman, Scott VanBommel, Jeffrey R. Johnson, Emily M. McCullough, A. A. Fraeman, Ezat Heydari, Penelope L. King, K. M. Stack, Diana L. Blaney, A. Salamon, John G. Spray, L. Posiolova, Jeff Hollingsworth, David Choi, Kevin W. Lewis, B. D. Prats, Tonci Balic-Zunic, Mehdi Benna, H. M. Elliott, Jesús Martínez-Frías, R. Mueller-Mellin, William V. Boynton, Lance E. Christensen, Richard Leveille, John A. Grant, David E. Harker, J. M. Morookian, Caleb I. Fassett, S. Jacob, Donald Fay, R. Perez, Horton E. Newsom, Morten Madsen, M. G. Trainer, G. Israel, B. E. Nixon, Claude d’Uston, John E. Moores, Olivier Gasnault, Daniel J. Krysak, Vladislav Tretyakov, G. M. Perrett, Andrew D. Aubrey, L. E. Kirkland, F. Stalport, B. L. Barraclough, Alain Cros, Stephan Böttcher, Michel Cabane, William B. Brinckerhoff, Jack D. Farmer, James J. Wray, P. Y. Meslin, Arnaud Buch, Allan H. Treiman, S. C. R. Rafkin, B. C. Clark, Noureddine Melikechi, R. Jackson, Luther W. Beegle, Angela Lundberg, Bethany L. Ehlmann, William E. Dietrich, Karl Iagnemma, K. Supulver, Radu Popa, R. Zimdar, Melissa Floyd, Wesley T. Huntress, Paul B. Niles, D. M. Delapp, C. N.. Achilles, Darrell Drake, T. Nelson, Alain Gaboriaud, Verónica Peinado-Gonzalez, Edward P. Vicenzi, T. Boucher, Jennifer L. Eigenbrode, C. Tate, David J. Des Marais, F. Javier Martin-Torres, Antoine Charpentier, Chris Webster, Mildred P. Martin, Robert M. Sucharski, Lucy M. Thompson, Cyril Szopa, D. Halleaux, Antonio Molina Jurado, Richard V. Morris, Andrey Vostrukhin, Peter C. Thomas, Ara V. Nefian, Pablo Sobron Sanchez, Manuel de la Torre Juárez, B. Elliott, Hannu Savijärvi, J. Bentz, Sergey Nikiforov, S. Gordon, Shaunna M. Morrison, Jean-Luc Lacour, Günter Reitz, M. E. Newcombe, David E. Brinza, C. Yana, Gary Kocurek, L. J. Lipkaman, C. M. Garcia, Maria Genzer, Fred Calef, A. Godber, Stubbe F. Hviid, C. Donny, T. Van Beek, Ruslan O. Kuzmin, Alexander Hayes, T. S. Olson, George D. Cody, J. Martín-Soler, N. Karpushkina, John Bridges, Mercedes Jiménez, M. Lefavor, Sylvestre Maurice, H. L. K. Manning, Ralph E. Milliken, Susanne Schröder, N. Spanovich, L. J. Edwards, A. Koefoed, Roser Urqui-O'Callaghan, Eduardo Sebastian Martinez, Cary Zeitlin, Noël Stewart, David T. Vaniman, E. A. Breves, Laurent Favot, A. Varenikov, Gérard Manhès, R. B. Williams, David Martin, Steven J. Rowland, E. Boehm, Adrian P. Jones, Alexis Paillet, R. Francis, Sushil K. Atreya, Mariek E. Schmidt, David Baratoux, N. I. Boyd, Qiu-Mei Lee, I. L. ten Kate, Bernard Hallet, K. Stoiber, Vivian Z. Sun, M. R. Kennedy, Gillian M. Krezoski, Mark A. Bullock, T. Stein, Michelle E. Minitti, I. Pradler, Susan L. S. Stipp, Scott Davis, Robert O. Pepin, B. L. Ehlmann, Janne Kauhanen, Dmitry Golovin, Steve J. Chipera, Raymond E. Arvidson, Javier Gómez-Elvira, L. C. Kah, Melissa S. Rice, Isaias Carrasco Blazquez, Cécile Fabre, John J. Simmonds, Joy A. Crisp, Jens Frydenvang, Florence Tan, Julia DeMarines, S. P. Gorevan, Elizabeth B. Rampe, E. McCartney, Lauren DeFlores, K. Harshman, D. N. Harpold, J. Van Beek, Luis Mora-Sotomayor, Douglas W. Ming, Kristen E. Miller, John Campbell, Amy McAdam, L. Saper, Robert Sullivan, Lorenzo Fluckiger, Kjartan M. Kinch, Arik Posner, H. Bower, A. A. Pavlov, D. Scholes, Insoo Jun, Brigitte Gondet, Patrice Coll, Burt Baker, Donald M. Hassler, Ralf Gellert, Laurie A. Leshin, T. Siili, Gilles Dromart, Lauren A. Edgar, Ryan B. Anderson, Robert Dingler, Leon Radziemski, Jean-Baptiste Sirven, G. Weigle, Cynthia K. Little, A. Mezzacappa, Olivier Forni, A. S. Kozyrev, Edward A. Cloutis, Ashwin Vasavada, A. Behar, François Robert, D. M. Rubin, Alexey Malakhov, E. Jensen, T. C. Owen, Sebastien Hettrich, Miguel Ramos, B. Sutter, Melinda A. Kahre, Patrick Pinet, John H. Jones, Claude Brunet, B. Pavri, Nilton O. Renno, Evgeny Atlaskin, Laurent Peret, Maxim Mokrousov, David Lees, J. J. B. Avalos, Jennifer C. Stern, Ann Ollila, Josefina Torres Redondo, Miles J. Johnson, M. A. D. P. Hernandez, Daniel P. Glavin, Albert S. Yen, Christophe Agard, Jouni Polkko, Christopher P. McKay, J. Peterson, Oliver Botta, Mark T. Lemmon, Marion Nachon, K. M. Bean, Bruce A. Cantor, Jan Köhler, M. Fitzgibbon, Carlos Armiens-Aparicio, Jorge Pla-Garcia, Henrik Kahanpää, Frances Westall, Walter Schmidt, M.-H. Kim, Kenneth G. Miller, Sharon A. Wilson, S. McNair, O. Kortmann, David Grinspoon, E. M. Lee, S. Indyk, Osku Kemppinen, E. Raaen, Michael Mischna, R. S. Sletten, James B. Garvin, John M. Ward, R. L. Tokar, Paulo M. Vasconcelos, Charles Malespin, T. J. Parker, Aaron J. Sengstacken, S. Bender, Jean-Pierre Williams, F. Fedosov, Patrick Mauchien, Audrey Dupont, R. A. Yingst, David Coscia, David A. Cremers, Danika Wellington, Kenneth H. Nealson, J. K. Jensen, Martin R. Fisk, J. Joseph, Amy J. Williams, W. Brunner, NASA Johnson Space Center (JSC), NASA, NASA Goddard Space Flight Center (GSFC), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Guelph], University of Guelph, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Space Science and Astrobiology Division at Ames, NASA Ames Research Center (ARC), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Astronomy [Ithaca], Cornell University [New York], Center for Earth and Planetary Studies [Washington] (CEPS), Smithsonian National Air and Space Museum, Smithsonian Institution-Smithsonian Institution, Department of Earth Science and Technology [Imperial College London], Imperial College London, United States Geological Survey [Reston] (USGS), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Rensselaer Polytechnic Institute (RPI), Princeton University, State University of New York (SUNY), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Lunar and Planetary Institute [Houston] (LPI), Planetary Science Institute [Tucson] (PSI), School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Aalto University, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Applied Research Associates, Inc. (ARA), Center for Meteorite Studies [Tempe], Ashima Research, ATOS Origin, Australian National University (ANU), Bay Area Environmental Research Institute (BAER), Big Head Endian LLC, Brock University [Canada], Brown University, Canadian Space Agency (CSA), Capgemini Consulting [Paris], Carnegie Mellon University [Pittsburgh] (CMU), Catholic University of America, Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Chesapeake Energy Corporation, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Interaction Laser Matière (LILM), Concordia College, Moorhead, CS-Systèmes d'Information [Toulouse] (CS-SI), Delaware State University (DSU), Denver Museum of Nature and Science, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Finnish Meteorological Institute (FMI), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Global Science and Technology, Inc., Honeybee Robotics Ltd, Indiana University [Bloomington], Indiana University System, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Jackson State University (JSU), Jacobs Technology ESCG, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Minéralogie et Cosmochimie du Muséum (LMCM), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Space Remote Sensing Group (ISR-2), Malin Space Science Systems (MSSS), Depertment of Polymer Chemistry, Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, DLR Institute of Planetary Research, German Aerospace Center (DLR), NASA Headquarters, Oregon State University (OSU), Search for Extraterrestrial Intelligence Institute (SETI), Smithsonian Institution, Department of Space Studies [Boulder], Southwest Research Institute [Boulder] (SwRI), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), TechSource Inc., Texas A&M University [College Station], The Open University [Milton Keynes] (OU), University of Arizona, Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), California Institute of Technology (CALTECH)-NASA, Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], University of California [Berkeley], University of California-University of California, Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, Petrology, Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN), and Kruch, Catherine
- Subjects
Geologic Sediments ,010504 meteorology & atmospheric sciences ,Extraterrestrial Environment ,Curiosity rover ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mineralogy ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Sulfides ,01 natural sciences ,organic compositions ,Bassanite ,0103 physical sciences ,Exobiology ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Hydrocarbons, Chlorinated ,MSL ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Total organic carbon ,Martian ,mudstone samples ,Volatile Organic Compounds ,Multidisciplinary ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Water ,Mars Exploration Program ,Carbon Dioxide ,Oxygen ,Bays ,13. Climate action ,Rocknest ,Sample Analysis at Mars ,Sedimentary rock ,Pyrolysis - Abstract
H 2 O, CO 2 , SO 2 , O 2 , H 2 , H 2 S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H 2 O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO 2 . Concurrent evolution of O 2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.
- Published
- 2014
- Full Text
- View/download PDF
20. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover
- Author
-
Donald M. Hassler, Cary Zeitlin, Robert F. Wimmer-Schweingruber, Bent Ehresmann, Scot Rafkin, Jennifer L. Eigenbrode, David E. Brinza, Gerald Weigle, Stephan Böttcher, Eckart Böhm, Soenke Burmeister, Jingnan Guo, Jan Köhler, Cesar Martin, Guenther Reitz, Francis A. Cucinotta, Myung-Hee Kim, David Grinspoon, Mark A. Bullock, Arik Posner, Javier Gómez-Elvira, Ashwin Vasavada, John P. Grotzinger, MSL Science Team, Osku Kemppinen, David Cremers, James F. Bell, Lauren Edgar, Jack Farmer, Austin Godber, Meenakshi Wadhwa, Danika Wellington, Ian McEwan, Claire Newman, Mark Richardson, Antoine Charpentier, Laurent Peret, Penelope King, Jennifer Blank, Mariek Schmidt, Shuai Li, Ralph Milliken, Kevin Robertson, Vivian Sun, Michael Baker, Christopher Edwards, Bethany Ehlmann, Kenneth Farley, Jennifer Griffes, Hayden Miller, Megan Newcombe, Cedric Pilorget, Melissa Rice, Kirsten Siebach, Katie Stack, Edward Stolper, Claude Brunet, Victoria Hipkin, Richard Léveillé, Geneviève Marchand, Pablo Sobrón Sánchez, Laurent Favot, George Cody, Andrew Steele, Lorenzo Flückiger, David Lees, Ara Nefian, Mildred Martin, Marc Gailhanou, Frances Westall, Guy Israël, Christophe Agard, Julien Baroukh, Christophe Donny, Alain Gaboriaud, Philippe Guillemot, Vivian Lafaille, Eric Lorigny, Alexis Paillet, René Pérez, Muriel Saccoccio, Charles Yana, Carlos Armiens‐Aparicio, Javier Caride Rodríguez, Isaías Carrasco Blázquez, Felipe Gómez Gómez, Sebastian Hettrich, Alain Lepinette Malvitte, Mercedes Marín Jiménez, Jesús Martínez-Frías, Javier Martín-Soler, F. Javier Martín-Torres, Antonio Molina Jurado, Luis Mora-Sotomayor, Guillermo Muñoz Caro, Sara Navarro López, Verónica Peinado-González, Jorge Pla-García, José Antonio Rodriguez Manfredi, Julio José Romeral-Planelló, Sara Alejandra Sans Fuentes, Eduardo Sebastian Martinez, Josefina Torres Redondo, Roser Urqui-O'Callaghan, María-Paz Zorzano Mier, Steve Chipera, Jean-Luc Lacour, Patrick Mauchien, Jean-Baptiste Sirven, Heidi Manning, Alberto Fairén, Alexander Hayes, Jonathan Joseph, Steven Squyres, Robert Sullivan, Peter Thomas, Audrey Dupont, Angela Lundberg, Noureddine Melikechi, Alissa Mezzacappa, Thomas Berger, Daniel Matthia, Benito Prats, Evgeny Atlaskin, Maria Genzer, Ari-Matti Harri, Harri Haukka, Henrik Kahanpää, Janne Kauhanen, Mark Paton, Jouni Polkko, Walter Schmidt, Tero Siili, Cécile Fabre, James Wray, Mary Beth Wilhelm, Franck Poitrasson, Kiran Patel, Stephen Gorevan, Stephen Indyk, Gale Paulsen, Sanjeev Gupta, David Bish, Juergen Schieber, Brigitte Gondet, Yves Langevin, Claude Geffroy, David Baratoux, Gilles Berger, Alain Cros, Claude d’Uston, Olivier Forni, Olivier Gasnault, Jérémie Lasue, Qiu-Mei Lee, Sylvestre Maurice, Pierre-Yves Meslin, Etienne Pallier, Yann Parot, Patrick Pinet, Susanne Schröder, Mike Toplis, Éric Lewin, Will Brunner, Ezat Heydari, Cherie Achilles, Dorothy Oehler, Brad Sutter, Michel Cabane, David Coscia, Cyril Szopa, Gilles Dromart, François Robert, Violaine Sautter, Stéphane Le Mouélic, Nicolas Mangold, Marion Nachon, Arnaud Buch, Fabien Stalport, Patrice Coll, Pascaline François, François Raulin, Samuel Teinturier, James Cameron, Sam Clegg, Agnès Cousin, Dorothea DeLapp, Robert Dingler, Ryan Steele Jackson, Stephen Johnstone, Nina Lanza, Cynthia Little, Tony Nelson, Roger C. Wiens, Richard B. Williams, Andrea Jones, Laurel Kirkland, Allan Treiman, Burt Baker, Bruce Cantor, Michael Caplinger, Scott Davis, Brian Duston, Kenneth Edgett, Donald Fay, Craig Hardgrove, David Harker, Paul Herrera, Elsa Jensen, Megan R. Kennedy, Gillian Krezoski, Daniel Krysak, Leslie Lipkaman, Michael Malin, Elaina McCartney, Sean McNair, Brian Nixon, Liliya Posiolova, Michael Ravine, Andrew Salamon, Lee Saper, Kevin Stoiber, Kimberley Supulver, Jason Van Beek, Tessa Van Beek, Robert Zimdar, Katherine Louise French, Karl Iagnemma, Kristen Miller, Roger Summons, Fred Goesmann, Walter Goetz, Stubbe Hviid, Micah Johnson, Matthew Lefavor, Eric Lyness, Elly Breves, M. Darby Dyar, Caleb Fassett, David F. Blake, Thomas Bristow, David DesMarais, Laurence Edwards, Robert Haberle, Tori Hoehler, Jeff Hollingsworth, Melinda Kahre, Leslie Keely, Christopher McKay, Lora Bleacher, William Brinckerhoff, David Choi, Pamela Conrad, Jason P. Dworkin, Melissa Floyd, Caroline Freissinet, James Garvin, Daniel Glavin, Daniel Harpold, Paul Mahaffy, David K. Martin, Amy McAdam, Alexander Pavlov, Eric Raaen, Michael D. Smith, Jennifer Stern, Florence Tan, Melissa Trainer, Michael Meyer, Mary Voytek, Robert C. Anderson, Andrew Aubrey, Luther W. Beegle, Alberto Behar, Diana Blaney, Fred Calef, Lance Christensen, Joy A. Crisp, Lauren DeFlores, Jason Feldman, Sabrina Feldman, Gregory Flesch, Joel Hurowitz, Insoo Jun, Didier Keymeulen, Justin Maki, Michael Mischna, John Michael Morookian, Timothy Parker, Betina Pavri, Marcel Schoppers, Aaron Sengstacken, John J. Simmonds, Nicole Spanovich, Manuel de la Torre Juarez, Christopher R. Webster, Albert Yen, Paul Douglas Archer, John H. Jones, Douglas Ming, Richard V. Morris, Paul Niles, Elizabeth Rampe, Thomas Nolan, Martin Fisk, Leon Radziemski, Bruce Barraclough, Steve Bender, Daniel Berman, Eldar Noe Dobrea, Robert Tokar, David Vaniman, Rebecca M. E. Williams, Aileen Yingst, Kevin Lewis, Laurie Leshin, Timothy Cleghorn, Wesley Huntress, Gérard Manhès, Judy Hudgins, Timothy Olson, Noel Stewart, Philippe Sarrazin, John Grant, Edward Vicenzi, Sharon A. Wilson, Victoria Hamilton, Joseph Peterson, Fedor Fedosov, Dmitry Golovin, Natalya Karpushkina, Alexander Kozyrev, Maxim Litvak, Alexey Malakhov, Igor Mitrofanov, Maxim Mokrousov, Sergey Nikiforov, Vasily Prokhorov, Anton Sanin, Vladislav Tretyakov, Alexey Varenikov, Andrey Vostrukhin, Ruslan Kuzmin, Benton Clark, Michael Wolff, Scott McLennan, Oliver Botta, Darrell Drake, Keri Bean, Mark Lemmon, Susanne P. Schwenzer, Ryan B. Anderson, Kenneth Herkenhoff, Ella Mae Lee, Robert Sucharski, Miguel Ángel de Pablo Hernández, Juan José Blanco Ávalos, Miguel Ramos, Charles Malespin, Ianik Plante, Jan-Peter Muller, Rafael Navarro-González, Ryan Ewing, William Boynton, Robert Downs, Mike Fitzgibbon, Karl Harshman, Shaunna Morrison, William Dietrich, Onno Kortmann, Marisa Palucis, Dawn Y. Sumner, Amy Williams, Günter Lugmair, Michael A. Wilson, David Rubin, Bruce Jakosky, Tonci Balic-Zunic, Jens Frydenvang, Jaqueline Kløvgaard Jensen, Kjartan Kinch, Asmus Koefoed, Morten Bo Madsen, Susan Louise Svane Stipp, Nick Boyd, John L. Campbell, Ralf Gellert, Glynis Perrett, Irina Pradler, Scott VanBommel, Samantha Jacob, Tobias Owen, Scott Rowland, Hannu Savijärvi, César Martín García, Reinhold Mueller-Mellin, John C. Bridges, Timothy McConnochie, Mehdi Benna, Heather Franz, Hannah Bower, Anna Brunner, Hannah Blau, Thomas Boucher, Marco Carmosino, Sushil Atreya, Harvey Elliott, Douglas Halleaux, Nilton Rennó, Michael Wong, Robert Pepin, Beverley Elliott, John Spray, Lucy Thompson, Suzanne Gordon, Horton Newsom, Ann Ollila, Joshua Williams, Paulo Vasconcelos, Jennifer Bentz, Kenneth Nealson, Radu Popa, Linda C. Kah, Jeffrey Moersch, Christopher Tate, Mackenzie Day, Gary Kocurek, Bernard Hallet, Ronald Sletten, Raymond Francis, Emily McCullough, Ed Cloutis, Inge Loes ten Kate, Raymond Arvidson, Abigail Fraeman, Daniel Scholes, Susan Slavney, Thomas Stein, Jennifer Ward, Jeffrey Berger, John E. Moores, NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, Petrology, Southwest Research Institute [Boulder] (SwRI), Kiel University, NASA Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), German Aerospace Center (DLR), University of Nevada [Reno], Universities Space Research Association (USRA), Denver Museum of Nature and Science, NASA Headquarters, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), GeoRessources, and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Extraterrestrial Environment ,Surface Properties ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Cosmic ray ,Radiation Dosage ,Exploration of Mars ,Astrobiology ,Martian surface ,Exobiology ,galactic cosmic rays ,solar energetic particles ,Mars Science Laboratory’s Curiosity rover ,Humans ,Organic Chemicals ,Particle radiation ,Martian ,Radiation Assessment Detector (RAD) ,Multidisciplinary ,Mars Exploration Program ,Space Flight ,Radiation assessment detector ,13. Climate action ,Health threat from cosmic rays ,Deinococcus ,Cosmic Radiation - Abstract
International audience; The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for similar to 300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
- Published
- 2014
- Full Text
- View/download PDF
21. High-energy neutrons from the Moon
- Author
-
I. Genetay, Sylvestre Maurice, W. C. Feldman, Paul G. Lucey, Olivier Gasnault, R. C. Elphic, David J. Lawrence, and Claude d’Uston
- Subjects
Physics ,Atmospheric Science ,Ecology ,Spectrometer ,Resolution (electron density) ,Paleontology ,Soil Science ,Mineralogy ,Forestry ,Astrophysics ,Aquatic Science ,Oceanography ,Regolith ,Geophysics ,Altitude ,Flux (metallurgy) ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Gamma spectroscopy ,Neutron ,Spectroscopy ,Earth-Surface Processes ,Water Science and Technology - Abstract
We present the first report dedicated to 0.6–8 MeV neutrons measured by the Lunar Prospector gamma-ray spectrometer. The period of data collection extends from January 1998 to July 1999; the spacecraft altitude varied between 15 km and 140 km. Maps are at a 2° × 2° equal-area resolution. They show high counts and high variability for the mare and, low counts and low variability for the highlands. Such variability is due to differences of Fe and Ti concentrations in the lunar regolith, plus other elements with lesser effect that have not yet been included in our calculations. Assuming that only FeO and TiO2 concentrations are responsible for the fast neutron structures, fluxes are 2.7 times more sensitive to FeO than to TiO2. The statistical resolutions are 1.3% in FeO and 3.5% in TiO2. No discrimination of FeO is possible below 6.5%. Results are supported by numerical simulations. We also present the first lunar neutron spectrum over 16 channels between 0.6 and 8 MeV. Ninety-five percent of the counts are below ∼4.5 MeV. In flux units the spectrum peaks at ∼1.5 MeV. Its shape agrees with numerical simulations.
- Published
- 2000
- Full Text
- View/download PDF
22. Lunar fast neutron leakage flux calculation and its elemental abundance dependence
- Author
-
W. C. Feldman, Claude d’Uston, Olivier Gasnault, and Sylvestre Maurice
- Subjects
Atmospheric Science ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Soil Science ,Mineralogy ,Cosmic ray ,Aquatic Science ,Oceanography ,Physics::Geophysics ,Flux (metallurgy) ,Geochemistry and Petrology ,Neutron flux ,Earth and Planetary Sciences (miscellaneous) ,Neutron ,Nuclear Experiment ,Variation (astronomy) ,Earth-Surface Processes ,Water Science and Technology ,Range (particle radiation) ,Ecology ,Magnetic flux leakage ,Paleontology ,Forestry ,Neutron temperature ,Computational physics ,Geophysics ,Space and Planetary Science ,Geology - Abstract
A numerical code has been developed to simulate fast neutron leakage flux from planetary surfaces. These neutrons are produced in copious number by interactions between galactic cosmic rays and the nuclei of surface material. Their leakage flux spectrum depends on the composition of the upper layers of planetary bodies. Measurement of these neutrons allows the mapping of major compositional units. This technique is successfully used on Lunar Prospector data to obtain global geochemical maps of the lunar surface. With the help of simulations, relations between soil composition and neutron fluxes in the fast energy range [500 keV, 10 MeV] are established. The numerical code reproduces correctly the measurements of fast neutrons over the Moon. Variation in the neutron flux between highland and mare soils is calculated. A simple formula is suggested to estimate quickly the integrated fast neutron leakage flux for a given soil composition.
- Published
- 2000
- Full Text
- View/download PDF
23. Evidence of electron impact ionization in the magnetic pileup boundary of Mars
- Author
-
Kinsey A. Anderson, P. Walker, David Brain, Norman F. Ness, J. P. McFadden, John E. P. Connerney, Claude d’Uston, C. W. Carlson, Robert P. Lin, D. Vignes, Paul A. Cloutier, H. Rème, David L. Mitchell, Y. Chen, Christian Mazelle, J. A. Sauvaud, D. Crider, Mario H. Acuña, and C. Law
- Subjects
Physics ,Hydrogen ,Attenuation ,chemistry.chemical_element ,Electron ,Mars Exploration Program ,Spectral line ,Solar wind ,Geophysics ,chemistry ,Orbit (dynamics) ,General Earth and Planetary Sciences ,Atomic physics ,Electron ionization - Abstract
A sharp decline in electron fluxes is observed in the Mars Global Surveyor Electron Reflectometer data in conjunction with the magnetic pileup boundary. We examine the characteristics of the evolution of the electron distribution function for one orbit. We determine that the spectra can best be explained by electron impact ionization of oxygen and hydrogen. To reproduce the observed spectral evolution, we construct a model of the effects of electron impact ionization on the electron distribution function as a flow element encounters the neutral atmosphere. Using the observed post-shock electron distribution function, we are able to reproduce the observed flux attenuation. We conclude that electron impact ionization is the physical mechanism responsible for the spectral feature.
- Published
- 2000
- Full Text
- View/download PDF
24. Venus-like interaction of the solar wind with Mars
- Author
-
Mario H. Acuña, Norman F. Ness, C. Law, Siegfried Bauer, David Brain, C. W. Carlson, J. P. McFadden, Christian Mazelle, P. Walker, K. A. Anderson, Jean-André Sauvaud, Robert P. Lin, H. Rème, David L. Mitchell, Claude d’Uston, John E. P. Connerney, D. Crider, Y. Chen, D. Vignes, and Paul A. Cloutier
- Subjects
Physics ,biology ,Magnetometer ,Venus ,Geophysics ,Mars Exploration Program ,Electron ,biology.organism_classification ,Physics::Geophysics ,law.invention ,Magnetic field ,Solar wind ,law ,Remanence ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,General Earth and Planetary Sciences ,Astrophysics::Earth and Planetary Astrophysics ,Magnetic anomaly - Abstract
The magnetometer and electron reflectometer experiment (MAG/ER) on the Mars Global Surveyor (MGS) spacecraft has obtained magnetic field and electron data which indicates that the solar wind interaction with Mars is primarily an ionospheric-atmospheric interaction similar to that at Venus. However, the global-scale electric currents and resulting magnetic fields due to the interaction at Mars are locally interrupted or perturbed over distance scales of several hundred kilometers by the effects of paleomagnetic fields due to crustal remanence. In this paper we compare the Mars-solar wind interaction with the Venus-solar wind interaction by selecting MGS orbits which do not show significant magnetic perturbations due to crustal magnetic anomalies, and demonstrate that a number of phenomena characteristic of the Venus-solar wind interaction are also observable at Mars.
- Published
- 1999
- Full Text
- View/download PDF
25. Gamma-ray spectrometer for Japanese lunar polar orbiter
- Author
-
Eido Shibamura, K. Nomi, Kunishiro Mori, Claude d’Uston, Masanori Kobayashi, Nobuyuki Hasebe, Katsuhiro Narasaki, T. Kashiwagi, Robert C. Reedy, Jun Kikuchi, Tadayoshi Doke, Takeshi Takashima, Manuel Grande, R. Tanibata, T. Atarashiya, S.Mitani S.Mitani, and K.Kubo K.Kubo
- Subjects
Physics ,Atmospheric Science ,Spectrometer ,Detector ,Aerospace Engineering ,Astronomy ,Astronomy and Astrophysics ,Cryocooler ,Scintillator ,law.invention ,Orbiter ,Geophysics ,Impact crater ,Space and Planetary Science ,law ,Shield ,Stirling cycle ,General Earth and Planetary Sciences - Abstract
We review the current status of the development of Gamma-Ray Spectrometer (GRS) for the Lunar mission SELENE. The GRS instrument will measure gamma-rays in the energy range from 100 keV to 9 MeV. The instrument is a high-purity Ge detector surrounded by BGO and plastic scintillators which are operated as an anticoincidence shield, and is cooled by a Stirling cycle cryocooler. The primary objective is to provide global maps of the lunar composition. Measurements are anticipated for Fe, Ti, U, Th, K, Si, Mg, Al, O, Ca and Na over the entire lunar surface. The abundance of water ice in the permanently shaded craters at both the lunar poles will be measured with this instrument.
- Published
- 1999
- Full Text
- View/download PDF
26. MGS magnetic fields and electron reflectometer investigation: Discovery of paleomagnetic fields due to crustal remanence
- Author
-
Henri Rème, J. P. McFadden, Christian Mazelle, J. A. Sauvaud, Mario H. Acuña, D. W. Curtis, Siegfried Bauer, Robert Lin, Norman F. Ness, Claude d’Uston, D. Vignes, Peter J. Wasilewski, David L. Mitchell, John E. P. Connerney, and Paul A. Cloutier
- Subjects
Physics ,Atmospheric Science ,Magnetometer ,Aerospace Engineering ,Astronomy and Astrophysics ,Geophysics ,Physics::Geophysics ,Magnetic field ,law.invention ,Solar wind ,Magnetization ,Nuclear magnetic resonance ,Space and Planetary Science ,Remanence ,law ,Physics::Space Physics ,General Earth and Planetary Sciences ,Bow shock (aerodynamics) ,Electrostatic analyzer ,Mercury's magnetic field - Abstract
The MGS MAG/ER investigation provides vector measurements of the magnetic field and the ionospheric electron density near periapsis. The instrumentation consists of twin triaxial fluxgate magnetometers and a “top hat” electrostatic analyzer of electrons in the energy range of 1 eV to 20 keV. Results include extensive mapping of the detached bow shock wave in the solar wind, the nature and structure of the ionopause and magnetic pile-up boundaries. The most surprising result is the discovery of localized magnetic fields of planetary origin, presumably due to remanent crustal magnetization. Maximum fields measured while below the ionosphere exceed 300 nT. We present an initial study of one of these very localized fields and extrapolations to the Martian surface in the Acidalia planitia.
- Published
- 1999
- Full Text
- View/download PDF
27. WindSpacecraft Observations of Solar Impulsive Electron Events Associated with Solar Type III Radio Bursts
- Author
-
R. P. Lepping, C. W. Carlson, Jean-Michel Bosqued, Stuart D. Bale, Davin Larson, K.-P. Wenzel, Claude d’Uston, M. L. Kaiser, L. Muschietti, T. R. Sanderson, Matthew D. McCarthy, Robert P. Lin, J. P. McFadden, Paul J. Kellogg, Henri Rème, K. A. Anderson, Jean-Louis Bougeret, George K. Parks, and Robert E. Ergun
- Subjects
Physics ,Solar flare ,Whistler ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Electron ,Kinetic energy ,Plasma oscillation ,Instability ,Spectral line ,Space and Planetary Science ,Physics::Space Physics ,Coronal mass ejection - Abstract
We present Wind spacecraft observations of solar impulsive electron events associated with locally generated Langmuir waves during solar type III radio bursts. The solar impulsive electrons had energies from ~600 eV to greater than 300 keV. Local Langmuir emissions associated with these fluxes generally coincided with the arrival of 2-12 keV electrons. A survey of 27 events over 1 yr shows that there were few occurrences of electron distributions (~96 s averaged) that were unstable to Langmuir waves and none that had a substantial growth rate (>3 × 10-2 s-1) or endured for more than 96 s. Intense solar impulsive electron events that occurred on 1995 April 2 are studied in detail. Marginally stable (plateaued) distributions occasionally coincided with a periods of local Langmuir emissions, but the electron distributions were otherwise stable. These observations suggest that kinetic processes were modifying the electron distribution but also suggest that processes other than one-dimensional quasilinear relaxation were involved. We find that solar impulsive electron distributions were often unstable to oblique waves, such as quasi-electrostatic whistler waves or electromagnetic ion cyclotron waves, suggesting that competition between Langmuir and oblique emissions may be important. There are several other features in the Wind spacecraft solar impulsive electron observations that are noteworthy. Nondispersive flux modulations were visible in many of the events (also visible in the published ISEE 3 data) in ~1-4 keV electrons, suggesting that a local hydromagnetic instability may have accompanied the lowest energy solar impulsive electron fluxes. The Wind data differ from the ISEE 3 data in the energy spectra of the electron events. ISEE 3 recorded few events with only high-energy (>10 keV) electron fluxes, whereas a survey of the Wind events shows a substantially higher ratio of high-energy events. The high-energy events were often associated with solar flares that could not have been magnetically well connected with the satellite.
- Published
- 1998
- Full Text
- View/download PDF
28. A statistical study of the upstream intermediate ion boundary in the Earth's foreshock
- Author
-
Claude d’Uston and Karim Meziane
- Subjects
Physics ,Atmospheric Science ,education.field_of_study ,Population ,lcsh:QC801-809 ,Boundary (topology) ,Geology ,Astronomy and Astrophysics ,Geophysics ,Bow shocks in astrophysics ,lcsh:QC1-999 ,Computational physics ,Foreshock ,Momentum ,Particle acceleration ,Boundary layer ,lcsh:Geophysics. Cosmic physics ,Space and Planetary Science ,Physics::Space Physics ,Earth and Planetary Sciences (miscellaneous) ,Ligand cone angle ,lcsh:Q ,education ,lcsh:Science ,lcsh:Physics - Abstract
A statistical investigation of the location of onset of intermediate and gyrating ion populations in the Earth's foreshock is presented based on Fixed Voltage Analyzer data from ISEE 1. This study reveals the existence of a spatial boundary for intermediate and gyrating ion populations that coincides with the reported ULF wave boundary. This boundary position in the Earth's foreshock depends strongly upon the magnetic cone angle θBX and appears well defined for relatively large cone angles, though not for small cone angles. As reported in a previous study of the ULF wave boundary, the position of the intermediate-gyrating ion boundary is not compatible with a fixed growth rate of the waves resulting from the interaction between a uniform beam and the ambient plasma. The present work examines the momentum associated with protons which travel along this boundary, and we show that the variation of the boundary position (or equivalently, the associated particle momentum) with the cone angle is related to classical acceleration mechanisms at the bow shock surface. The same functional behavior as a function of the cone angle is obtained for the momentum predicted by an acceleration model and for the particle momentum associated with the boundary. However, the model predicts systematically larger values of the momentum than the observation related values by a constant amount; we suggest that this difference may be due to some momentum exchange between the incident solar-wind population and the backstreaming particles through a wave-particle interaction resulting from a beam plasma instability.Key words. Intermediate ion boundary · Statistical investigation · Earth's foreshock · ISEE 1 spacecraft
- Published
- 1998
29. WIND observation of gyrating-like ion distributions and low frequency waves upstream from the Earth's bow shock
- Author
-
D. Berdichevsky, J. P. McFadden, Claude d’Uston, Robert P. Lin, Henri Rème, R. P. Lepping, Kinsey A. Anderson, Davin Larson, Robert E. Ergun, C. Mazelle, C. W. Carlson, Karim Meziane, and George K. Parks
- Subjects
Physics ,Atmospheric Science ,Spacecraft ,Shock (fluid dynamics) ,business.industry ,Aerospace Engineering ,Astronomy and Astrophysics ,Low frequency ,Atmospheric sciences ,Computational physics ,Magnetic field ,Ion ,Geophysics ,Physics::Plasma Physics ,Space and Planetary Science ,Physics::Space Physics ,General Earth and Planetary Sciences ,Upstream (networking) ,Bow shock (aerodynamics) ,business ,Beam (structure) - Abstract
Several upstream ion distributions having a gyrating signature have been identified with the 3DP/PESA-High analyser on board the WIND spacecraft. These distributions are observed at distances greater than 20 R E from the Earth's bow shock. The distributions are observed in association with low frequency waves propagating quasi-parallel to the background magnetic field. By estimating the bulk velocity of the gyrating ions, we have found that the waves resonate with the particles. The observation of gyrating ions at large distances from the shock suggests their local production, probably from field-aligned beam disruption.
- Published
- 1997
- Full Text
- View/download PDF
30. POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE TO GLENELG IN GALE CRATER ON MARS
- Author
-
B. Berger, Patrick Pinet, Roger C. Wiens, Olivier Forni, Jérémie Lasue, Sylvestre Maurice, Claude d’Uston, Diana L. Blaney, Olivier Gasnault, John Bridges, N. Mangold, Agnès Cousin, and P. Y. Meslin
- Subjects
Traverse ,Soil water ,Atomic emission spectroscopy ,Gale crater ,Mineralogy ,Mars Exploration Program ,Geophysics ,Spectroscopy ,Geology - Abstract
Introduction: The possibility that the rocks and soils along the traverse during the 90 first SOLs have been altered is evaluated through the large number of ChemCam observations and through theoretical considerations on water-rock interactions. ChemCam [1,2] uses laser-induced breakdown spectroscopy (LIBS) to produce atomic emission spectra of small (350-550 μm) observation points on rocks and soils within 7 m of the rover. In the first 90 sols, 359 such observations were made on Mars targets. Method: LIBS peak ratios, normalized to silica, have been used as a first level quantification tool for the assessment of chemical input or output fluxes. The dust (1st laser shot on 30 to 50 per observation), and the soils and rocks (average of all shots excluding the first five) are evaluated separately.
- Published
- 2013
- Full Text
- View/download PDF
31. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere
- Author
-
Chris R, Webster, Paul R, Mahaffy, Gregory J, Flesch, Paul B, Niles, John H, Jones, Laurie A, Leshin, Sushil K, Atreya, Jennifer C, Stern, Lance E, Christensen, Tobias, Owen, Heather, Franz, Robert O, Pepin, Andrew, Steele, Cherie, Achilles, Christophe, Agard, José Alexandre, Alves Verdasca, Robert, Anderson, Ryan, Anderson, Doug, Archer, Carlos, Armiens-Aparicio, Ray, Arvidson, Evgeny, Atlaskin, Andrew, Aubrey, Burt, Baker, Michael, Baker, Tonci, Balic-Zunic, David, Baratoux, Julien, Baroukh, Bruce, Barraclough, Keri, Bean, Luther, Beegle, Alberto, Behar, James, Bell, Steve, Bender, Mehdi, Benna, Jennifer, Bentz, Gilles, Berger, Jeff, Berger, Daniel, Berman, David, Bish, David F, Blake, Juan J, Blanco Avalos, Diana, Blaney, Jen, Blank, Hannah, Blau, Lora, Bleacher, Eckart, Boehm, Oliver, Botta, Stephan, Böttcher, Thomas, Boucher, Hannah, Bower, Nick, Boyd, Bill, Boynton, Elly, Breves, John, Bridges, Nathan, Bridges, William, Brinckerhoff, David, Brinza, Thomas, Bristow, Claude, Brunet, Anna, Brunner, Will, Brunner, Arnaud, Buch, Mark, Bullock, Sönke, Burmeister, Michel, Cabane, Fred, Calef, James, Cameron, John, Campbell, Bruce, Cantor, Michael, Caplinger, Javier, Caride Rodríguez, Marco, Carmosino, Isaías, Carrasco Blázquez, Antoine, Charpentier, Steve, Chipera, David, Choi, Benton, Clark, Sam, Clegg, Timothy, Cleghorn, Ed, Cloutis, George, Cody, Patrice, Coll, Pamela, Conrad, David, Coscia, Agnès, Cousin, David, Cremers, Joy, Crisp, Alain, Cros, Frank, Cucinotta, Claude, d'Uston, Scott, Davis, Mackenzie, Day, Manuel, de la Torre Juarez, Lauren, DeFlores, Dorothea, DeLapp, Julia, DeMarines, David, DesMarais, William, Dietrich, Robert, Dingler, Christophe, Donny, Bob, Downs, Darrell, Drake, Gilles, Dromart, Audrey, Dupont, Brian, Duston, Jason, Dworkin, M Darby, Dyar, Lauren, Edgar, Kenneth, Edgett, Christopher, Edwards, Laurence, Edwards, Bethany, Ehlmann, Bent, Ehresmann, Jen, Eigenbrode, Beverley, Elliott, Harvey, Elliott, Ryan, Ewing, Cécile, Fabre, Alberto, Fairén, Ken, Farley, Jack, Farmer, Caleb, Fassett, Laurent, Favot, Donald, Fay, Fedor, Fedosov, Jason, Feldman, Sabrina, Feldman, Marty, Fisk, Mike, Fitzgibbon, Melissa, Floyd, Lorenzo, Flückiger, Olivier, Forni, Abby, Fraeman, Raymond, Francis, Pascaline, François, Caroline, Freissinet, Katherine Louise, French, Jens, Frydenvang, Alain, Gaboriaud, Marc, Gailhanou, James, Garvin, Olivier, Gasnault, Claude, Geffroy, Ralf, Gellert, Maria, Genzer, Daniel, Glavin, Austin, Godber, Fred, Goesmann, Walter, Goetz, Dmitry, Golovin, Felipe, Gómez Gómez, Javier, Gómez-Elvira, Brigitte, Gondet, Suzanne, Gordon, Stephen, Gorevan, John, Grant, Jennifer, Griffes, David, Grinspoon, John, Grotzinger, Philippe, Guillemot, Jingnan, Guo, Sanjeev, Gupta, Scott, Guzewich, Robert, Haberle, Douglas, Halleaux, Bernard, Hallet, Vicky, Hamilton, Craig, Hardgrove, David, Harker, Daniel, Harpold, Ari-Matti, Harri, Karl, Harshman, Donald, Hassler, Harri, Haukka, Alex, Hayes, Ken, Herkenhoff, Paul, Herrera, Sebastian, Hettrich, Ezat, Heydari, Victoria, Hipkin, Tori, Hoehler, Jeff, Hollingsworth, Judy, Hudgins, Wesley, Huntress, Joel, Hurowitz, Stubbe, Hviid, Karl, Iagnemma, Steve, Indyk, Guy, Israël, Ryan, Jackson, Samantha, Jacob, Bruce, Jakosky, Elsa, Jensen, Jaqueline Kløvgaard, Jensen, Jeffrey, Johnson, Micah, Johnson, Steve, Johnstone, Andrea, Jones, Jonathan, Joseph, Insoo, Jun, Linda, Kah, Henrik, Kahanpää, Melinda, Kahre, Natalya, Karpushkina, Wayne, Kasprzak, Janne, Kauhanen, Leslie, Keely, Osku, Kemppinen, Didier, Keymeulen, Myung-Hee, Kim, Kjartan, Kinch, Penny, King, Laurel, Kirkland, Gary, Kocurek, Asmus, Koefoed, Jan, Köhler, Onno, Kortmann, Alexander, Kozyrev, Jill, Krezoski, Daniel, Krysak, Ruslan, Kuzmin, Jean Luc, Lacour, Vivian, Lafaille, Yves, Langevin, Nina, Lanza, Jeremie, Lasue, Stéphane, Le Mouélic, Ella Mae, Lee, Qiu-Mei, Lee, David, Lees, Matthew, Lefavor, Mark, Lemmon, Alain, Lepinette Malvitte, Richard, Léveillé, Éric, Lewin-Carpintier, Kevin, Lewis, Shuai, Li, Leslie, Lipkaman, Cynthia, Little, Maxim, Litvak, Eric, Lorigny, Guenter, Lugmair, Angela, Lundberg, Eric, Lyness, Morten, Madsen, Justin, Maki, Alexey, Malakhov, Charles, Malespin, Michael, Malin, Nicolas, Mangold, Gérard, Manhes, Heidi, Manning, Geneviève, Marchand, Mercedes, Marín Jiménez, César, Martín García, Dave, Martin, Mildred, Martin, Jesús, Martínez-Frías, Javier, Martín-Soler, F Javier, Martín-Torres, Patrick, Mauchien, Sylvestre, Maurice, Amy, McAdam, Elaina, McCartney, Timothy, McConnochie, Emily, McCullough, Ian, McEwan, Christopher, McKay, Scott, McLennan, Sean, McNair, Noureddine, Melikechi, Pierre-Yves, Meslin, Michael, Meyer, Alissa, Mezzacappa, Hayden, Miller, Kristen, Miller, Ralph, Milliken, Douglas, Ming, Michelle, Minitti, Michael, Mischna, Igor, Mitrofanov, Jeff, Moersch, Maxim, Mokrousov, Antonio, Molina Jurado, John, Moores, Luis, Mora-Sotomayor, John Michael, Morookian, Richard, Morris, Shaunna, Morrison, Reinhold, Mueller-Mellin, Jan-Peter, Muller, Guillermo, Muñoz Caro, Marion, Nachon, Sara, Navarro López, Rafael, Navarro-González, Kenneth, Nealson, Ara, Nefian, Tony, Nelson, Megan, Newcombe, Claire, Newman, Horton, Newsom, Sergey, Nikiforov, Brian, Nixon, Eldar, Noe Dobrea, Thomas, Nolan, Dorothy, Oehler, Ann, Ollila, Timothy, Olson, Miguel Ángel, de Pablo Hernández, Alexis, Paillet, Etienne, Pallier, Marisa, Palucis, Timothy, Parker, Yann, Parot, Kiran, Patel, Mark, Paton, Gale, Paulsen, Alex, Pavlov, Betina, Pavri, Verónica, Peinado-González, Laurent, Peret, Rene, Perez, Glynis, Perrett, Joe, Peterson, Cedric, Pilorget, Patrick, Pinet, Jorge, Pla-García, Ianik, Plante, Franck, Poitrasson, Jouni, Polkko, Radu, Popa, Liliya, Posiolova, Arik, Posner, Irina, Pradler, Benito, Prats, Vasily, Prokhorov, Sharon Wilson, Purdy, Eric, Raaen, Leon, Radziemski, Scot, Rafkin, Miguel, Ramos, Elizabeth, Rampe, François, Raulin, Michael, Ravine, Günther, Reitz, Nilton, Rennó, Melissa, Rice, Mark, Richardson, François, Robert, Kevin, Robertson, José Antonio, Rodriguez Manfredi, Julio J, Romeral-Planelló, Scott, Rowland, David, Rubin, Muriel, Saccoccio, Andrew, Salamon, Jennifer, Sandoval, Anton, Sanin, Sara Alejandra, Sans Fuentes, Lee, Saper, Philippe, Sarrazin, Violaine, Sautter, Hannu, Savijärvi, Juergen, Schieber, Mariek, Schmidt, Walter, Schmidt, Daniel, Scholes, Marcel, Schoppers, Susanne, Schröder, Susanne, Schwenzer, Eduardo, Sebastian Martinez, Aaron, Sengstacken, Ruslan, Shterts, Kirsten, Siebach, Tero, Siili, Jeff, Simmonds, Jean-Baptiste, Sirven, Susie, Slavney, Ronald, Sletten, Michael, Smith, Pablo, Sobrón Sánchez, Nicole, Spanovich, John, Spray, Steven, Squyres, Katie, Stack, Fabien, Stalport, Thomas, Stein, Noel, Stewart, Susan Louise Svane, Stipp, Kevin, Stoiber, Ed, Stolper, Bob, Sucharski, Rob, Sullivan, Roger, Summons, Dawn, Sumner, Vivian, Sun, Kimberley, Supulver, Brad, Sutter, Cyril, Szopa, Florence, Tan, Christopher, Tate, Samuel, Teinturier, Inge, ten Kate, Peter, Thomas, Lucy, Thompson, Robert, Tokar, Mike, Toplis, Josefina, Torres Redondo, Melissa, Trainer, Allan, Treiman, Vladislav, Tretyakov, Roser, Urqui-O'Callaghan, Jason, Van Beek, Tessa, Van Beek, Scott, VanBommel, David, Vaniman, Alexey, Varenikov, Ashwin, Vasavada, Paulo, Vasconcelos, Edward, Vicenzi, Andrey, Vostrukhin, Mary, Voytek, Meenakshi, Wadhwa, Jennifer, Ward, Eddie, Weigle, Danika, Wellington, Frances, Westall, Roger Craig, Wiens, Mary Beth, Wilhelm, Amy, Williams, Joshua, Williams, Rebecca, Williams, Richard B, Williams, Mike, Wilson, Robert, Wimmer-Schweingruber, Mike, Wolff, Mike, Wong, James, Wray, Megan, Wu, Charles, Yana, Albert, Yen, Aileen, Yingst, Cary, Zeitlin, Robert, Zimdar, and María-Paz, Zorzano Mier
- Subjects
Atmosphere ,Martian ,chemistry.chemical_compound ,Multidisciplinary ,Meteorite ,chemistry ,Stable isotope ratio ,Sample Analysis at Mars ,Carbonate ,Mars Exploration Program ,Atmosphere of Mars ,Astrobiology - Abstract
Mars' Atmosphere from Curiosity The Sample Analysis at Mars (SAM) instrument on the Curiosity rover that landed on Mars in August last year is designed to study the chemical and isotopic composition of the martian atmosphere. Mahaffy et al. (p. 263 ) present volume-mixing ratios of Mars' five major atmospheric constituents (CO 2 , Ar, N 2 , O 2 , and CO) and isotope measurements of 40 Ar/ 36 Ar and C and O in CO 2 , based on data from one of SAM's instruments, obtained between 31 August and 21 November 2012. Webster et al. (p. 260 ) used data from another of SAM's instruments obtained around the same period to determine isotope ratios of H, C, and O in atmospheric CO 2 and H 2 O. Agreement between the isotopic ratios measured by SAM with those of martian meteorites, measured in laboratories on Earth, confirms the origin of these meteorites and implies that the current atmospheric reservoirs of CO 2 and H 2 O were largely established after the period of early atmospheric loss some 4 billion years ago.
- Published
- 2013
32. Probing the Earth's bow shock with upstream electrons
- Author
-
T. R. Sanderson, Robert E. Ergun, Michael P. McCarthy, C. W. Carlson, H. Rème, Jean-Michel Bosqued, R. P. Lepping, K.-P. Wenzel, T. D. Phan, George K. Parks, Davin Larson, J. P. McFadden, Claude d’Uston, Robert P. Lin, and Kinsey A. Anderson
- Subjects
Physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Electron ,Shock (mechanics) ,Foreshock ,Magnetic mirror ,Solar wind ,Geophysics ,Magnetosheath ,Optics ,Physics::Space Physics ,General Earth and Planetary Sciences ,Ligand cone angle ,Bow shock (aerodynamics) ,Atomic physics ,business - Abstract
We present detailed measurements from the WIND 3D Plasma and Energetic Particle experiment of electron distributions in the deep foreshock, well away from the foreshock boundaries. Both electrons escaping from the magnetosheath and solar wind electrons reflected by the strong magnetic field of the shock are observed. The loss cone angle that separates the reflected electrons from the escaping magnetosheath electrons can be determined as a function of electron energy. At lower energies, the loss cone angle increases because the cross-shock potential tends to pull electrons into the magnetosheath. The loss cone angle is typically ≲ 30° at energies ≳ 100 eV, corresponding to peak shock magnetic field to local magnetic field ratio of ≳ 5, while the loss cone variation with energy gives typical shock potentials of ∼85 V. Thus the measurements of back-streaming foreshock electrons can be used as a tool to remotely probe the characteristics of the bow shock.
- Published
- 1996
- Full Text
- View/download PDF
33. The subsolar magnetosheath and magnetopause for high solar wind ram pressure: WIND observations
- Author
-
S. Ashford, T. R. Sanderson, T. D. Phan, George K. Parks, C. W. Carlson, Robert P. Lin, K.-P. Wenzel, Adam Szabo, Claude d’Uston, Davin Larson, Kinsey A. Anderson, Jean-Michel Bosqued, Robert E. Ergun, Michael P. McCarthy, J. P. McFadden, and H. Rème
- Subjects
Physics ,Magnetic reconnection ,Geophysics ,Plasma ,Rotation ,Computational physics ,Ram pressure ,Magnetic field ,Solar wind ,Magnetosheath ,Physics::Space Physics ,General Earth and Planetary Sciences ,Magnetopause - Abstract
On a rapid inward pass through the subsolar magnetosheath (MSH) and magnetopause (MP), the WIND spacecraft initially encountered a moderately-compressed low-magnetic shear MP (at a radial distance of 8.6 RE), followed by multiple crossings of a high-shear MP (at 8.2 RE). The large shear resulted from a southward turning of the external MSH field. Strong magnetic field pile-up, a plasma depletion layer (PDL), and plasma flow acceleration and rotation to become more perpendicular to the local magnetic field were observed in the MSH on approach to the low-shear MP. At the high-shear MP, magnetic reconnection flows were detected, and there are some indications that plasma depletion effects were weak or absent in the adjacent MSH. We attribute the changes in the MP and MSH properties to the sudden rotation of the MSH field direction. In essence, the structure of the MP regions under the unusually high solar wind ram pressure condition in this case does not seem to be qualitatively different from that observed under more typical (less compressed) conditions. Also similar to previous observations, the mirror mode is marginally unstable in the MSH proper, but is stable in the PDL. In this region, the proton temperature anisotropy is inversely correlated with βp∥. Finally, the electron distributions are observed to be anisotropic (Te⟂/Te∥ ∼1.3) throughout the entire MSH.
- Published
- 1996
- Full Text
- View/download PDF
34. Observation of an impulsive solar electron event extending down to ∼0.5 keV energy
- Author
-
Matthew D. McCarthy, Robert P. Lin, J. P. McFadden, C. W. Carlson, K.-P. Wenzel, Claude d’Uston, S. Ashford, T. R. Sanderson, Kinsey A. Anderson, Davin Larson, H. Rème, Robert E. Ergun, Jean-Michel Bosqued, and George K. Parks
- Subjects
Physics ,Photosphere ,Range (particle radiation) ,Solar energetic particles ,Astrophysics::High Energy Astrophysical Phenomena ,Solar radius ,Electron ,Astrophysics ,Plasma ,Solar wind ,Geophysics ,Ionization ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,General Earth and Planetary Sciences - Abstract
We present the first observation of a solar impulsive electron event spanning the entire solar wind-suprathermal particle energy range (few eV to hundreds of keV), obtained with the 3-D Plasma and Energetic Particle experiment on the WIND spacecraft. The electron energy spectrum fits to a power-law ∼ E−3 from ∼40 keV down to a peak at ≲ 1 keV, with significant flux detected down to ∼0.5 keV. Since the range of such low energy electrons in ionized hydrogen is much less than the column density of the corona, they must be accelerated high, ∼1 R⊙ (solar radius) above the photosphere, for typical active coronal density models.
- Published
- 1996
- Full Text
- View/download PDF
35. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests
- Author
-
Roger C. Wiens, Sylvestre Maurice, Bruce Barraclough, Muriel Saccoccio, Walter C. Barkley, James F. Bell, Steve Bender, John Bernardin, Diana Blaney, Jennifer Blank, Marc Bouyé, Nathan Bridges, Nathan Bultman, Phillippe Caïs, Robert C. Clanton, Benton Clark, Samuel Clegg, Agnes Cousin, David Cremers, Alain Cros, Lauren DeFlores, Dorothea Delapp, Robert Dingler, Claude D’Uston, M. Darby Dyar, Tom Elliott, Don Enemark, Cecile Fabre, Mike Flores, Olivier Forni, Olivier Gasnault, Thomas Hale, Charles Hays, Ken Herkenhoff, Ed Kan, Laurel Kirkland, Driss Kouach, David Landis, Yves Langevin, Nina Lanza, Frank LaRocca, Jeremie Lasue, Joseph Latino, Daniel Limonadi, Chris Lindensmith, Cynthia Little, Nicolas Mangold, Gerard Manhes, Patrick Mauchien, Christopher McKay, Ed Miller, Joe Mooney, Richard V. Morris, Leland Morrison, Tony Nelson, Horton Newsom, Ann Ollila, Melanie Ott, Laurent Pares, René Perez, Franck Poitrasson, Cheryl Provost, Joseph W. Reiter, Tom Roberts, Frank Romero, Violaine Sautter, Steven Salazar, John J. Simmonds, Ralph Stiglich, Steven Storms, Nicolas Striebig, Jean-Jacques Thocaven, Tanner Trujillo, Mike Ulibarri, David Vaniman, Noah Warner, Rob Waterbury, Robert Whitaker, James Witt, and Belinda Wong-Swanson
- Subjects
010401 analytical chemistry ,010502 geochemistry & geophysics ,01 natural sciences ,0104 chemical sciences ,0105 earth and related environmental sciences - Published
- 2012
- Full Text
- View/download PDF
36. The South Pole-Aitken basin region, Moon: GIS-based geologic investigation using Kaguya elemental information
- Author
-
Trent M. Hare, Javier Ruiz, Masanori Kobayashi, Eido Shibamura, Makoto Hareyama, Kyeong Ja Kim, Jean-Pierre Williams, Claude d’Uston, Olivier Gasnault, James M. Dohm, Shingo Kobayashi, Olivier Forni, Nobuyuki Hasebe, Yuzuru Karouji, and Sylvestre Maurice
- Subjects
Kaguya ,Basalt ,Atmospheric Science ,Geodinámica ,Geochemistry ,Aerospace Engineering ,Astronomy and Astrophysics ,Volcanism ,Structural basin ,South Pole–Aitken basin ,Geophysics ,Impact crater ,Space and Planetary Science ,General Earth and Planetary Sciences ,Ejecta ,Late Heavy Bombardment ,Geology - Abstract
Using Geographic Information Systems (GIS), we performed comparative analysis among stratigraphic information and the Kaguya (SELENE) GRS data of the 2500-km-diameter South Pole-Aitken (SPA) basin and its surroundings. Results indicate chat the surface rock materials (including ancient crater materials, mare basalts, and possible SPA impact melt) are average to slightly elevated in K and Th with respect to the rest of the Moon. Also, this study demonstrates that K and Th have not significantly changed since the formation of PA. The elemental signatures of the impact basin of Fe, Ti, Si, O through time include evidence for resurfacing by ejecta materials and late-stage volcanism. The oldest surfaces of SPA are found to be oxygen-depleted during the heavy bombardment period relative to later stages of geologic development, followed by both an increase in silicon and oxygen, possibly due to ejecta sourced from outside of SPA, and subsequent modification due to mare basaltic volcanism, which increased iron and titanium within SPA. The influence of the distinct geologic history of SPA and surroundings on the mineralogic and elemental abundances is evident as shown in our investigation.
- Published
- 2012
37. APXS and MIMOS IIA: Planetary and terrestrial applications
- Author
-
B. Bernhardt, J. Girones Lopez, Göstar Klingelhöfer, Peter Lechner, D. Schmanke, Claude d’Uston, M. Blumers, and J. Brückner
- Subjects
Physics ,Optics ,Backscatter ,Spectrometer ,business.industry ,Physics::Space Physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Alpha particle ,Computer Science::Computational Geometry ,business ,Space exploration - Abstract
Both Alpha Particle X-ray Spectrometer (APXS) and the Miniaturized Moessbauer Spectrometer (MIMOS II) have shown their performances in space missions and terrestrial applications. Taking advantage of the challenges of space missions both instruments have become very powerful tools, even small in mass and dimensions.
- Published
- 2011
- Full Text
- View/download PDF
38. LUNAR GAMMA-RAY OBSERVATION BY KAGUYA GRS
- Author
-
Y. Takeda, K. Tsukada, Eido Shibamura, Nobuyuki Hasebe, B. Diez, Claude d’Uston, Yuzuru Karouji, J. Machida, T. Arai, N. Yamashita, Olivier Gasnault, S. Kobayashi, Mitsuru Ebihara, K. Hayatsu, H. Nagaoka, Osamu Okudaira, Masanori Kobayashi, Takamitsu Sugihara, Sylvestre Maurice, T. Hihara, Olivier Forni, M. Hareyama, K. Nemoto, Shinichi Komatsu, S. Sakurai, Hiroshi Takeda, Robert C. Reedy, K. Iwabuchi, and K. J. Kim
- Subjects
Kaguya ,Physics ,Gamma ray ,Astrophysics - Published
- 2011
- Full Text
- View/download PDF
39. Bounce Rock-A shergottite-like basalt encountered at Meridiani Planum, Mars
- Author
-
Ralf Gellert, James F. Bell, Christian Schröder, P. A. de Souza, Michael B. Wyatt, Claude d’Uston, K. E. Herkenhoff, Harry Y. McSween, Steven W. Squyres, B. C. Hahn, D. W. Ming, Daniel Rodionov, J. Brückner, Albert S. Yen, Göstar Klingelhöfer, Benton C. Clark, Timothy J. McCoy, S. P. Gorevan, Robert S. Anderson, Heinrich Wänke, Rudolf Rieder, B. L. Jolliff, S. P. Wright, Thanasis E. Economou, Philip R. Christensen, Jutta Zipfel, Gerlind Dreibus, Richard V. Morris, and Joy A. Crisp
- Subjects
Basalt ,Meridiani Planum ,Geophysics ,Water on Mars ,Space and Planetary Science ,Composition of Mars ,Mars Exploration Program ,Geology ,Astrobiology - Abstract
Additional co-authors: Thanasis ECONOMOU, Steven P. GOREVAN, Brian C. HAHN, Gostar KLINGELHOFER, Timothy J. McCOY, Harry Y. McSWEEN Jr, Douglas W. MING, Richard V. MORRIS, Daniel S. RODIONOV, Steven W. SQUYRES, Heinrich WANKE, Shawn P. WRIGHT, Michael B. WYATT, Albert S. YEN
- Published
- 2011
- Full Text
- View/download PDF
40. Electron Plasma Environment at Comet Grigg-Skjellerup: General Observations and Comparison With the Environment at Comet Halley
- Author
-
D. A. Mendis, Henri Rème, Christian Mazelle, J. A. Sauvaud, P. Chaizy, F. Froment, Claude d’Uston, C. W. Carlson, Robert P. Lin, A. Korth, Kinsey A. Anderson, and Davin Larson
- Subjects
Physics ,Atmospheric Science ,Electron spectrometer ,Ecology ,Comet tail ,Comet ,Halley's Comet ,Paleontology ,Soil Science ,Astronomy ,Forestry ,Aquatic Science ,Oceanography ,Astronomical spectroscopy ,Solar wind ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Comet nucleus ,Earth and Planetary Sciences (miscellaneous) ,Orders of magnitude (length) ,Earth-Surface Processes ,Water Science and Technology - Abstract
The three-dimensional electron spectrometer of the Reme plasma analyzer-complete positive ion, electron and ram negative ion measurements near comet Halley (RPA-COPERNIC) experiment aboard the Giotto spacecraft, although damaged during the comet Halley encounter in March 1986, has provided very new results during the encounter on July 10, 1992, with the weakly active comet Grigg-Skjellerup (G-S). The main characteristic features of the highly structured interaction region extending from approximately 26,500 km inbound to approximately 37,200 km outbound are presented. These results are compared to the results obtained by the same instrument during the Giotto comet Halley fly-by. Despite the large difference in the size of the interaction regions (approximately 60,000 km for G-S, approximately 2000,000 km for Halley) due to 2 orders of magnitude difference in cometary neutral gas production rate, there are striking similarities in the solar wind interactions with the two comets.
- Published
- 1993
- Full Text
- View/download PDF
41. Uranium on the Moon: Global distribution and U/Th ratio
- Author
-
Nobuyuki Hasebe, Eido Shibamura, Olivier Gasnault, Robert C. Reedy, Osamu Okudaira, Masanori Kobayashi, Kyeong Ja Kim, Claude d’Uston, Makoto Hareyama, Olivier Forni, Shingo Kobayashi, Yuzuru Karouji, and Naoyuki Yamashita
- Subjects
Kaguya ,Spectrometer ,Mineralogy ,chemistry.chemical_element ,Thorium ,Uranium ,Geophysics ,Geology of the Moon ,chemistry ,Global distribution ,Abundance (ecology) ,General Earth and Planetary Sciences ,Environmental science ,Variation (astronomy) - Abstract
[1] The Kaguya Gamma-Ray Spectrometer uniquely identified uranium gamma-ray lines from the Moon with a superior energy resolution of ∼1%. A global lunar map of uranium distribution is derived for the first time. It was found that uranium abundances vary up to 2 ppm with an average of ∼0.3 ppm, while the average thorium abundance was ∼1.2 ppm. From these analyses, significant variation in U/Th ratio was found in the farside of the Moon that had not been reported by previous observations or in lunar materials. Our observations suggest that the lunar highland is not as uniform as has been long considered.
- Published
- 2010
- Full Text
- View/download PDF
42. Independent Component Analysis of the Gamma Ray Spectrometer data of SELENE (Kaguya)
- Author
-
Kyeong Ja Kim, B. Diez, Olivier Gasnault, Nobuyuki Hasebe, Yuzuru Karouji, Osamu Okudaira, Masanori Kobayashi, Shingo Kobayashi, Claude d’Uston, Naoyuki Yamashita, Sylvestre Maurice, Olivier Forni, M. Hareyama, and Robert C. Reedy
- Subjects
Physics ,Kaguya ,Correlation coefficient ,Component (thermodynamics) ,Astrophysics::High Energy Astrophysical Phenomena ,Continuum (design consultancy) ,Gamma ray ,Astronomy ,Thorium ,chemistry.chemical_element ,Astrophysics ,Spectral line ,chemistry ,Gamma spectroscopy - Abstract
We analyze the spectra measured by the Gamma Ray Spectrometer (GRS) on board the SELENE satellite orbiting the Moon. The spectra consist in 8192 energy channels ranging from 0 to 12 MeV and exhibiting lines of interest (O, Mg, Al, Si, Ti, Ca, Fe, K, Th, and U) superposed on a continuum. We have also analysed the data with various multivariate techniques, one of them being the Independent Component Analysis. We have used the JADE algorithm for our analysis that we focused in the energy range from 750 to 3000 keV. We identify at least three meaningful components. The first one is correlated to the Thorium map. The corresponding correlation coefficient spectrum exhibits the lines of Thorium, Potassium and Uranium. The second component is clearly correlated with the Iron as shown on its corresponding spectrum. Finally the third component seems to be related to the altitude of the spacecraft. This work shows that maps of elements such as iron will be available with the GRS data by a purely statistical analysis.
- Published
- 2009
- Full Text
- View/download PDF
43. The C1XS X-ray Spectrometer on Chandrayaan-1
- Author
-
J. N. Goswami, Manuel Grande, A. Shrivastava, Tatsuaki Okada, D Kochney, Ian A. Crawford, Sara S. Russell, Mahesh Anand, Juhani Huovelin, David R. Smith, Bernard Foing, Andrew D. Holland, Martin Wilding, B. J. Maddison, A. C. Cook, Claude d’Uston, C. J. Howe, Barry Kellett, Narendra Bhandari, David A. Rothery, David J. Lawrence, Sylvestre Maurice, O. Gasnaut, B. M. Swinyard, Katherine H. Joy, Mark A. Wieczorek, P. Sreekumar, Carle M. Pieters, Shyama Narendranath, Vera A. Fernandes, Space Science Department, Planetary and Space Sciences [Milton Keynes] (PSS), School of Physical Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU)-Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), University of Leicester, Department of Mineralogy, Natural History Museum, Department of Mineralogy, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Physics ,Information retrieval ,010504 meteorology & atmospheric sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Space instrumentation ,Disk formatting ,Lunar composition ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,Space and Planetary Science ,Chandrayaan-1 ,0103 physical sciences ,X-ray spectroscopy ,Space Science ,Moon ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
This is the post-print version of the final paper published in Planetary and Space Science. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V. The Chandrayaan-1 X-ray Spectrometer (C1XS) is a compact X-ray spectrometer for the Indian Space Research Organisation (ISRO) Chandrayaan-1 lunar mission. It exploits heritage from the D-CIXS instrument on ESA's SMART-1 mission. As a result of detailed developments to all aspects of the design, its performance as measured in the laboratory greatly surpasses that of D-CIXS. In comparison with SMART-1, Chandrayaan-1 is a science-oriented rather than a technology mission, leading to far more favourable conditions for science measurements. C1XS is designed to measure absolute and relative abundances of major rock-forming elements (principally Mg, Al, Si, Ca and Fe) in the lunar crust with spatial resolution ⩽25 FWHM km, and to achieve relative elemental abundances of better than 10%. ESA Science and Technology Research Programmes
- Published
- 2009
- Full Text
- View/download PDF
44. Negative ions in the coma of comet Halley
- Author
-
D. A. Mendis, P. Chaizy, Jean-André Sauvaud, C. W. Carlson, K. A. Anderson, A. Korth, Davin Larson, Claude d’Uston, H. Rème, David L. Mitchell, and Robert P. Lin
- Subjects
Physics ,Multidisciplinary ,Comet ,Halley's Comet ,Analytical chemistry ,Radiative transfer ,Molecule ,Coma (optics) ,Astrophysics ,Charged particle ,Spectral line ,Ion - Abstract
The detection of negatively charged cometary ions in the inner coma of Comet Halley is reported. These ions are observed in three broad mass peaks at 7-19, 22-65, and 85-110 AMU, with densities reaching greater than about 1/cu cm, about 0.05/cu cm, and about 0.04/cu cm, respectively, at a distance of about 2300 km from the nucleus. The ion species thought to be present include O(-), OH(-), C(-), CH(-), CN(-) and heavier complex CHO molecular ions. As negative ions are easily destroyed by solar radiation at about 1 AU, an efficient production mechanism, so far unidentified, is required to account for the observed densities. The detection of negative ions in the coma near 1 AU implies that negative ions should also be present in similar neutral gas and dust environment farther away from the sun. If the negative-ion densities are large enough, they could play an important part in physical processes such as radiative transfer or charge exchange.
- Published
- 1991
- Full Text
- View/download PDF
45. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars
- Author
-
Claude d’Uston, Mark R. Sims, L. A. Soderblom, P. A. de Souza, Larry S. Crumpler, Timothy J. McCoy, John A. Grant, Livio L. Tornabene, Louise O. V. Edwards, M. E. Schmidt, Barbara A. Cohen, Raymond E. Arvidson, Harry Y. McSween, Steven W. Squyres, E. Treguier, Matthew P. Golombek, A. F. C. Haldemann, J. W. Rice, and Diana L. Blaney
- Subjects
Basalt ,Atmospheric Science ,Ecology ,Bedding ,Lithology ,Outcrop ,Lava ,Geochemistry ,Paleontology ,Soil Science ,Pyroclastic rock ,Forestry ,Mass wasting ,Aquatic Science ,Oceanography ,Geophysics ,Impact crater ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Geomorphology ,Geology ,Earth-Surface Processes ,Water Science and Technology - Abstract
[1] The strike and dip of lithologic units imaged in stereo by the Spirit rover in the Columbia Hills using three-dimensional imaging software shows that measured dips (15–32°) for bedding on the main edifice of the Columbia Hill are steeper than local topography (∼8–10°). Outcrops measured on West Spur are conformable in strike with shallower dips (7–15°) than observed on Husband Hill. Dips are consistent with observed strata draping the Columbia Hills. Initial uplift was likely related either to the formation of the Gusev Crater central peak or ring or through mutual interference of overlapping crater rims. Uplift was followed by subsequent draping by a series of impact and volcaniclastic materials that experienced temporally and spatially variable aqueous infiltration, cementation, and alteration episodically during or after deposition. West Spur likely represents a spatially isolated depositional event. Erosion by a variety of processes, including mass wasting, removed tens of meters of materials and formed the Tennessee Valley primarily after deposition. This was followed by eruption of the Adirondack-class plains basalt lava flows which embayed the Columbia Hills. Minor erosion, impact, and aeolian processes have subsequently modified the Columbia Hills.
- Published
- 2008
- Full Text
- View/download PDF
46. Bulk composition and early differentiation of Mars
- Author
-
Heinrich Wänke, John Keller, Olivier Gasnault, Robert C. Reedy, Larry G. Evans, James M. Dohm, Claude d’Uston, Dave Hamara, Steven W. Squyres, Suniti Karunatillake, K. Kerry, Daniel M. Janes, D. M. Drake, Victor R. Baker, Kyeong Ja Kim, Gerlind Dreibus, Ann L. Sprague, S. Maurice, G. Jeffrey Taylor, P. A. J. Englert, R. D. Starr, William V. Boynton, and J. Brückner
- Subjects
Atmospheric Science ,Soil Science ,Mineralogy ,Aquatic Science ,Oceanography ,Astrobiology ,chemistry.chemical_compound ,Geochemistry and Petrology ,Martian surface ,Earth and Planetary Sciences (miscellaneous) ,Earth-Surface Processes ,Water Science and Technology ,Martian ,Basalt ,Ecology ,Paleontology ,Forestry ,Crust ,Mars Exploration Program ,Silicate ,Geophysics ,chemistry ,Meteorite ,Space and Planetary Science ,Earth (classical element) ,Geology - Abstract
[1] We report the concentrations of K, Th, and Fe on the Martian surface, as determined by the gamma ray spectrometer onboard the 2001 Mars Odyssey spacecraft. K and Th are not uniformly distributed on Mars. K ranges from 2000 to 6000 ppm; Th ranges from 0.2 to 1 ppm. The K/Th ratio varies from 3000 to 9000, but over 95% of the surface has K/Th between 4000 and 7000. Concentrations of K and Th are generally higher than those in basaltic Martian meteorites (K = 200–2600 ppm; Th = 0.1–0.7 ppm), indicating that Martian meteorites are not representative of the bulk crust. The average K/Th in the crust is 5300, consistent with the Wanke-Dreibus model composition for bulk silicate Mars. Fe concentrations support the idea that bulk Mars is enriched in FeO compared to Earth. The differences in K/Th and FeO between Earth and Mars are consistent with the planets accreting from narrow feeding zones. The concentration of Th on Mars does not vary as much as it does on the Moon (where it ranges from 0.1 to 12 ppm), suggesting that the primary differentiation of Mars differed from that of the Moon. If the average Th concentration (0.6 ppm) of the surface is equal to the average of the entire crust, the crust cannot be thicker than about 118 km. If the crust is about 57 km thick, as suggested by geophysical studies, then about half the Th is concentrated in the crust.
- Published
- 2006
- Full Text
- View/download PDF
47. Variations in K/Th on Mars
- Author
-
Sylvestre Maurice, Kyeong Ja Kim, James M. Dohm, Daniel M. Janes, Linda M. V. Martel, Gerlind Dreibus, Kris Kerry, Robert C. Reedy, D. M. Drake, D. K. Hamara, Steven W. Squyres, William V. Boynton, J. Brückner, Scott M. McLennan, B. C. Hahn, Heinrich Wänke, John Keller, Victor R. Baker, Olivier Gasnault, Julie Stopar, R. D. Starr, Ann L. Sprague, G. Jeffrey Taylor, Claude d’Uston, Larry G. Evans, Suniti Karunatillake, and P. A. J. Englert
- Subjects
Atmospheric Science ,Ecology ,biology ,Gamma ray spectrometer ,Earth science ,Geochemistry ,Paleontology ,Soil Science ,Forestry ,Patera ,Mars Exploration Program ,Aquatic Science ,Mars odyssey ,Oceanography ,biology.organism_classification ,Chryse Planitia ,Igneous rock ,Geophysics ,Olympus Mons ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Geology ,Earth-Surface Processes ,Water Science and Technology - Abstract
[1] K/Th determined by the Mars Odyssey Gamma Ray Spectrometer varies by a factor of 3 on Mars (3000 to 9000), but over 95% of the surface area has K/Th between 4000 and 7000. K/Th is distinctly lower than average in some areas, including west of Olympus Mons in the Amazonis Planitia, the region around Memnonia Fossae, Chryse Planitia, southeastern Arabia Terra, Syrtis Major Planum, and northwest of Apollinaris Patera. On the other hand, K/Th is distinctly higher than average in other areas, including the central part of Valles Marineris and the surrounding highlands, and in the northern part of Hellas. The generally modest variation in K/Th may be explained by inherent variations in igneous rocks and by variations in the extent of aqueous alteration.
- Published
- 2006
- Full Text
- View/download PDF
48. Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple
- Author
-
Larry S. Crumpler, Jeffrey E. Moersch, William H. Farrand, R. Li, R. Gellert, Stubbe F. Hviid, K. E. Herkenhoff, Raymond E. Arvidson, Jeffrey R. Johnson, D. W. Ming, Paul S. Smith, R. V. Morris, G. Landis, M. Sims, Scott M. McLennan, R. J. Sullivan, Morten Madsen, Göstar Klingelhöfer, Philip R. Christensen, J. W. Rice, Claude d’Uston, Matthew P. Golombek, Thomas J. Wdowiak, Steven W. Squyres, Thanasis E. Economou, T. J. Parker, William M. Folkner, John A. Grant, N. A. Cabrol, Heinrich Wänke, Nicholas J. Tosca, Lutz Richter, Benton C. Clark, S. P. Gorevan, Michael H. Carr, Christian Schröder, Jack D. Farmer, M. D. Smith, Ronald Greeley, Andrew H. Knoll, Michael J. Wolff, David J. Des Marais, L. A. Soderblom, John P. Grotzinger, Michael C. Malin, James F. Bell, Albert S. Yen, Mark T. Lemmon, Rudolf Rieder, Harry Y. McSween, D. Bollen, J. Brückner, Timothy D. Glotch, and Wendy M. Calvin
- Subjects
Meridiani Planum ,Atmospheric Science ,Earth science ,Geochemistry ,Soil Science ,Aquatic Science ,engineering.material ,Oceanography ,Geochemistry and Petrology ,Concretion ,Stratigraphic section ,Earth and Planetary Sciences (miscellaneous) ,Earth-Surface Processes ,Water Science and Technology ,geography ,geography.geographical_feature_category ,Ecology ,Bedrock ,Paleontology ,Forestry ,Mars Exploration Program ,Geophysics ,Space and Planetary Science ,engineering ,Aeolian processes ,Siliciclastic ,Sedimentary rock ,Geology - Abstract
The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedforms, with subaqueous current ripples exposed near the top of the section. After deposition, interaction with groundwater produced a range of diagenetic features, notably the hematite-rich concretions known as "blueberries." The bedrock at Meridiani is highly friable and has undergone substantial erosion by wind-transported basaltic sand. This sand, along with concretions and concretion fragments eroded from the rock, makes up a soil cover that thinly and discontinuously buries the bedrock. The soil surface exhibits both ancient and active wind ripples that record past and present wind directions. Loose rocks on the soil surface are rare and include both impact ejecta and meteorites. While Opportunity's results show that liquid water was once present at Meridiani Planum below and occasionally at the surface, the environmental conditions recorded were dominantly arid, acidic, and oxidizing and would have posed some significant challenges to the origin of life. Copyright 2006 by the American Geophysical Union.
- Published
- 2006
- Full Text
- View/download PDF
49. Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills
- Author
-
Michael C. Malin, R. Rieder, Michael H. Carr, Diana L. Blaney, William M. Folkner, Benton C. Clark, Göstar Klingelhöfer, James F. Bell, Jeffrey E. Moersch, Jack D. Farmer, Stubbe F. Hviid, Craig E. Leff, Wendy M. Calvin, K. E. Herkenhoff, R. Li, S. P. Gorevan, Morten Madsen, Robert C. Anderson, Scott M. McLennan, G. Landis, Thanasis E. Economou, S. D. Thompson, Philip R. Christensen, John P. Grotzinger, N. A. Cabrol, B. C. Hahn, Matthew P. Golombek, M. D. Smith, John A. Grant, Nicholas J. Tosca, Andrew H. Knoll, Ronald Greeley, Claude d’Uston, M. Sims, M. J. Wolff, T. J. Parker, Joel A. Hurowitz, Thomas J. Wdowiak, Jeffrey R. Johnson, Christian Schröder, J. W. Rice, Harry Y. McSween, P. A. de Souza, L. A. Soderblom, David J. Des Marais, J. G. Ward, Daniel Rodionov, J. Brückner, Paul S. Smith, Edward A. Guinness, Steven W. Squyres, Larry S. Crumpler, Mark T. Lemmon, William H. Farrand, Larry A. Haskin, Richard V. Morris, Lutz Richter, Raymond E. Arvidson, Ryan C. Sullivan, Albert S. Yen, Alian Wang, D. W. Ming, and Heinrich Wänke
- Subjects
Atmospheric Science ,Outcrop ,Geochemistry ,Soil Science ,Aquatic Science ,Oceanography ,Impact crater ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Ejecta ,Dust devil ,Geomorphology ,Earth-Surface Processes ,Water Science and Technology ,Basalt ,geography ,geography.geographical_feature_category ,Ecology ,Paleontology ,Forestry ,Volcanic rock ,Geophysics ,Space and Planetary Science ,Clastic rock ,Geology ,Volcanic ash - Abstract
Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
- Published
- 2006
- Full Text
- View/download PDF
50. Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer
- Author
-
Benton C. Clark, Thanasis E. Economou, Claude d’Uston, D. W. Ming, Gerlind Dreibus, Steven W. Squyres, Rudolf Rieder, Robert C. Anderson, Jutta Zipfel, Albert S. Yen, Ralf Gellert, Göstar Klingelhöfer, Heinrich Wänke, G. W. Lugmair, and J. Brückner
- Subjects
Meridiani Planum ,Geologic Sediments ,Evaporite ,Extraterrestrial Environment ,Outcrop ,Iron ,Mineralogy ,Mars ,Alpha particle X-ray spectrometer ,Ferric Compounds ,Composition of Mars ,Magnesium ,Spacecraft ,Basalt ,Minerals ,Multidisciplinary ,Chemistry ,Sulfates ,Silicates ,Spectrometry, X-Ray Emission ,Water ,Hematite ,Alpha Particles ,Bromine ,Elements ,visual_art ,visual_art.visual_art_medium ,Sedimentary rock ,Chlorine ,Sulfur - Abstract
The Alpha Particle X-ray Spectrometer on the Opportunity rover determined major and minor elements of soils and rocks in Meridiani Planum. Chemical compositions differentiate between basaltic rocks, evaporite-rich rocks, basaltic soils, and hematite-rich soils. Although soils are compositionally similar to those at previous landing sites, differences in iron and some minor element concentrations signify the addition of local components. Rocky outcrops are rich in sulfur and variably enriched in bromine relative to chlorine. The interaction with water in the past is indicated by the chemical features in rocks and soils at this site.
- Published
- 2004
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.