1. The impact of Bacillus thuringiensis var. israelensis (Vectobac® WDG) larvicide sprayed with drones on the bio-control of malaria vectors in rice fields of sub-urban Kigali, Rwanda
- Author
-
Dunia Munyakanage, Elias Niyituma, Alphonse Mutabazi, Xavier Misago, Clarisse Musanabaganwa, Eric Remera, Eric Rutayisire, Mamy Muziga Ingabire, Silas Majambere, Aimable Mbituyumuremyi, Mathew Piero Ngugi, Elizabeth Kokwaro, Emmanuel Hakizimana, and Claude Mambo Muvunyi
- Subjects
Malaria ,Mosquitoes ,Drones ,Rice fields ,Bacillus thuringiensis ,Rwanda ,Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background The core vector control tools used to reduce malaria prevalence are currently long-lasting insecticidal nets (LLINs), and indoor residual spraying (IRS). These interventions are hindered by insecticide resistance and behavioural adaptation by malaria vectors. Thus, for effective interruption of malaria transmission, there is a need to develop novel vector control interventions and technologies to address the above challenges. Larviciding using drones was experimented as an innovative tool that could complement existing indoor interventions to control malaria. Methods A non-randomized larviciding trial was carried out in irrigated rice fields in sub-urban Kigali, Rwanda. Potential mosquito larval habitats in study sites were mapped and subsequently sprayed using multirotor drones. Application of Bacillus thuringiensis var. israelensis (Bti) (Vectobac® WDG) was followed by entomological surveys that were performed every two weeks over a ten-month period. Sampling of mosquito larvae was done with dippers while adult mosquitoes were collected using CDC miniature light traps (CDC-LT) and pyrethrum spraying collection (PSC) methods. Malaria cases were routinely monitored through community health workers in villages surrounding the study sites. Results The abundance of all-species mosquito larvae, Anopheles larvae and all-species pupae declined by 68.1%, 74.6% and 99.6%, respectively. Larval density was reduced by 93.3% for total larvae, 95.3% for the Anopheles larvae and 61.9% for pupae. The total adult mosquitoes and Anopheles gambiae sensu lato collected using CDC-Light trap declined by 60.6% and 80% respectively. Malaria incidence also declined significantly between intervention and control sites (U = 20, z = − 2.268, p = 0.023). Conclusions The larviciding using drone technology implemented in Rwanda demonstrated a substantial reduction in abundance and density of mosquito larvae and, concomitant decline in adult mosquito populations and malaria incidences in villages contingent to the treatment sites. The scaling up of larval source management (LSM) has to be integrated in malaria programmes in targeted areas of malaria transmission in order to enhance the gains in malaria control.
- Published
- 2024
- Full Text
- View/download PDF